Permalink
Fetching contributors…
Cannot retrieve contributors at this time
872 lines (737 sloc) 26.5 KB
/* Copyright (C) 2017 Massachusetts Institute of Technology.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "harminv-int.h"
#include "check.h"
/**************************************************************************/
/* Workaround for weird problem observed on Debian/stable with glibc
2.2.5 and gcc 2.95.4, 3.3.1, and 3.4.0: the stand-alone code works
fine, but crashes in clog once I link from another (C++) program.
I can't reproduce this on Debian/testing with glibc 2.3.2, and it
passes valgrind on that machine (valgrind crashes on the first
machine), so I'm guessing this is some weird glibc bug...using
my "own" clog function seems to work around the problem. */
#undef clog
#define clog my_clog
static cmplx my_clog(cmplx z)
{
return (log(cabs(z)) + I * carg(z));
}
/**************************************************************************/
/* The harminv routines are designed to perform "harmonic inversion."
That is, given a signal (a set of samples as a function of time),
they decompose the signal into a finite number of (possibly
exponentially-decaying) sinusoids.
Essentially, because we assume that the signal has this form, we
can determine the frequencies, decay constants, and amplitudes of
the sinusoids much more accurately than we could via taking the FFT
and looking at the peaks, for the same number of samples.
We use a low-storage "filter diagonalization method" (FDM) for finding
the sinusoids near a given frequency interval, described in:
V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time
signals," J. Chem. Phys., vol. 107, no. 17, p. 6756-6769 (Nov. 1
1997). See also erratum, ibid, vol. 109, no. 10, p. 4128 (Sep. 8
1998).
with a refinement (for generate_U below) described in:
Rongqing Chen and Hua Guo, "Efficient calculation of matrix
elements in low storate filter diagonalization," J. Chem. Phys.,
vol. 111, no. 2, p. 464-471(Jul. 8 1999).
The seminal work (though less practical than the M&T algorithm) on
this class of methods was done by:
Michael R. Wall and Daniel Neuhauser, "Extraction, through
filter-diagonalization, of general quantum eigenvalues or classical
normal mode frequencies from a small number of residues or a
short-time segment of a signal. I. Theory and application to a
quantum-dynamics model," J. Chem. Phys., 102, no. 20, p. 8011-8022
(May 22 1995).
A more recent reference is:
V. A. Mandelshtam, "On harmonic inversion of cross-correlation
functions by the filter diagonalization method," J. Theoretical and
Computational Chemistry 2 (4), 497-505 (2003).
*/
/**************************************************************************/
#define TWOPI 6.2831853071795864769252867665590057683943388
/**************************************************************************/
/* Crays have float == double, and don't have the Z* functions in
LAPACK/BLAS...we have to use C*. Sigh. */
#if defined(CRAY) || defined(_UNICOS) || defined(_CRAYMPP)
# define BLAS_FUNC(x,X) F77_FUNC(c##x,C##X)
#else /* ! CRAY */
# define BLAS_FUNC(x,X) F77_FUNC(z##x,Z##X)
#endif /* ! CRAY */
#define ZGEEV BLAS_FUNC(geev,GEEV)
#define ZGGEVX BLAS_FUNC(ggevx,GGEVX)
#define ZGGEV BLAS_FUNC(ggev,GGEV)
#define ZGEMM BLAS_FUNC(gemm,GEMM)
#define ZCOPY BLAS_FUNC(copy,COPY)
