Skip to content


Subversion checkout URL

You can clone with
Download ZIP
Fetching contributors…
Cannot retrieve contributors at this time
323 lines (285 sloc) 11.8 KB
#ifndef __netmisc_H
#define __netmisc_H
* Copyright (c) 1999-2011 Stephen Williams (
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# include "netlist.h"
* Search for a symbol using the "start" scope as the starting
* point. If the path includes a scope part, then locate the
* scope first.
* The return value is the scope where the symbol was found.
* If the symbol was not found, return 0. The output arguments
* get 0 except for the pointer to the object that represents
* the located symbol.
* The ex1 and ex2 output arguments are extended results. If the
* symbol is a parameter (par!=0) then ex1 is the msb expression and
* ex2 is the lsb expression for the range. If there is no range, then
* these values are set to 0.
extern NetScope* symbol_search(const LineInfo*li,
pform_name_t path,
NetNet*&net, /* net/reg */
const NetExpr*&par,/* parameter/expr */
NetEvent*&eve, /* named event */
const NetExpr*&ex1, const NetExpr*&ex2);
inline NetScope* symbol_search(const LineInfo*li,
const pform_name_t&path,
NetNet*&net, /* net/reg */
const NetExpr*&par,/* parameter/expr */
NetEvent*&eve /* named event */)
const NetExpr*ex1, *ex2;
return symbol_search(li, des, start, path, net, par, eve, ex1, ex2);
* This function transforms an expression by padding the high bits
* with V0 until the expression has the desired width. This may mean
* not transforming the expression at all, if it is already wide
* enough.
extern NetExpr*pad_to_width(NetExpr*expr, unsigned wid, const LineInfo&info);
extern NetNet*pad_to_width(Design*des, NetNet*n, unsigned w,
const LineInfo&info);
extern NetNet*pad_to_width_signed(Design*des, NetNet*n, unsigned w,
const LineInfo&info);
* Generate the nodes necessary to cast an expression (a net) to a
* real value.
extern NetNet*cast_to_int4(Design*des, NetScope*scope, NetNet*src, unsigned wid);
extern NetNet*cast_to_int2(Design*des, NetScope*scope, NetNet*src, unsigned wid);
extern NetNet*cast_to_real(Design*des, NetScope*scope, NetNet*src);
extern NetExpr*cast_to_int2(NetExpr*expr);
extern NetExpr*cast_to_real(NetExpr*expr);
* Take the input expression and return a variation that assures that
* the expression is 1-bit wide and logical. This reflects the needs
* of conditions i.e. for "if" statements or logical operators.
extern NetExpr*condition_reduce(NetExpr*expr);
* This function transforms an expression by cropping the high bits
* off with a part select. The result has the width w passed in. This
* function does not pad, use pad_to_width if padding is desired.
extern NetNet*crop_to_width(Design*des, NetNet*n, unsigned w);
extern bool calculate_part(const LineInfo*li, Design*des, NetScope*scope,
const index_component_t&index,
long&off, unsigned long&wid);
* These functions generate an equation to normalize an expression using
* the provided vector/array information.
extern NetExpr*normalize_variable_base(NetExpr *base, long msb, long lsb,
unsigned long wid, bool is_up,
long slice_off =0);
extern NetExpr*normalize_variable_base(NetExpr *base,
const list<netrange_t>&dims,
unsigned long wid, bool is_up);
* Calculate a canonicalizing expression for a bit select, when the
* base expression is the last index of an otherwise complete bit
* select. For example:
* reg [3:0][7:0] foo;
* ... foo[1][x] ...
* base is (x) and the generated expression will be (x+8).
extern NetExpr*normalize_variable_bit_base(const list<long>&indices, NetExpr *base,
const NetNet*reg);
* This is similar to normalize_variable_bit_base, but the tail index
* it a base and width, instead of a bit. This is used for handling
* indexed part selects:
* reg [3:0][7:0] foo;
* ... foo[1][x +: 2]
* base is (x), wid input is (2), and is_up is (true). The output
* expression is (x+8).
extern NetExpr *normalize_variable_part_base(const list<long>&indices, NetExpr*base,
const NetNet*reg,
unsigned long wid, bool is_up);
* Calculate a canonicalizing expression for a slice select. The
* indices array is less than needed to fully address a bit, so the
* result is a slice of the packed array. The return value is an
* expression that gets to the base of the slice, and (lwid) becomes
* the width of the slice, in bits. For example:
* reg [4:1][7:0] foo
* base is (x) and the generated expression will be (x*8 - 8), with
* lwid set to (8).
extern NetExpr*normalize_variable_slice_base(const list<long>&indices, NetExpr *base,
const NetNet*reg, unsigned long&lwid);
* The as_indices() manipulator is a convenient way to emit a list of
* index values in the form [<>][<>]....
template <class TYPE> struct __IndicesManip {
inline __IndicesManip(const std::list<TYPE>&v) : val(v) { }
const std::list<TYPE>&val;
template <class TYPE> inline __IndicesManip<TYPE> as_indices(const std::list<TYPE>&indices)
{ return __IndicesManip<TYPE>(indices); }
extern ostream& operator << (ostream&o, __IndicesManip<long>);
extern ostream& operator << (ostream&o, __IndicesManip<NetExpr*>);
* Given a list of index expressions, generate elaborated expressions
* and constant values, if possible.
