Skip to content
This repository
tag: s20120501
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 846 lines (711 sloc) 23.515 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
/*
* Copyright (c) 2000-2011 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/

# include "config.h"

# include <iostream>
# include <set>
# include <cstdlib>

/*
* This source file contains all the implementations of the Design
* class declared in netlist.h.
*/

# include "netlist.h"
# include "util.h"
# include "compiler.h"
# include "netmisc.h"
# include "PExpr.h"
# include "PTask.h"
# include <sstream>
# include "ivl_assert.h"

Design:: Design()
    : errors(0), nodes_(0), procs_(0), aprocs_(0)
{
      branches_ = 0;
      procs_idx_ = 0;
      des_precision_ = 0;
      nodes_functor_cur_ = 0;
      nodes_functor_nxt_ = 0;
      des_delay_sel_ = Design::TYP;
}

Design::~Design()
{
}

void Design::set_precision(int val)
{
      if (val < des_precision_)
des_precision_ = val;
}

int Design::get_precision() const
{
      return des_precision_;
}

void Design::set_delay_sel(delay_sel_t sel)
{
      des_delay_sel_ = sel;
}

const char* Design::get_delay_sel() const
{
      switch (des_delay_sel_) {
case Design::MIN:
return "MINIMUM";
break;
case Design::TYP:
return "TYPICAL";
break;
case Design::MAX:
return "MAXIMUM";
break;
default:
assert(0);
return "TYPICAL";
      }
}


uint64_t Design::scale_to_precision(uint64_t val,
const NetScope*scope) const
{
      int units = scope->time_unit();
      assert( units >= des_precision_ );

      while (units > des_precision_) {
units -= 1;
val *= 10;
      }

      return val;
}

NetScope* Design::make_root_scope(perm_string root)
{
      NetScope *root_scope_;
      root_scope_ = new NetScope(0, hname_t(root), NetScope::MODULE);
/* This relies on the fact that the basename return value is
permallocated. */
      root_scope_->set_module_name(root_scope_->basename());
      root_scopes_.push_back(root_scope_);
      return root_scope_;
}

NetScope* Design::find_root_scope()
{
      assert(root_scopes_.front());
      return root_scopes_.front();
}

list<NetScope*> Design::find_root_scopes()
{
      return root_scopes_;
}

const list<NetScope*> Design::find_root_scopes() const
{
      return root_scopes_;
}

/*
* This method locates a scope in the design, given its rooted
* hierarchical name. Each component of the key is used to scan one
* more step down the tree until the name runs out or the search
* fails.
*/
NetScope* Design::find_scope(const std::list<hname_t>&path) const
{
      if (path.empty())
return 0;

      for (list<NetScope*>::const_iterator scope = root_scopes_.begin()
; scope != root_scopes_.end(); ++ scope ) {

NetScope*cur = *scope;
if (path.front() != cur->fullname())
continue;

std::list<hname_t> tmp = path;
tmp.pop_front();

while (cur) {
if (tmp.empty()) return cur;

cur = cur->child( tmp.front() );

tmp.pop_front();
}

      }

      return 0;
}

/*
* This is a relative lookup of a scope by name. The starting point is
* the scope parameter within which I start looking for the scope. If
* I do not find the scope within the passed scope, start looking in
* parent scopes until I find it, or I run out of parent scopes.
*/
NetScope* Design::find_scope(NetScope*scope, const std::list<hname_t>&path,
                             NetScope::TYPE type) const
{
      assert(scope);
      if (path.empty())
return scope;

      for ( ; scope ; scope = scope->parent()) {

std::list<hname_t> tmp = path;

NetScope*cur = scope;
do {
hname_t key = tmp.front();
/* If we are looking for a module or we are not
* looking at the last path component check for
* a name match (second line). */
if (cur->type() == NetScope::MODULE
&& (type == NetScope::MODULE || tmp.size() > 1)
&& cur->module_name()==key.peek_name()) {

/* Up references may match module name */

} else {
cur = cur->child( key );
if (cur == 0) break;
}
tmp.pop_front();
} while (!tmp.empty());

if (cur) return cur;
      }

// Last chance. Look for the name starting at the root.
      return find_scope(path);
}