#define ZAXPY BLAS_FUNC(axpy,AXPY)
#define ZGEMV BLAS_FUNC(gemv,GEMV)
#define ZSCAL BLAS_FUNC(scal,SCAL)
#ifdef __cplusplus
extern "C" {
#endif
/* We have to pass strings in special ways on Crays, even
for passing a single character as with LAPACK. Sigh. */
#if defined(CRAY) || defined(_UNICOS) || defined(_CRAYMPP)
# include <fortran.h>
# define FCHARP _fcd
# define F_(s) _cptofcd(s,1) /* second argument is the string length */
#else /* ! CRAY */
# define FCHARP const char*
# define F_(s) (s)
#endif
extern void ZGEEV(FCHARP,FCHARP, int*, cmplx*,int*, cmplx*, cmplx*,int*,
cmplx*,int*, cmplx*,int*, double*, int*);
extern void ZGGEVX(FCHARP balanc, FCHARP jobvl, FCHARP jobvr, FCHARP sense,
int* n, cmplx* a, int* lda, cmplx* b, int* ldb,
cmplx* alpha, cmplx* beta,
cmplx* vl, int*, cmplx* vr, int*,
int *ilo, int *ihi, double *lscale, double *rscale,
double *abnrm, double *bbnrm,
double *rconde, double *rcondv,
cmplx *wrk, int *lwork, double *rwork, int *iwork,
int *bwork, int *info);
extern void ZGGEV(FCHARP jobvl, FCHARP jobvr,
int* n, cmplx* a, int* lda, cmplx* b, int* ldb,
cmplx* alpha, cmplx* beta,
cmplx* vl, int*, cmplx* vr, int*,
cmplx *wrk, int *lwork, double *rwork, int *info);
extern void ZGEMM(FCHARP,FCHARP, int*,int*,int*, cmplx*,
cmplx*,int*, cmplx*,int*, cmplx*, cmplx*,int*);
extern void ZCOPY(int*, const cmplx*,int*, cmplx*,int*);
extern void ZAXPY(int*, cmplx*, cmplx*,int*, cmplx*,int*);
extern void ZGEMV(FCHARP, int*,int*, cmplx*, cmplx*,int*, cmplx*,int*,
cmplx*, cmplx*,int*);
extern void ZSCAL(int*, cmplx*, cmplx*,int*);
extern void HARMINV_ZDOTU(cmplx *, int *, cmplx *, int *, cmplx *, int *);
#ifdef __cplusplus
} /* extern "C" */
#endif
/**************************************************************************/
/* compute c^n, where n is an integer: */
static cmplx cpow_i(cmplx c, int n)
{
if (n < 0)
return (1.0 / cpow_i(c, -n));
else {
cmplx result = 1;
while (n > 1) {
if (n % 2 == 1)
result *= c;
c *= c;
n /= 2;
}
if (n > 0)
result *= c;
return result;
}
}
/* Computing powers by cumulative multiplication, below, is faster
than calling cpow_i repeatedly, but accumulates O(n) floating-point
error. As a compromise, we call cpow_i every NPOW iterations, which
accumulates only O(NPOW) error. */
#define NPOW 8
/* FIXME: instead of this, we should really do the first-order expansion
of the U matrix in |z - z2|, below. */
#define SMALL (1e-12)
#define C_CLOSE(c1,c2) (cabs((c1) - (c2)) < SMALL)
/**************************************************************************/
/* Initialize the JxJ2 matrix U = U_p(z,z2), as described in M&T.
Also, if U1 != NULL, then set U1 = U_{p+1}(z,z2). If z == z2, it
must be the case that no two elements of z are the same and that
J2 == J1; in this case the matrix U will be symmetric. Note that c
must be an array whose size n, is at least 2*K+p elements. */
static void generate_U(cmplx *U, cmplx *U1,
int p,
const cmplx *c, int n,
int K,
int J, int J2, const cmplx *z, const cmplx *z2,
cmplxl **G0, cmplxl **G0_M, cmplxl **D0)
{
int M = K - 1;
int i, j, m;
/* temp. arrays for 1/z, z^(-m), z^(-M), the G function of C&G,
and the diagonal elements D[i] = U(z[i],z[i]): */
cmplx *z_inv, *z_m, *z_M;
cmplxl *G, *G_M, *D;
cmplx *z2_inv, *z2_m, *z2_M;
cmplxl *G2, *G2_M;
CHECK(U && c && z && z2, "invalid arguments to generate_U");
CHECK(n >= 2*K + p, "too few coefficients in generate_U");
