
Florent LUCKY

Information Technology Engineering with orientation in

September 2018

Bachelor thesis presented by

for obtaining the title of Bachelor of Science HES-SO in

Complex software and systems

Responsible HES Professor

TagFS

Mr Steven LIATTI

File labeling system with Rust

Machine Translated by Google

Machine Translated by Google

spring 2018
Session de bachelor

FILE TAGGING AND INDEXING ENGINE WITH RUST

M. LIATTI STEVEN

An alternative solution to these traditional approaches would be to take advantage of the extended attributes present in most of the file

systems available in the Linux kernel (ext4, xfs, etc.). The extended attributes allow, for each file, to store or extract a set of metadata, all in
an efficient way.

project.

Indexing mechanisms will be studied and file monitoring systems will be investigated.

• Analysis and selection of file system notification systems.

The primary goal of this project is to design and develop a "tag management engine" that can easily and efficiently manage tens or hundreds

of thousands of files and associated tags .

• Analysis of extended attributes ; in particular, study of their behavior during operations

Candidate :

• State of the art.

Required work :

• Discussion of the use of the Rust language versus a traditional C implementation.

Description :

The existing file tagging systems found in the Linux world today use databases and/or additional files to store metadata for tagged files. The

problem related to the fact that the files and their metadata are not stored in the same entity (ie the file), complicates the implementations
and makes them sub-optimal in terms of complexity, performance, latency and robustness.

• Study and handling of the Rust language and familiarization with it in the system context of the

• Demonstrator.

• If time permits: integration with a file manager.

Bachelor's thesis subject to an internship agreement in a

company: no
Bachelor thesis subject to a confidentiality agreement:

no

Indeed, the system will have to make sure to monitor the files modified, created, or deleted in order to index the tags with a minimum of

latency, the goal being to offer performances as close to real time as possible.

• Analysis and selection of indexing and search algorithms. • System design and

implementation.

GLUCK Florent

ORIENTATION – COMPLEX SOFTWARE AND SYSTEMS

INFORMATION TECHNOLOGY ENGINEERING

Finally, if time permits, the developed system will be integrated with a popular file manager in the Linux world (Nautilus, Thunar, Konqueror,

etc.).

common accesses (cp, mv, rsync, copies from a file manager, etc.) in order to avoid inadvertent loss of tags in case certain

operations do not maintain certain attributes.

• Analysis of the implemented system (performance measurements, etc.).

Field of study: ITI

The secondary goal of the project is to implement it in the Rust language. Indeed, the Rust language is a modern system language, a

worthy successor to the C language, and designed to be extremely reliable, robust and efficient.

Responsible teacher(s):

In collaboration with :

Machine Translated by Google

Bachelor thesis subject to a confidentiality agreement:

no

M. LIATTI STEVEN

Bachelor's thesis subject to an internship agreement in a

company: no

Field of study: ITI

Spring 2018
Session de bachelor

To carry out this work, many technologies had to be studied and implemented, first of all the Rust programming
language. Rust is a modern, reliable and powerful language, a worthy successor to C. The mechanisms for
indexing and monitoring the file system as well as the extended attributes for storing tags have also been
analyzed.

Responsible teacher(s):

Happy Florentine

The whole project is available on GitHub, at the following address: https://github.com/stevenliatti/tagfs.

With the increase in computing power and storage capacity for a reasonable price, our personal computers
manage very large quantities of files, in the order of hundreds of thousands or a million files. How then can you
quickly find a file that matches certain criteria without remembering its location on disk? A solution to this
problem is to give the possibility to the user to affix one or more labels, or "tags", on his files and to provide him
with an interface with which he can easily find his files. It is important that tags are stored in file attributes so
that they are not lost during file manipulations. The user must be able to quickly find his files by searching by
tags.

Résumé :

With the aim of solving these problems, the solution proposed in this project is a duo of programs, Tag Manager
and Tag Engine, forming the TagFS system. The user can manage tags associated with files and perform file
searches by tags using Tag Manager.

Candidate :

Tag Engine works in the background indexing and monitoring the user's tree of files and tags in real time and
with very little latency.

Machine Translated by Google

.

.

.

.

.

.

.

.

.

2.2 Features available in the OS.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.

2 Analysis of the existing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

15

.

.

.

Contents .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

.

.

.

.

.

.

.

.

.

3.2.2 Indexing with a graph and a hash table.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

13

.

.

.

.

.

Résumé .

.

.

.

.

.

.

.

.

.

.

.

.

.

4 Technological analysis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

30

. .

.

.

.

.

.

.

.

.

2.1.2 Tagsistant .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

.