/*
* This method runs through the scope, noticing the defparam
* statements that were collected during the elaborate_scope pass and
* applying them to the target parameters. The implementation actually
* works by using a specialized method from the NetScope class that
* does all the work for me.
*/
void Design::run_defparams()
{
      for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); ++ scope )
(*scope)->run_defparams(this);
}

void NetScope::run_defparams(Design*des)
{
      for (map<hname_t,NetScope*>::const_iterator cur = children_.begin()
; cur != children_.end() ; ++ cur )
cur->second->run_defparams(des);

      while (! defparams.empty()) {
pair<pform_name_t,PExpr*> pp = defparams.front();
defparams.pop_front();

pform_name_t path = pp.first;
PExpr*val = pp.second;

perm_string perm_name = peek_tail_name(path);
path.pop_back();

list<hname_t> eval_path = eval_scope_path(des, this, path);

/* If there is no path on the name, then the targ_scope
is the current scope. */
NetScope*targ_scope = des->find_scope(this, eval_path);
if (targ_scope == 0) {

// Push the defparam onto a list for retry
// later. It is possible for the scope lookup to
// fail if the scope being defparam'd into is
// generated by an index array for generate.
eval_path.push_back(hname_t(perm_name));
defparams_later.push_back(make_pair(eval_path,val));
continue;
}

bool flag = targ_scope->replace_parameter(perm_name, val, this);
if (! flag) {
cerr << val->get_fileline() << ": warning: parameter "
<< perm_name << " not found in "
<< scope_path(targ_scope) << "." << endl;
}

      }

// If some of the defparams didn't find a scope in the name,
// then try again later. It may be that the target scope is
// created later by generate scheme or instance array.
      if (! defparams_later.empty())
des->defparams_later.insert(this);
}

void NetScope::run_defparams_later(Design*des)
{
      set<NetScope*> target_scopes;
      list<pair<list<hname_t>,PExpr*> > defparams_even_later;

      while (! defparams_later.empty()) {
pair<list<hname_t>,PExpr*> cur = defparams_later.front();
defparams_later.pop_front();

list<hname_t>eval_path = cur.first;
perm_string name = eval_path.back().peek_name();
eval_path.pop_back();

PExpr*val = cur.second;

NetScope*targ_scope = des->find_scope(this, eval_path);
if (targ_scope == 0) {
// If a scope in the target path is not found,
// then push this defparam for handling even
// later. Maybe a later generate scheme or
// instance array will create the scope.
defparams_even_later.push_back(cur);
continue;
}

bool flag = targ_scope->replace_parameter(name, val, this);
if (! flag) {
cerr << val->get_fileline() << ": warning: parameter "
<< name << " not found in "
<< scope_path(targ_scope) << "." << endl;
}

// We'll need to re-evaluate parameters in this scope
target_scopes.insert(targ_scope);
      }

// All the scopes that this defparam set touched should have
// their parameters re-evaluated.
      for (set<NetScope*>::iterator cur = target_scopes.begin()
; cur != target_scopes.end() ; ++ cur )
(*cur)->evaluate_parameters(des);

// If there are some scopes that still have missing scopes,
// then save them back into the defparams_later list for a
// later pass.
      defparams_later = defparams_even_later;
      if (! defparams_later.empty())
des->defparams_later.insert(this);
}

void Design::evaluate_parameters()
{
      for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); ++ scope )
(*scope)->evaluate_parameters(this);
}

void NetScope::evaluate_parameter_logic_(Design*des, param_ref_t cur)
{
      long msb = 0;
      long lsb = 0;
      bool range_flag = false;

/* Evaluate the msb expression, if it is present. */
      PExpr*msb_expr = (*cur).second.msb_expr;
      if (msb_expr) {
            (*cur).second.msb = elab_and_eval(des, this, msb_expr, -1, true);
if (! eval_as_long(msb, (*cur).second.msb)) {
cerr << (*cur).second.val->get_fileline()
<< ": error: Unable to evaluate msb expression "
<< "for parameter " << (*cur).first << ": "
<< *(*cur).second.msb << endl;
des->errors += 1;
return;
}

range_flag = true;
      }

/* Evaluate the lsb expression, if it is present. */
      PExpr*lsb_expr = (*cur).second.lsb_expr;
      if (lsb_expr) {
            (*cur).second.lsb = elab_and_eval(des, this, lsb_expr, -1, true);
if (! eval_as_long(lsb, (*cur).second.lsb)) {
cerr << (*cur).second.val->get_fileline()
<< ": error: Unable to evaluate lsb expression "
<< "for parameter " << (*cur).first << ": "
<< *(*cur).second.lsb << endl;
des->errors += 1;
return;
}

range_flag = true;
      }

/* Evaluate the parameter expression. */
      PExpr*val_expr = (*cur).second.val_expr;
      NetScope*val_scope = (*cur).second.val_scope;

      int lv_width = -2;
      if (range_flag)
lv_width = (msb >= lsb) ? 1 + msb - lsb : 1 + lsb - msb;