CHECK(z != z2 || J == J2, "invalid sizes passed to generate_U");
CHECK((!G0 && !G0_M && !D0) || (G0 && G0_M && D0),
"G0/G0_M/D0 must be all-non-NULL/all-NULL");
CHECK(!G0 || (!*G0 && !*G0_M && !*D0) || (*G0 && *G0_M && *D0),
"*G0/*G0_M/*D0 must be all-non-NULL/all-NULL");
/* Now, compute U according to eqs. 25-27 of Chen & Guo, but
using the notation of eq. 25 of M&T. This operation has
complexity O(N*J + J*J). At the same time, we can compute the
matrix U1 as well by eqs. 29-30 of C&G, saving an extra pass
over the input array. */
/* first, set up some temporary arrays for caching things like
z^m and 1/z, so we don't need to recompute them all the time. */
CHK_MALLOC(z_inv, cmplx, J);
CHK_MALLOC(z_m, cmplx, J);
CHK_MALLOC(z_M, cmplx, J);
if (G0 && *G0) {
G = *G0;
G_M = *G0_M;
D = *D0;
}
else {
CHK_MALLOC(G, cmplxl, J);
CHK_MALLOC(G_M, cmplxl, J);
CHK_MALLOC(D, cmplxl, J);
for (i = 0; i < J; ++i) {
D[i] = G[i] = G_M[i] = 0;
}
}
for (i = 0; i < J; ++i) {
z_inv[i] = 1.0 / z[i];
z_m[i] = 1;
z_M[i] = cpow_i(z[i], -M);
}
if (z2 != z) {
CHK_MALLOC(z2_inv, cmplx, J2);
CHK_MALLOC(z2_m, cmplx, J2);
CHK_MALLOC(z2_M, cmplx, J2);
CHK_MALLOC(G2, cmplxl, J2);
CHK_MALLOC(G2_M, cmplxl, J2);
for (i = 0; i < J2; ++i) {
z2_inv[i] = 1.0 / z2[i];
z2_m[i] = 1;
z2_M[i] = cpow_i(z2[i], -M);
G2[i] = G2_M[i] = 0;
}
}
else {
z2_inv = z2_m = z2_M = NULL;
G2 = G2_M = NULL;
}
/* First, loop over the signal array (c), building up the
spectral functions G and G_M (corresponding to G_p and
G_{p+M+1} in C&G), as well as the diagonal matrix entries: */
for (m = 0; m <= M; ++m) {
cmplx c1 = c[m + p], c2 = c[m + p + M + 1];
double d = m + 1; /* M - fabs(M - m) + 1 */
double d2 = M - m; /* M - fabs(M - (m + M + 1)) + 1 */
if (!G0 || !*G0) {
for (i = 0; i < J; ++i) {
cmplx x1 = z_m[i] * c1;
cmplx x2 = z_m[i] * c2;
G[i] += x1;
G_M[i] += x2;
D[i] += x1 * d + x2 * d2 * z_M[i] * z_inv[i];
if (m % NPOW == NPOW - 1)
z_m[i] = cpow_i(z_inv[i], m + 1);
else
z_m[i] *= z_inv[i];
}
}
if (z2 != z)
for (i = 0; i < J2; ++i) {
G2[i] += z2_m[i] * c1;
G2_M[i] += z2_m[i] * c2;
if (m % NPOW == NPOW - 1)
z2_m[i] = cpow_i(z2_inv[i], m + 1);
else
z2_m[i] *= z2_inv[i];
}
}
/* Compute U (or just the upper part if U is symmetric), via the
formula from C&G; compute U1 at the same time as in C&G. */
if (z2 != z) {
for (i = 0; i < J; ++i)
for (j = 0; j < J2; ++j) {
if (C_CLOSE(z[i], z2[j]))
U[i*J2 + j] = D[i];
else
U[i*J2 + j] = (z[i] * G2[j] - z2[j] * G[i] +
z2_M[j] * G_M[i] - z_M[i] * G2_M[j])
/ (z[i] - z2[j]);
}
if (U1)
for (i = 0; i < J; ++i)
for (j = 0; j < J2; ++j) {
if (C_CLOSE(z[i], z2[j]))
U1[i*J2 + j] = z[i] * (D[i] - G[i]) +
z_M[i] * G_M[i];
else
U1[i*J2 + j] = (z[i] * z2[j] * (G2[j] - G[i])
+ z2_M[j] * z[i] * G_M[i]
- z_M[i] * z2[j] * G2_M[j])
/ (z[i] - z2[j]);
}
}
else { /* z == z2 */
for (i = 0; i < J; ++i) {
U[i*J + i] = D[i];
for (j = i + 1; j < J; ++j) {
U[i*J + j] = (z[i] * G[j] - z[j] * G[i] +
z_M[j] * G_M[i] - z_M[i] * G_M[j])
/ (z[i] - z[j]);
}
}
if (U1)
for (i = 0; i < J; ++i) {
U1[i*J + i] = z[i] * (D[i] - G[i]) + z_M[i] * G_M[i];
for (j = i + 1; j < J; ++j) {
U1[i*J + j] = (z[i] * z[j] * (G[j] - G[i])
+ z_M[j] * z[i] * G_M[i]
- z_M[i] * z[j] * G_M[j])
/ (z[i] - z[j]);
}
}
}
/* finally, copy the upper to the lower triangle if U is symmetric: */
if (z == z2) {
for (i = 0; i < J; ++i)
for (j = i + 1; j < J; ++j)