.

.

.

.

.

.

.

.

.

. 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4.1.3 General .

.

.

.

.

.

.

.

.

7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

20

.

.

. 35

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11 .

.

.

.

.

.

.

.

.

. 17

.

.

.

.

.

.

.

.

.

Document Structure .

.

.

.

3.1 Tag management.

.

.

.

.

.

.

.

.

.

.

.

.

1 Introduction

.

. .

.

.

.

.

TagFS

.

.

.

.

.

.

.

. 15

2.2.2 macOS .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of tables.

.

.

.

.

.

.

.

2.1.1 TMSU .

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

. 30

.

.

.

.

.

.

.

.

.

.

.

.

.

2.1.4 TagSpaces .

.

. 29

.

.

.

.

.

.

.

.

.

.

.

4.1.5 Features and genericity.

.

.

Statement of work.

.

.

1.2 Goals.

.

.

.

.

.

.

.

.

.

.

3.4 Requests for tags and files.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

.

.

.

.

9

.

.

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

.

.

.

. 4

.

.

.

.

.

.

.

.

.

.

. 29

Thanks .

.

. 25

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

3.2.1 Indexing with hash table and tree .

.

.

.

.

.

.

.

.

.

.

. .

. 14

.

.

.

.

.

3 Architecture

.

.

. 31

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Shapes table .

.

.

.

.

.

.

.

.

.

.

.

.

2.1 User Applications.

.

.

.

. 37

.

.

.

Typographic conventions.

. 20

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

TABLE OF CONTENTS

.

.

.

.

.

.

.

.

.

.

.

.

.

2.2.1 Windows .

.

.

.

.

.

.

.

4.1.2 Cargo and Crates.io.

.

. 15

.

.

.

.

.

.

.

.

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

. 13

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4.1.1 Installation .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

.

. .

.

.

.

.

.

.

2.1.3 TaggedFrog .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3.3 FS Monitoring.

. 15

. 18

.

.

.

.

.

.

.

.

.

.

.

.

.

8

.

.

.

.

.

.

.

.

.

.

.

Steven Liatti

.

.

.

.

.

.

.

.

. 16

. 20

.

.

.

Table of source code listings.

.

.

.

.

.

.

.

.

.

4.1 Rust .

.

.

.

.

.

.

.

.

.

.

.

. 21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

. .

3.2 Indexing files and tags.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1.1 Motivations .

.

.

.

4.1.4 Data structures.

.

.

.

.

.

.

Contents

Machine Translated by Google

4.1.9 Error handling.

.

.

.

.

.

55

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

TABLE OF CONTENTS

.

.

.

.

.

.

. 40

.

.

.

.

. 87

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

. 82

5.2.2 Use of the program and examples .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

.

.

4.1.12 Unsafe Rust .

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

6.1 Performance Metrics.

.

.

88

.

.

. 49

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5.1.2 Using the program and examples .

.

.

.

. .

.

.

.

.

7.1.1 Advantages of Rust over C.

.

.

.

. 53

.

.

.

.

.

.

.

.

.

. 84

4.1.8 Ownership, Borrowing and References.

.

.

. 73

.

.

.

.

. 82

Steven Liatti

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5.2.1 Description of the program and the code.

.

.

.

.

.

.

.

.

.

.

.

. 39

.

.

.

.

.

.

.

.

. 84

.

.

.

.

.

.

.

.

.

.

.

.

.

7.2 Problems encountered .

.

.

. 44

. 49

.

.

.

.

.

.

.

.

.

.

.

.

4.1.11 Concurrence et threads .

.

.

.

.

. 50

. 61

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

6 Tests

.

.

. 55

.

8 Conclusion

.

.

.

.

.

4.1.7 Collections .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5.1.1 Description of the program and the code.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

82

.

.

.

.

.

.

.

.

.

.

4.4 Sockets .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . . Volume 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5.2 Tag Engine .

4.1.10 Tests .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7.1.2 Disadvantages of Rust compared to C .

.

.

.

.

.

.

.

.

.

.

.

.

4.2.2 Behavior during common access operations .

.

.

.

.

.

.

.

.

.

.

.

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4.1.6 Enumerations and pattern matching .

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5.1 Tag Manager .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

.

. .

.

.

.

.

.

7.1 Rust VS C .

.

.

. 46

4.3 inotify .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

.

89

.

.

.

.

.

.

. . . .

.

.

.

.

.

.

.

5 Achievement

.

.

.

. .

. 49

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4.2.1 Operation of XATTRs.

.

Annexes

.

.

.

.

.

.

.

.

.

.

.

.

. 55

.