      NetExpr*expr = elab_and_eval(des, val_scope, val_expr, lv_width, true);
      if (! expr)
            return;

      switch (expr->expr_type()) {
case IVL_VT_REAL:
if (! dynamic_cast<const NetECReal*>(expr)) {
cerr << expr->get_fileline()
<< ": error: Unable to evaluate real parameter "
<< (*cur).first << " value: " << *expr << endl;
des->errors += 1;
return;
}
break;

case IVL_VT_LOGIC:
case IVL_VT_BOOL:
if (! dynamic_cast<const NetEConst*>(expr)) {
cerr << expr->get_fileline()
<< ": error: Unable to evaluate parameter "
<< (*cur).first << " value: " << *expr << endl;
des->errors += 1;
return;
}
break;

default:
cerr << expr->get_fileline()
<< ": internal error: "
<< "Unhandled expression type?" << endl;
des->errors += 1;
return;
      }
      (*cur).second.val = expr;

/* If the parameter has type or range information, then make
sure the type is set right. Note that if the parameter
doesn't have an explicit type or range, then it will get
the signedness from the expression itself. */
      if (range_flag) {
/* If we have a real value convert it to an integer. */
if(NetECReal*tmp = dynamic_cast<NetECReal*>(expr)) {
verinum nval(tmp->value().as_long64(), (unsigned)lv_width);
expr = new NetEConst(nval);
expr->set_line(*((*cur).second.val));
(*cur).second.val = expr;
}

            (*cur).second.val->cast_signed((*cur).second.signed_flag);
      } else if ((*cur).second.signed_flag) {
            (*cur).second.val->cast_signed(true);
      }

// If there are no value ranges to test the value against,
// then we are done.
      if ((*cur).second.range == 0) {
return;
      }

      NetEConst*val = dynamic_cast<NetEConst*>((*cur).second.val);
      ivl_assert(*(*cur).second.val, (*cur).second.val);
      ivl_assert(*(*cur).second.val, val);

      verinum value = val->value();

      bool from_flag = (*cur).second.range == 0? true : false;
      for (range_t*value_range = (*cur).second.range
; value_range ; value_range = value_range->next) {

// If we already know that the value is
// within a "from" range, then do not test
// any more of the from ranges.
if (from_flag && value_range->exclude_flag==false)
continue;

if (value_range->low_expr) {
NetEConst*tmp = dynamic_cast<NetEConst*>(value_range->low_expr);
ivl_assert(*value_range->low_expr, tmp);
if (value_range->low_open_flag && value <= tmp->value())
continue;
else if (value < tmp->value())
continue;
}

if (value_range->high_expr) {
NetEConst*tmp = dynamic_cast<NetEConst*>(value_range->high_expr);
ivl_assert(*value_range->high_expr, tmp);
if (value_range->high_open_flag && value >= tmp->value())
continue;
else if (value > tmp->value())
continue;
}

// Within the range. If this is a "from"
// range, then set the from_flag and continue.
if (value_range->exclude_flag == false) {
from_flag = true;
continue;
}

// OH NO! In an excluded range. signal an error.
from_flag = false;
break;
      }

// If we found no from range that contains the
// value, then report an error.
      if (! from_flag) {
cerr << val->get_fileline() << ": error: "
<< "Parameter value " << value
<< " is out of range for parameter " << (*cur).first
<< "." << endl;
des->errors += 1;
      }
}

void NetScope::evaluate_parameter_real_(Design*des, param_ref_t cur)
{
      PExpr*val_expr = (*cur).second.val_expr;
      NetScope*val_scope = (*cur).second.val_scope;

      NetExpr*expr = elab_and_eval(des, val_scope, val_expr, -1, true);
      if (! expr)
            return;