U[j*J + i] = U[i*J + j];
if (U1)
for (i = 0; i < J; ++i)
for (j = i + 1; j < J; ++j)
U1[j*J + i] = U1[i*J + j];
}
free(G2_M);
free(G2);
free(z2_M);
free(z2_m);
free(z2_inv);
if (G0 && !*G0) {
*G0 = G;
*G0_M = G_M;
*D0 = D;
}
else if (!G0) {
free(D);
free(G_M);
free(G);
}
free(z_M);
free(z_m);
free(z_inv);
}
/**************************************************************************/
static void init_z(harminv_data d, int J, cmplx *z)
{
d->J = J;
d->z = z;
CHK_MALLOC(d->U0, cmplx, J*J);
CHK_MALLOC(d->U1, cmplx, J*J);
generate_U(d->U0, d->U1, 0, d->c, d->n, d->K, d->J, d->J, d->z, d->z,
&d->G0, &d->G0_M, &d->D0);
}
/**************************************************************************/
harminv_data harminv_data_create(int n,
const cmplx *signal,
double fmin, double fmax, int nf)
{
int i;
harminv_data d;
CHECK(nf > 1, "# frequencies must > 1");
CHECK(n > 0, "invalid number of data points");
CHECK(signal, "invalid NULL signal array");
CHECK(fmin < fmax, "should have fmin < fmax");
CHK_MALLOC(d, struct harminv_data_struct, 1);
d->c = signal;
d->n = n;
d->K = n/2 - 1;
d->fmin = fmin;
d->fmax = fmax;
d->nfreqs = -1; /* we haven't computed eigen-solutions yet */
d->B = d->u = d->amps = d->U0 = d->U1 = (cmplx *) NULL;
d->G0 = d->G0_M = d->D0 = (cmplxl *) NULL;
d->errs = (double *) NULL;
CHK_MALLOC(d->z, cmplx, nf);
for (i = 0; i < nf; ++i)
d->z[i] = cexp(-I * TWOPI * (fmin + i * ((fmax - fmin) / (nf - 1))));
init_z(d, nf, d->z);
return d;
}
/**************************************************************************/
void harminv_data_destroy(harminv_data d)
{
if (d) {
free(d->u); free(d->B);
free(d->U1); free(d->U0);
free(d->G0); free(d->G0_M); free(d->D0);
free(d->z);
free(d->amps);
free(d->errs);
free(d);
}
}
/**************************************************************************/
/* Compute the symmetric dot product of x and y, both vectors of
length n. If they are column-vectors, this is: transpose(x) * y.
(We could use the BLAS ZDOTU function for this, but calling Fortran
functions, as opposed to subroutines, from C is problematic.) */
static cmplx symmetric_dot(int n, cmplx *x, cmplx *y)
{
cmplxl dot = 0;
int i;
for (i = 0; i < n; ++i)
dot += x[i] * y[i];
return dot;
}
/**************************************************************************/
/**************************************************************************/
/* Solve for the eigenvalues (v) and eigenvectors (rows of V) of the
complex-symmetric n x n matrix A. The eigenvectors are normalized
to 1 according to the symmetric dot product (i.e. no complex
conjugation). */
static void solve_eigenvects(int n, const cmplx *A0, cmplx *V, cmplx *v)
{
int lwork, info;
cmplx *work;
double *rwork;
cmplx *A;
/* according to the ZGEEV documentation, the matrix A is overwritten,
and we don't want to overwrite our input A0 */
CHK_MALLOC(A, cmplx, n*n);
{
int n2 = n*n, one = 1;
ZCOPY(&n2, A0, &one, A, &one);
}
/* Unfortunately, LAPACK doesn't have a special solver for the
complex-symmetric eigenproblem. For now, just use the general
non-symmetric solver, and realize that the left eigenvectors
are the complex-conjugates of the right eigenvectors. */
#if 0 /* LAPACK seems to be buggy here, returning ridiculous sizes at times */
cmplx wsize;
lwork = -1; /* compute optimal workspace size */
ZGEEV(F_("N"), F_("V"), &n, A, &n, v, V, &n, V, &n, &wsize, &lwork, rwork, &info);
