Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

558 lines (450 sloc) 13.68 kB
/*
* Copyright (c) 2000-2007 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
# include "config.h"
# include <iostream>
/*
* This source file contains all the implementations of the Design
* class declared in netlist.h.
*/
# include "netlist.h"
# include "util.h"
# include "compiler.h"
# include "netmisc.h"
# include <sstream>
Design:: Design()
: errors(0), nodes_(0), procs_(0), lcounter_(0)
{
procs_idx_ = 0;
des_precision_ = 0;
nodes_functor_cur_ = 0;
nodes_functor_nxt_ = 0;
}
Design::~Design()
{
}
string Design::local_symbol(const string&path)
{
ostringstream res;
res << path << "." << "_L" << lcounter_;
lcounter_ += 1;
return res.str();
}
void Design::set_precision(int val)
{
if (val < des_precision_)
des_precision_ = val;
}
int Design::get_precision() const
{
return des_precision_;
}
uint64_t Design::scale_to_precision(uint64_t val,
const NetScope*scope) const
{
int units = scope->time_unit();
assert( units >= des_precision_ );
while (units > des_precision_) {
units -= 1;
val *= 10;
}
return val;
}
NetScope* Design::make_root_scope(perm_string root)
{
NetScope *root_scope_;
root_scope_ = new NetScope(0, hname_t(root), NetScope::MODULE);
/* This relies on the fact that the basename return value is
permallocated. */
root_scope_->set_module_name(root_scope_->basename());
root_scopes_.push_back(root_scope_);
return root_scope_;
}
NetScope* Design::find_root_scope()
{
assert(root_scopes_.front());
return root_scopes_.front();
}
list<NetScope*> Design::find_root_scopes()
{
return root_scopes_;
}
const list<NetScope*> Design::find_root_scopes() const
{
return root_scopes_;
}
/*
* This method locates a scope in the design, given its rooted
* hierarchical name. Each component of the key is used to scan one
* more step down the tree until the name runs out or the search
* fails.
*/
NetScope* Design::find_scope(const std::list<hname_t>&path) const
{
if (path.empty())
return 0;
for (list<NetScope*>::const_iterator scope = root_scopes_.begin()
; scope != root_scopes_.end(); scope++) {
NetScope*cur = *scope;
if (path.front() != cur->fullname())
continue;
std::list<hname_t> tmp = path;
tmp.pop_front();
while (cur) {
if (tmp.empty()) return cur;
cur = cur->child( tmp.front() );
tmp.pop_front();
}
}
return 0;
}
/*
* This is a relative lookup of a scope by name. The starting point is
* the scope parameter within which I start looking for the scope. If
* I do not find the scope within the passed scope, start looking in
* parent scopes until I find it, or I run out of parent scopes.
*/
NetScope* Design::find_scope(NetScope*scope, const std::list<hname_t>&path,
NetScope::TYPE type) const
{
assert(scope);
if (path.empty())
return scope;
for ( ; scope ; scope = scope->parent()) {
std::list<hname_t> tmp = path;
NetScope*cur = scope;
do {
hname_t key = tmp.front();
/* If we are looking for a module or we are not
* looking at the last path component check for
* a name match (second line). */
if (cur->type() == NetScope::MODULE
&& (type == NetScope::MODULE || tmp.size() > 1)
&& cur->module_name()==key.peek_name()) {
/* Up references may match module name */
} else {
cur = cur->child( key );
if (cur == 0) break;
}
tmp.pop_front();
} while (!tmp.empty());
if (cur) return cur;
}
// Last chance. Look for the name starting at the root.
return find_scope(path);
}
/*
* This method runs through the scope, noticing the defparam
* statements that were collected during the elaborate_scope pass and
* applying them to the target parameters. The implementation actually
* works by using a specialized method from the NetScope class that
* does all the work for me.