      NetECReal*res = 0;

      switch (expr->expr_type()) {
case IVL_VT_REAL:
if (NetECReal*tmp = dynamic_cast<NetECReal*>(expr)) {
res = tmp;
} else {
cerr << expr->get_fileline()
<< ": error: "
<< "Unable to evaluate real parameter "
<< (*cur).first << " value: " << *expr << endl;
des->errors += 1;
return;
}
break;

case IVL_VT_LOGIC:
case IVL_VT_BOOL:
if (NetEConst*tmp = dynamic_cast<NetEConst*>(expr)) {
verireal val (tmp->value().as_long());
res = new NetECReal(val);
res->set_line(*tmp);
} else {
cerr << expr->get_fileline()
<< ": error: "
<< "Unable to evaluate parameter "
<< (*cur).first << " value: " << *expr << endl;
des->errors += 1;
return;
}
break;

default:
cerr << expr->get_fileline()
<< ": internal error: "
<< "Unhandled expression type?" << endl;
des->errors += 1;
return;
break;
      }

      (*cur).second.val = res;
      double value = res->value().as_double();

      bool from_flag = (*cur).second.range == 0? true : false;
      for (range_t*value_range = (*cur).second.range
; value_range ; value_range = value_range->next) {

if (from_flag && value_range->exclude_flag==false)
continue;

if (value_range->low_expr) {
double tmp;
bool flag = eval_as_double(tmp, value_range->low_expr);
ivl_assert(*value_range->low_expr, flag);
if (value_range->low_open_flag && value <= tmp)
continue;
else if (value < tmp)
continue;
}

if (value_range->high_expr) {
double tmp;
bool flag = eval_as_double(tmp, value_range->high_expr);
ivl_assert(*value_range->high_expr, flag);
if (value_range->high_open_flag && value >= tmp)
continue;
else if (value > tmp)
continue;
}

if (value_range->exclude_flag == false) {
from_flag = true;
continue;
}

// All the above tests failed, so we must have tripped
// an exclude rule.
from_flag = false;
break;
      }

      if (! from_flag) {
cerr << res->get_fileline() << ": error: "
<< "Parameter value " << value
<< " is out of range for real parameter " << (*cur).first
<< "." << endl;
des->errors += 1;
      }
}

void NetScope::evaluate_parameter_(Design*des, param_ref_t cur)
{
// If the parameter has already been evaluated, quietly return.
      if (cur->second.val_expr == 0)
            return;

      if (cur->second.solving) {
            cerr << cur->second.get_fileline() << ": error: "
<< "Recursive parameter reference found involving "
                 << cur->first << "." << endl;
des->errors += 1;
      } else {
            cur->second.solving = true;
            switch (cur->second.type) {
                case IVL_VT_BOOL:
                case IVL_VT_LOGIC:
                  evaluate_parameter_logic_(des, cur);
                  break;

                case IVL_VT_REAL:
                  evaluate_parameter_real_(des, cur);
                  break;

                default:
                  cerr << cur->second.get_fileline() << ": internal error: "
                       << "Unexpected expression type " << cur->second.type
                       << "." << endl;
                  cerr << cur->second.get_fileline() << ": : "
                       << "Parameter name: " << cur->first << endl;
                  cerr << cur->second.get_fileline() << ": : "
                       << "Expression is: " << *cur->second.val_expr << endl;
                  ivl_assert(cur->second, 0);
                  break;
            }
            cur->second.solving = false;
      }

        // If we have failed to evaluate the expression, create a dummy
        // value. This prevents spurious error messages being output.
      if (cur->second.val == 0) {
            verinum val(verinum::Vx);
            cur->second.val = new NetEConst(val);
      }

        // Flag that the expression has been evaluated.
      cur->second.val_expr = 0;
}

void NetScope::evaluate_parameters(Design*des)
{
      for (map<hname_t,NetScope*>::const_iterator cur = children_.begin()
; cur != children_.end() ; ++ cur )
cur->second->evaluate_parameters(des);

      if (debug_scopes)
cerr << "debug: "
<< "Evaluating parameters in " << scope_path(this) << endl;

      for (param_ref_t cur = parameters.begin()
; cur != parameters.end() ; ++ cur) {

            evaluate_parameter_(des, cur);
      }
}

void Design::residual_defparams()
{
      for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); ++ scope )
(*scope)->residual_defparams(this);
}

void NetScope::residual_defparams(Design*des)
{
// Clean out the list of defparams that never managed to match
// a scope. Print a warning for each.
      while (! defparams_later.empty()) {
pair<list<hname_t>,PExpr*> cur = defparams_later.front();
defparams_later.pop_front();

cerr << cur.second->get_fileline() << ": warning: "
<< "Scope of " << cur.first << " not found." << endl;
      }

      for (map<hname_t,NetScope*>::const_iterator cur = children_.begin()
; cur != children_.end() ; ++ cur )
cur->second->residual_defparams(des);
}

const char* Design::get_flag(const string&key) const
{
      map<string,const char*>::const_iterator tmp = flags_.find(key);
      if (tmp == flags_.end())
return "";
      else
return (*tmp).second;
}