if (info == 0)
lwork = floor(creal(wsize) + 0.5);
else
lwork = 2*n;
CHECK(lwork > 0, "zgeev is not returning a positive work size!");
#else
lwork = 4*n; /* minimum is 2*n; we'll be generous. */
#endif
CHK_MALLOC(rwork, double, 2*n);
CHK_MALLOC(work, cmplx, lwork);
ZGEEV(F_("N"), F_("V"), &n, A, &n, v, V, &n, V, &n, work, &lwork, rwork, &info);
free(work);
free(rwork);
free(A);
CHECK(info >= 0, "invalid argument to ZGEEV");
CHECK(info <= 0, "failed convergence in ZGEEV");
/* Finally, we need to fix the normalization of the eigenvectors,
since LAPACK normalizes them under the ordinary dot product,
i.e. with complex conjugation. (In principle, do we also need
to re-orthogonalize, for the case of degenerate eigenvalues?) */
{
int i, one = 1;
for (i = 0; i < n; ++i) {
cmplx norm = 1.0 / csqrt(symmetric_dot(n, V+i*n, V+i*n));
ZSCAL(&n, &norm, V+i*n, &one);
}
}
}
/**************************************************************************/
/* how conservative do we need to be for this? */
#define SINGULAR_THRESHOLD 1e-5
/* Solve the eigenvalue problem U1 b = u U0 b, where b is the eigenvector
and u is the eigenvalue. u = exp(iwt - at) then contains both the
frequency and the decay constant. */
void harminv_solve_once(harminv_data d)
{
int J, i, one=1;
cmplx zone = 1.0, zzero = 0.0;
cmplx *V0, *v0, *H1, *V1; /* for eigensolutions of U0 and U1 */
double max_v0 = 0.0;
J = d->J;
CHK_MALLOC(V0, cmplx, J*J);
CHK_MALLOC(v0, cmplx, J);
/* Unfortunately, U0 is very likely to be singular, so we must
first extract the non-singular eigenvectors and only work in
that sub-space. See the Wall & Neuhauser paper. */
solve_eigenvects(J, d->U0, V0, v0);
/* find maximum |eigenvalue| */
for (i = 0; i < J; ++i) {
double v = cabs(v0[i]);
if (v > max_v0)
max_v0 = v;
}
/* we must remove the singular components of U0, those
that are less than some threshold times the maximum eigenvalue.
Also, we need to scale the eigenvectors by 1/sqrt(eigenval). */
d->nfreqs = J;
for (i = 0; i < J; ++i) {
if (cabs(v0[i]) < SINGULAR_THRESHOLD * max_v0) {
v0[i] = 0; /* tag as a "hole" */
d->nfreqs -= 1;
}
else { /* not singular */
cmplx s;
int j;
/* move the eigenvector to the first "hole" left by
deleting singular eigenvalues: */
for (j = 0; j < i && v0[j] != 0.0; ++j)
;
if (j < i) {
ZCOPY(&J, V0 + i*J, &one, V0 + j*J, &one);
v0[j] = v0[i];
v0[i] = 0; /* tag as a "hole" */
}
s = 1.0 / csqrt(v0[j]);
ZSCAL(&J, &s, V0 + j*J, &one);
}
}
CHK_MALLOC(d->B, cmplx, d->nfreqs * J);
CHK_MALLOC(d->u, cmplx, d->nfreqs);
CHK_MALLOC(V1, cmplx, d->nfreqs * d->nfreqs);
CHK_MALLOC(H1, cmplx, d->nfreqs * d->nfreqs);
/* compute H1 = V0 * U1 * V0': */
/* B = V0 * U1: */
ZGEMM(F_("N"), F_("N"), &J, &d->nfreqs, &J,
&zone, d->U1, &J, V0, &J, &zzero, d->B, &J);
/* H1 = B * transpose(V0) */
ZGEMM(F_("T"), F_("N"), &d->nfreqs, &d->nfreqs, &J,
&zone, V0, &J, d->B, &J, &zzero, H1, &d->nfreqs);
/* Finally, we can find the eigenvalues and eigenvectors: */
solve_eigenvects(d->nfreqs, H1, V1, d->u);
/* B = V1 * V0: */
ZGEMM(F_("N"), F_("N"), &J, &d->nfreqs, &d->nfreqs,
&zone, V0, &J, V1, &d->nfreqs, &zzero, d->B, &J);
free(H1);
free(V1);
free(v0);
free(V0);
}
/**************************************************************************/
/* After solving once, solve again using the solutions from last
time as the input to the spectra estimator this time.