*/
void Design::run_defparams()
{
for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); scope++)
(*scope)->run_defparams(this);
}
void NetScope::run_defparams(Design*des)
{
{ NetScope*cur = sub_;
while (cur) {
cur->run_defparams(des);
cur = cur->sib_;
}
}
map<pform_name_t,NetExpr*>::const_iterator pp;
for (pp = defparams.begin() ; pp != defparams.end() ; pp ++ ) {
NetExpr*val = (*pp).second;
pform_name_t path = (*pp).first;
perm_string perm_name = peek_tail_name(path);
path.pop_back();
list<hname_t> eval_path = eval_scope_path(des, this, path);
/* If there is no path on the name, then the targ_scope
is the current scope. */
NetScope*targ_scope = des->find_scope(this, eval_path);
if (targ_scope == 0) {
cerr << val->get_fileline() << ": warning: scope of " <<
path << "." << perm_name << " not found." << endl;
continue;
}
bool flag = targ_scope->replace_parameter(perm_name, val);
if (! flag) {
cerr << val->get_fileline() << ": warning: parameter "
<< perm_name << " not found in "
<< scope_path(targ_scope) << "." << endl;
}
}
}
void Design::evaluate_parameters()
{
for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); scope++)
(*scope)->evaluate_parameters(this);
}
void NetScope::evaluate_parameters(Design*des)
{
NetScope*cur = sub_;
while (cur) {
cur->evaluate_parameters(des);
cur = cur->sib_;
}
// Evaluate the parameter values. The parameter expressions
// have already been elaborated and replaced by the scope
// scanning code. Now the parameter expression can be fully
// evaluated, or it cannot be evaluated at all.
typedef map<perm_string,param_expr_t>::iterator mparm_it_t;
for (mparm_it_t cur = parameters.begin()
; cur != parameters.end() ; cur ++) {
long msb = 0;
long lsb = 0;
bool range_flag = false;
NetExpr*expr;
/* Evaluate the msb expression, if it is present. */
expr = (*cur).second.msb;
if (expr) {
NetEConst*tmp = dynamic_cast<NetEConst*>(expr);
if (! tmp) {
NetExpr*nexpr = expr->eval_tree();
if (nexpr == 0) {
cerr << (*cur).second.expr->get_fileline()
<< ": internal error: "
<< "unable to evaluate msb expression "
<< "for parameter " << (*cur).first << ": "
<< *expr << endl;
des->errors += 1;
continue;
}
assert(nexpr);
delete expr;
(*cur).second.msb = nexpr;
tmp = dynamic_cast<NetEConst*>(nexpr);
}
assert(tmp);
msb = tmp->value().as_long();
range_flag = true;
}
/* Evaluate the lsb expression, if it is present. */
expr = (*cur).second.lsb;
if (expr) {
NetEConst*tmp = dynamic_cast<NetEConst*>(expr);
if (! tmp) {
NetExpr*nexpr = expr->eval_tree();
if (nexpr == 0) {
cerr << (*cur).second.expr->get_fileline()
<< ": internal error: "
<< "unable to evaluate lsb expression "
<< "for parameter " << (*cur).first << ": "
<< *expr << endl;
des->errors += 1;
continue;
}
assert(nexpr);
delete expr;
(*cur).second.lsb = nexpr;
tmp = dynamic_cast<NetEConst*>(nexpr);
}
assert(tmp);
lsb = tmp->value().as_long();
assert(range_flag);
}
/* Evaluate the parameter expression, if necessary. */
expr = (*cur).second.expr;
assert(expr);
switch (expr->expr_type()) {
case IVL_VT_REAL:
if (! dynamic_cast<const NetECReal*>(expr)) {
NetExpr*nexpr = expr->eval_tree();
if (nexpr == 0) {
cerr << (*cur).second.expr->get_fileline()
<< ": internal error: "
<< "unable to evaluate real parameter value: "
<< *expr << endl;
des->errors += 1;
continue;
}
assert(nexpr);
delete expr;
(*cur).second.expr = nexpr;
}
break;
case IVL_VT_LOGIC:
case IVL_VT_BOOL:
if (! dynamic_cast<const NetEConst*>(expr)) {
// Try to evaluate the expression.
NetExpr*nexpr = expr->eval_tree();
if (nexpr == 0) {
cerr << (*cur).second.expr->get_fileline()
<< ": internal error: "
<< "unable to evaluate parameter "
<< (*cur).first
<< " value: " <<
*expr << endl;
des->errors += 1;
continue;
}
// The evaluate worked, replace the old
// expression with this constant value.
assert(nexpr);
delete expr;
(*cur).second.expr = nexpr;
// Set the signedness flag.