/*
* This method looks for a signal (reg, wire, whatever) starting at
* the specified scope. If the name is hierarchical, it is split into
* scope and name and the scope used to find the proper starting point
* for the real search.
*
* It is the job of this function to properly implement Verilog scope
* rules as signals are concerned.
*/
NetNet* Design::find_signal(NetScope*scope, pform_name_t path)
{
      assert(scope);

      perm_string key = peek_tail_name(path);
      path.pop_back();
      if (! path.empty()) {
list<hname_t> eval_path = eval_scope_path(this, scope, path);
scope = find_scope(scope, eval_path);
      }

      while (scope) {
if (NetNet*net = scope->find_signal(key))
return net;

if (scope->type() == NetScope::MODULE)
break;

scope = scope->parent();
      }

      return 0;
}

NetFuncDef* Design::find_function(NetScope*scope, const pform_name_t&name)
{
      assert(scope);

      std::list<hname_t> eval_path = eval_scope_path(this, scope, name);
      NetScope*func = find_scope(scope, eval_path, NetScope::FUNC);
      if (func && (func->type() == NetScope::FUNC)) {
              // If a function is used in a parameter definition or in
              // a signal declaration, it is possible to get here before
              // the function's signals have been elaborated. If this is
              // the case, elaborate them now.
            if (func->elab_stage() < 2) {
                  const PFunction*pfunc = func->func_pform();
                  assert(pfunc);
                  pfunc->elaborate_sig(this, func);
            }
return func->func_def();
      }
      return 0;
}

NetScope* Design::find_task(NetScope*scope, const pform_name_t&name)
{
      std::list<hname_t> eval_path = eval_scope_path(this, scope, name);
      NetScope*task = find_scope(scope, eval_path, NetScope::TASK);
      if (task && (task->type() == NetScope::TASK))
return task;

      return 0;
}

void Design::add_node(NetNode*net)
{
      assert(net->design_ == 0);
      if (nodes_ == 0) {
net->node_next_ = net;
net->node_prev_ = net;
      } else {
net->node_next_ = nodes_->node_next_;
net->node_prev_ = nodes_;
net->node_next_->node_prev_ = net;
net->node_prev_->node_next_ = net;
      }
      nodes_ = net;
      net->design_ = this;
}

void Design::del_node(NetNode*net)
{
      assert(net->design_ == this);
      assert(net != 0);

/* Interact with the Design::functor method by manipulating the
cur and nxt pointers that it is using. */
      if (net == nodes_functor_nxt_)
nodes_functor_nxt_ = nodes_functor_nxt_->node_next_;
      if (net == nodes_functor_nxt_)
nodes_functor_nxt_ = 0;

      if (net == nodes_functor_cur_)
nodes_functor_cur_ = 0;

/* Now perform the actual delete. */
      if (nodes_ == net)
nodes_ = net->node_prev_;

      if (nodes_ == net) {
nodes_ = 0;
      } else {
net->node_next_->node_prev_ = net->node_prev_;
net->node_prev_->node_next_ = net->node_next_;
      }

      net->design_ = 0;
}

void Design::add_branch(NetBranch*bra)
{
      bra->next_ = branches_;
      branches_ = bra;
}

void Design::add_process(NetProcTop*pro)
{
      pro->next_ = procs_;
      procs_ = pro;
}

void Design::add_process(NetAnalogTop*pro)
{
      pro->next_ = aprocs_;
      aprocs_ = pro;
}
void Design::delete_process(NetProcTop*top)
{
      assert(top);
      if (procs_ == top) {
procs_ = top->next_;

      } else {
NetProcTop*cur = procs_;
while (cur->next_ != top) {
assert(cur->next_);
cur = cur->next_;
}

cur->next_ = top->next_;
      }

      if (procs_idx_ == top)
procs_idx_ = top->next_;

      delete top;
}

void Design::join_islands(void)
{
      if (nodes_ == 0)
return;

      NetNode*cur = nodes_->node_next_;
      do {
join_island(cur);
cur = cur->node_next_;
      } while (cur != nodes_->node_next_);
}
Something went wrong with that request. Please try again.