Optionally, if mode_ok is not NULL, we can only use the solutions k from
last time that pass ok(d, k, ok_d). Currently, this is not recommended
as it seems to make things worse. */
void harminv_solve_again(harminv_data d, harminv_mode_ok_func ok, void *ok_d)
{
int i, j;
char *mode_ok = 0;
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
if (!d->nfreqs) return; /* no eigensolutions to work with */
if (ok) {
CHK_MALLOC(mode_ok, char, d->nfreqs);
ok(d, -1, ok_d); /* initialize */
for (i = 0; i < d->nfreqs; ++i)
mode_ok[i] = ok(d, i, ok_d);
}
free(d->B);
free(d->U1); free(d->U0); free(d->G0); free(d->G0_M); free(d->D0);
free(d->z);
free(d->amps);
free(d->errs);
d->B = d->U1 = d->U0 = d->z = d->amps = (cmplx *) NULL;
d->G0 = d->G0_M = d->D0 = (cmplxl *) NULL;
d->errs = (double *) NULL;
/* Spectral grid needs to be on the unit circle or system is unstable: */
for (i = j = 0; i < d->nfreqs; ++i)
if (!ok || mode_ok[i])
d->u[j++] = d->u[i] / cabs(d->u[i]);
d->nfreqs = j;
if (ok) {
ok(d, -2, ok_d); /* finish */
free(mode_ok);
}
d->u = (cmplx *) realloc(d->u, sizeof(cmplx) * d->nfreqs);
if (!d->nfreqs) return; /* no eigensolutions to work with */
init_z(d, d->nfreqs, d->u);
d->nfreqs = 0;
d->B = d->u = NULL;
harminv_solve_once(d);
}
/**************************************************************************/
/* Keep re-solving as long as spurious solutions are eliminated.
Currently, it is recommended that you use harminv_solve (i.e. pass ok = 0);
see harminv_solve_again. */
void harminv_solve_ok_modes(harminv_data d, harminv_mode_ok_func ok,void *ok_d)
{
harminv_solve_once(d);
/* This is not in the papers, but seems to be a good idea:
plug the u's back in as z's for another pass, and repeat
as long as the number of eigenvalues decreases. Effectively,
this gives us more basis functions where the modes are. */
{
int prev_nf, cur_nf, nf_ok;
cur_nf = harminv_get_num_freqs(d);
do {
prev_nf = cur_nf;
harminv_solve_again(d, ok, ok_d);
cur_nf = harminv_get_num_freqs(d);
if (ok) {
ok(d, -1, ok_d); /* initialize */
for (nf_ok = 0; nf_ok < cur_nf
&& ok(d, nf_ok, ok_d); ++nf_ok)
;
ok(d, -2, ok_d); /* finish */
}
else
nf_ok = cur_nf;
} while (cur_nf < prev_nf || nf_ok < cur_nf);
/* FIXME: solve one more time for good measure? */
}
}
/**************************************************************************/
void harminv_solve(harminv_data d)
{
harminv_solve_ok_modes(d, NULL, NULL);
}
/**************************************************************************/
#define NORMSQR(c) (creal(c) * creal(c) + cimag(c) * cimag(c))
/* Returns an array (of size harminv_get_num_freqs(d)) of estimates
for the |error| in the solution frequencies. Solutions with
errors much larger than the smallest error are likely to be spurious. */
double *harminv_compute_frequency_errors(harminv_data d)
{
int i, J2, one = 1;
cmplx *U2, *U2b;
double *freq_err;
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
if (!d->nfreqs) return NULL;
CHK_MALLOC(freq_err, double, d->nfreqs);
J2 = d->J*d->J;
CHK_MALLOC(U2, cmplx, J2);
generate_U(U2, NULL, 2, d->c, d->n, d->K, d->J, d->J, d->z, d->z,
NULL, NULL, NULL);
CHK_MALLOC(U2b, cmplx, d->J);
/* For each eigenstate, compute an estimate of the error, roughly
as suggested in W&N, eq. (2.19). */
for (i = 0; i < d->nfreqs; ++i) {
cmplx zone = 1.0, zzero = 0.0;
/* compute U2b = U2 * B[i] */
ZGEMV(F_("T"), &d->J, &d->J,
&zone, U2, &d->J, d->B + i * d->J, &one,
&zzero, U2b, &one);
/* ideally, B[i] should satisfy U2 B[i] = u^2 U0 B[i].