.

.

.

.

.

.

.

.

.

.

.

7.3 Results and future improvements. .

.

.

.

.

.

.

.

.

.

TagFS

.

.

.

.

.

.

. 41

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5.3 TagFS .

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

.

. 46

.

.

.

.

.

.

.

7 Discussion

.

.

.

.

.

.

.

.

.

.

.

4.2 Extended attributes .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

77

.

.

.

9 References

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

.

.

Machine Translated by Google

.

.

.

.

.

.

.

Steven Liatti

.

.

.

.

.

. 72

.

.

.

.

5

.

.

.

.

.

.

11 Tag Engine Operation Diagram .

.

.

.

.

.

.

.

. 54

.

.

. 21

.

.

.

. .

2 TagSpaces in use.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

13 TagFS Global Operation Diagram .

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

14 Execution time according to the directory and by type of compilation mode 80 15 Ratio between the execution time in debug and release mode .

.

.

.

.

.

TagFS

.

.

.

.

.

.

.

. 25

.

. 76

.

.

Undirected graph.

9

.

. 16

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Canal de communication entre threads - [24] .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

Procedure for initializing and using sockets.

.

.

.

.

.

.

1 TaggedFrog en utilization [5]

.

. 81

.

.

.

.

.

.

.

.

. 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

6

.

.

.

7

.

12 Image of the graph obtained with the dot command.

.

.

. 17

.

.

.

.

.

.

.

. 23

.

.

.

.

.

.

3 Viewing and Managing a Tag in the macOS Finder [10] .

.

.

.

. .

.

.

.

.

.

. 7

.

.

Tree representation of a hierarchy of files and directories.

.

4 A directory represented as a hash table - [16] .

8

.

. 75

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

. 48

.

.

.

SHAPES TABLE

.

.

.

.

.

.

.

.

.

.

.

.

.

Directed graph.

.

. 26

.

.

.

.

10 Tag Manager Operation Diagram .

.

.

.

.

.

.

.

.

Shapes table

Machine Translated by Google

Directories used for runtime measurements.

.

.

.

.

.

.

3

.

.

.

.

. .

Operations and Complexity, Second Architecture.

.

.

.

. .

.

. 21 . Events occurring on the FS.

.

. . 60

.

. 24

.

.

. .

.

.

.

4

.

.

.

.

.

.

.

Format of the protocol for requests to the Tag Engine server.

TagFS

.

.

.

.

. .

.

1

.

.

.

.

.

.

. .

. 78

.

.

. .

.

Steven Liatti

5

.

.

.

Usage and arguments expected by Tag Manager .

TABLE OF TABLES

.

. 28

.

. .

.

. .

2

.

.

.

.

.

.

.

Operations and Complexity, First Architecture.

.

8

.

.

.

.

.

6

.

.

. . . 59

.

Table of tables

Machine Translated by Google

.

.

. 19

.

.

.

.

.

.

.

.

.

.

.

.

Examples of functions in Rust.

.

.

.

.

.

.

13 The Option enumeration and its use with pattern matching in Rust .

.

.

.

32 Example of using clap (truncated comments) - [40] .

. 57

. 48

.

TagFS

.

.

.

.

.

.

.

8

.

. 42

.

.

.

.

.

.

.

.

.

.

.

.

. 40

.

.

.

.

. 34

.

.

.

.

.

25 Message passing with two producers and one consumer in Rust .

.

.

. 45

.

.

9

.

.

.

.

.

.

.

.

.

.

.

. 51

.

.

.

.

10 Block impl of a structure in Rust .

.

.

.

.

3

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

19 Borrowing variables between functions in Rust .

.

.

.

. 51

.

.

.

Contents of the Cargo.toml file.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

29 Copy to 64 GB USB flash drive, ext4 .

.

.

.

36 Browsing a directory with walkdir .

.

2

.

.

.

.

23 Creating a Thread in Rust .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

24 Creating a Thread in Rust and Passing a Variable .

.

.

.

.

.

31 Structure inotify_event - [32] .

.

.

.

. 47

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

.

.

. 33

.

.

.

.

.

.

.

.

.

.

.

Steven Liatti

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

16 Variable Scope in Rust .

.

.

.

Examples of structures in Rust.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

1 mdls listing the tags of a file under macOS [13] .

.

.

.

18 Transferring Ownership to a Function in Rust .

.

.

.

.

.

.

.

.

.

. 50

.

.

.

.

.

.

.

.

.

.

.

.

.

28 Copy to 8 GB USB flash drive, NTFS .

.

.

.

35 Examples of using Tag Manager .

. 62

.

.