extern bool indices_to_expressions(Design*des, NetScope*scope,
// loc is for error messages.
const LineInfo*loc,
// src is the index list, and count is
// the number of items in the list to use.
const list<index_component_t>&src, unsigned count,
// True if the expression MUST be constant.
bool need_const,
// These are the outputs.
list<NetExpr*>&indices, list<long>&indices_const);
extern NetExpr*normalize_variable_unpacked(const NetNet*net, list<long>&indices);
extern NetExpr*normalize_variable_unpacked(const NetNet*net, list<NetExpr*>&indices);
* This function takes as input a NetNet signal and adds a constant
* value to it. If the val is 0, then simply return sig. Otherwise,
* return a new NetNet value that is the output of an addition.
* Not currently used.
#if 0
extern NetNet*add_to_net(Design*des, NetNet*sig, long val);
extern NetNet*sub_net_from(Design*des, NetScope*scope, long val, NetNet*sig);
* Make a NetEConst object that contains only X bits.
extern NetEConst*make_const_x(unsigned long wid);
extern NetEConst*make_const_0(unsigned long wid);
extern NetEConst*make_const_val(unsigned long val);
* Make A const net
extern NetNet* make_const_x(Design*des, NetScope*scope, unsigned long wid);
* In some cases the lval is accessible as a pointer to the head of
* a list of NetAssign_ objects. This function returns the width of
* the l-value represented by this list.
extern unsigned count_lval_width(const class NetAssign_*first);
* This function elaborates an expression, and tries to evaluate it
* right away. If the expression can be evaluated, this returns a
* constant expression. If it cannot be evaluated, it returns whatever
* it can. If the expression cannot be elaborated, return 0.
* The context_width is the width of the context where the expression is
* being elaborated, or -1 if the expression is self-determined, or -2
* if the expression is lossless self-determined (this last option is
* treated as standard self-determined if the gn_strict_expr_width flag
* is set).
class PExpr;
extern NetExpr* elab_and_eval(Design*des, NetScope*scope,
PExpr*pe, int context_width,
bool need_const =false,
bool annotatable =false);
* This function is a variant of elab_and_eval that elaborates and
* evaluates the arguments of a system task.
extern NetExpr* elab_sys_task_arg(Design*des, NetScope*scope,
perm_string name, unsigned arg_idx,
PExpr*pe, bool need_const =false);
* This function elaborates an expression as if it is for the r-value
* of an assignment, The lv_type and lv_width are the type and width
* of the l-value, and the expr is the expression to elaborate. The
* result is the NetExpr elaborated and evaluated. (See
extern NetExpr* elaborate_rval_expr(Design*des, NetScope*scope,
ivl_variable_type_t lv_type,
unsigned lv_width, PExpr*expr,
bool need_const =false);
* This procedure evaluates an expression and if the evaluation is
* successful the original expression is replaced with the new one.
void eval_expr(NetExpr*&expr, int context_width =-1);
* Get the long integer value for the passed in expression, if
* possible. If it is not possible (the expression is not evaluated
* down to a constant) then return false and leave value unchanged.
bool eval_as_long(long&value, NetExpr*expr);
bool eval_as_double(double&value, NetExpr*expr);
* Evaluate an entire scope path in the context of the given scope.
extern std::list<hname_t> eval_scope_path(Design*des, NetScope*scope,
const pform_name_t&path);
extern hname_t eval_path_component(Design*des, NetScope*scope,
const name_component_t&comp,
* Return true if the data type is a type that is normally available
* in vector for. IVL_VT_BOOL and IVL_VT_LOGIC are vectorable,
* IVL_VT_REAL is not.
extern bool type_is_vectorable(ivl_variable_type_t type);
* Return a human readable version of the operator.
const char *human_readable_op(const char op, bool unary = false);
* Is the expression a constant value and if so what is its logical
* value.
* C_NON - the expression is not a constant value.
* C_0 - the expression is constant and it has a false value.
* C_1 - the expression is constant and it has a true value.
* C_X - the expression is constant and it has an 'bX value.
enum const_bool { C_NON, C_0, C_1, C_X };
const_bool const_logical(const NetExpr*expr);
extern bool dly_used_no_timescale;
extern bool dly_used_timescale;
extern bool display_ts_dly_warning;
* When scaling a real value to a time we need to do some standard
* processing.
extern uint64_t get_scaled_time_from_real(Design*des,
extern void collapse_partselect_pv_to_concat(Design*des, NetNet*sig);
extern bool evaluate_index_prefix(Design*des, NetScope*scope,
const list<index_component_t>&indices);
extern NetExpr*collapse_array_indices(Design*des, NetScope*scope, NetNet*net,
const std::list<index_component_t>&indices);
extern NetExpr*collapse_array_exprs(Design*des, NetScope*scope,
const LineInfo*loc, NetNet*net,
const list<index_component_t>&indices);
Jump to Line
Something went wrong with that request. Please try again.