since B U0 B = 1, then we can get a second estimate
for u by sqrt(B[i] U2 B[i]), and from this we compute
the relative error in the (complex) frequency. */
freq_err[i] =
cabs(clog(csqrt(symmetric_dot(d->J, d->B + i * d->J, U2b))
/ d->u[i])) / cabs(clog(d->u[i]));
}
free(U2b);
free(U2);
return freq_err;
}
/**************************************************************************/
#define UNITY_THRESH 1e-4 /* FIXME? */
/* true if UNITY_THRESH < |u|^n < 1/UNITY_THRESH. */
static int u_near_unity(cmplx u, int n)
{
double nlgabsu = n * log(cabs(u));
return (log(UNITY_THRESH) < nlgabsu && nlgabsu < -log(UNITY_THRESH));
}
/* Return an array (of size harminv_get_num_freqs(d)) of complex
amplitudes of each sinusoid in the solution. */
cmplx *harminv_compute_amplitudes(harminv_data d)
{
int k, j;
cmplx *u;
cmplx *Uu;
cmplx *a; /* the amplitudes of the eigenfrequencies */
int ku, nu;
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
if (!d->nfreqs) return NULL;
CHK_MALLOC(a, cmplx, d->nfreqs);
CHK_MALLOC(u, cmplx, d->nfreqs);
for (k = ku = 0; k < d->nfreqs; ++k)
if (u_near_unity(d->u[k], d->n))
u[ku++] = d->u[k];
nu = ku;
CHK_MALLOC(Uu, cmplx, d->J * nu);
generate_U(Uu, NULL, 0, d->c, d->n, d->K, d->J, nu, d->z, u,
&d->G0, &d->G0_M, &d->D0);
/* compute the amplitudes via eq. 27 of M&T, except when |u| is
too small..in that case, the computation of Uu is unstable,
and we use eq. 26 instead (which doesn't use half of the data,
but doesn't blow up either): */
for (k = ku = 0; k < d->nfreqs; ++k) {
cmplxl asum = 0;
if (u_near_unity(d->u[k], d->n)) { /* eq. 27 */
for (j = 0; j < d->J; ++j)
asum += d->B[k * d->J + j] * Uu[j * nu + ku];
asum /= d->K;
ku++;
}
else { /* eq. 26 */
for (j = 0; j < d->J; ++j)
asum += d->B[k * d->J + j] * d->G0[j];
}
a[k] = asum * asum;
}
free(Uu);
free(u);
return a;
}
/**************************************************************************/
int harminv_get_num_freqs(const harminv_data d)
{
return d->nfreqs;
}
double harminv_get_freq(harminv_data d, int k)
{
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
CHECK(k >= 0 && k < d->nfreqs,
"argument out of range in harminv_get_freq");
return(-carg(d->u[k]) / TWOPI);
}
double harminv_get_decay(harminv_data d, int k)
{
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
CHECK(k >= 0 && k < d->nfreqs,
"argument out of range in harminv_get_decay");
return(-log(cabs(d->u[k])));
}
double harminv_get_Q(harminv_data d, int k)
{
CHECK(k >= 0 && k < d->nfreqs,
"argument out of range in harminv_get_Q");
return(TWOPI * fabs(harminv_get_freq(d, k))
/ (2 * harminv_get_decay(d, k)));
}
void harminv_get_omega(cmplx *omega, harminv_data d, int k)
{
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
CHECK(k >= 0 && k < d->nfreqs,
"argument out of range in harminv_get_omega");
*omega = (I * clog(d->u[k]));
return;
}
void harminv_get_amplitude(cmplx *amplitude, harminv_data d, int k)
{
CHECK(k >= 0 && k < d->nfreqs,
"argument out of range in harminv_get_amplitude");
if (!d->amps)
d->amps = harminv_compute_amplitudes(d);
*amplitude = d->amps[k];
return;
}
double harminv_get_freq_error(harminv_data d, int k)
{
CHECK(k >= 0 && k < d->nfreqs,
"argument out of range in harminv_get_freq_error");
if (!d->errs)
d->errs = harminv_compute_frequency_errors(d);
return d->errs[k];
}
/**************************************************************************/