(*cur).second.expr
->cast_signed( (*cur).second.signed_flag );
}
break;
default:
cerr << (*cur).second.expr->get_fileline()
<< ": internal error: "
<< "unhandled expression type?" << endl;
des->errors += 1;
continue;
}
/* If the parameter has range information, then make
sure the value is set right. */
if (range_flag) {
unsigned long wid = (msb >= lsb)? msb - lsb : lsb - msb;
wid += 1;
NetEConst*val = dynamic_cast<NetEConst*>((*cur).second.expr);
assert(val);
verinum value = val->value();
if (! (value.has_len()
&& (value.len() == wid)
&& (value.has_sign() == (*cur).second.signed_flag))) {
verinum tmp (value, wid);
tmp.has_sign ( (*cur).second.signed_flag );
delete val;
val = new NetEConst(tmp);
(*cur).second.expr = val;
}
}
}
}
const char* Design::get_flag(const string&key) const
{
map<string,const char*>::const_iterator tmp = flags_.find(key);
if (tmp == flags_.end())
return "";
else
return (*tmp).second;
}
/*
* This method looks for a signal (reg, wire, whatever) starting at
* the specified scope. If the name is hierarchical, it is split into
* scope and name and the scope used to find the proper starting point
* for the real search.
*
* It is the job of this function to properly implement Verilog scope
* rules as signals are concerned.
*/
NetNet* Design::find_signal(NetScope*scope, pform_name_t path)
{
assert(scope);
perm_string key = peek_tail_name(path);
path.pop_back();
if (! path.empty()) {
list<hname_t> eval_path = eval_scope_path(this, scope, path);
scope = find_scope(scope, eval_path);
}
while (scope) {
if (NetNet*net = scope->find_signal(key))
return net;
if (scope->type() == NetScope::MODULE)
break;
scope = scope->parent();
}
return 0;
}
NetFuncDef* Design::find_function(NetScope*scope, const pform_name_t&name)
{
assert(scope);
std::list<hname_t> eval_path = eval_scope_path(this, scope, name);
NetScope*func = find_scope(scope, eval_path, NetScope::FUNC);
if (func && (func->type() == NetScope::FUNC))
return func->func_def();
return 0;
}
NetScope* Design::find_task(NetScope*scope, const pform_name_t&name)
{
std::list<hname_t> eval_path = eval_scope_path(this, scope, name);
NetScope*task = find_scope(scope, eval_path, NetScope::TASK);
if (task && (task->type() == NetScope::TASK))
return task;
return 0;
}
void Design::add_node(NetNode*net)
{
assert(net->design_ == 0);
if (nodes_ == 0) {
net->node_next_ = net;
net->node_prev_ = net;
} else {
net->node_next_ = nodes_->node_next_;
net->node_prev_ = nodes_;
net->node_next_->node_prev_ = net;
net->node_prev_->node_next_ = net;
}
nodes_ = net;
net->design_ = this;
}
void Design::del_node(NetNode*net)
{
assert(net->design_ == this);
assert(net != 0);
/* Interact with the Design::functor method by manipulating the
cur and nxt pointers that it is using. */
if (net == nodes_functor_nxt_)
nodes_functor_nxt_ = nodes_functor_nxt_->node_next_;
if (net == nodes_functor_nxt_)
nodes_functor_nxt_ = 0;
if (net == nodes_functor_cur_)
nodes_functor_cur_ = 0;
/* Now perform the actual delete. */
if (nodes_ == net)
nodes_ = net->node_prev_;
if (nodes_ == net) {
nodes_ = 0;
} else {
net->node_next_->node_prev_ = net->node_prev_;
net->node_prev_->node_next_ = net->node_next_;
}
net->design_ = 0;
}
void Design::add_process(NetProcTop*pro)
{
pro->next_ = procs_;
procs_ = pro;
}
void Design::delete_process(NetProcTop*top)
{
assert(top);
if (procs_ == top) {
procs_ = top->next_;
} else {
NetProcTop*cur = procs_;
while (cur->next_ != top) {
assert(cur->next_);
cur = cur->next_;
}
cur->next_ = top->next_;
}
if (procs_idx_ == top)
procs_idx_ = top->next_;
delete top;
}
Jump to Line
Something went wrong with that request. Please try again.