22 Test module added automatically .

.

.

.

.

.

7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

.

. 37

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Examples of loops in Rust.
.

. 43

.

.

.

15 Examples of declaration and use of a HashMap .

.

.

.

. 44

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

17 Transferring Ownership to Rust .

. 50

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

.

.

.

.

27 Copy to 8 GB USB flash drive, FAT32 .

.

.

.

34 Code of del_tags() function in lib.rs .

. 61

.

.

.

.

.

.

.

6

.

.

.

. 56

.

.

.

.

. 47

.

.

.

. 31

.

.

.

.

.

.

.

.

.

. 64

.

.

.

.

. 46

.

.

.

.

.

.

. 30

21 Opening a file and processing it in Rust .

.

.

.

.

.

Some primitive Rust types.

.

.

.

.

.

.

.

12 Defining an enum and using it with pattern matching in Rust .

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

14 Examples of declarations and uses of a vector .

.

.

.

.

.

Examples of conditions in Rust.

.

.

. 33

.

.

.

.

.

TABLE OF SOURCE CODE LISTINGS

.

33 Declaring arguments in main.rs .

. 58

.

.

.

.

.

.

. 50

.

.

.

.

.

.

.

.

9

.

.

.

.

.

. 41

.

.

. 35

.

.

.

.

.

.

.

26 Output of df -Th: the system disk, the USB keys and the NFS .

.

.

.

.

.

.

.

.

.

.

.

.

. 52

5

.

.

.

.

.

.

.

.

.

.

.

.

11 Implementations of a trait in Rust .

.

.

.

.

.

.

4

.

.

.

.

.

.

.

.

.

.

.

. 45

.

Installing Rust on Linux or macOS.

.

20 The Result enumeration and its use with pattern matching in Rust .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

Examples of variable declarations in Rust.

.

.

.

.

.

.

.

. 42

30 Copy to remote network location, NFS .

.

37 Structures for graph nodes and edges in src/graph.rs .

.

.

.

.

.

.

.

Table of source code listings

Machine Translated by Google

.

.

.

. 83

. .

. .

.

.

53 Unauthorized access to memory in Rust .

.

.

.

51 Creating an undefined pointer in Rust .

42 Illustration of the use of the collect() function . 43 Operator and Arg enumerations and compare() method .

. 79

.

.

.

.

.

.

.

.

.

.

.

.

. 85

.

.

.

.

.

.

.

.

. 69

.

.

Steven Liatti

. .

.

.

.

.

.

.

.

.

.

49 Bash script to run 100 runtime measurements .
.

.

39 update_tags() function in src/graph.rs .

.

.

.

.

.

.

.

. 77

56 Structure of a node in Rust with an arena - [49] .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

TABLE OF SOURCE CODE LISTINGS

. .

.

46 dot file produced by petgraph . 47 modified Tag Engine main.rs to measure execution time.

.

. 66

.

.

.

.

.

. . 74

54 Implementing a tree structure in C .

.

.

.

.

.

.

.

.

.

.

. 71

.

. .

.

.

.

. 83

.

.

.

.

.

.

.

.

.

44 Algorithm for evaluating a postfix expression - [44] .

. 82

.

.

.

52 Unauthorized access to memory in C .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

.

.

. 86

.

.

.

.

.

.

.

10

.

.

.

.

.

40 Tag Engine main.rs function (reduced and simplified, not functional) . 41 RequestKind enumeration in server.rs file .

.

.

.

.

.

50 Creating an undefined pointer in C .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.

. .

.

38 make_graph() function in src/graph.rs .

.

.

.

.

48 Octave script to calculate the average of executions .

. 75

55 Node structure in Rust with smart pointers - [49] .

. 68

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

. 78

. .

.

.

.

.

TagFS

.

.

.

45 Example of using Tag Engine .

. 82

.

.

.

.

.

. 65

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Machine Translated by Google

• All words borrowed from the English or Latin language have been written in italics.

1 fn main() {

When writing this document, the following typographical conventions were adopted.

TABLE OF SOURCE CODE LISTINGS

}

• Any file or code snippet is written in the following format:

My thanks go first and foremost to my companion, Marie Bessat, for her infinite patience and

encouragement. I would also like to thank my family and friends for their support throughout my studies and

during the realization of this work. I would like to thank all my teachers for their lessons and especially Mr.

Florent Glück for monitoring the project and his valuable advice as well as Mr. Orestis Malaspinas for advice

on the Rust language. I would also like to thank Mr. Joël Cavat, ITI assistant at hepia, for having advised me

and lent me his very good course on Graphs and Networks by Mr. Jean-Francois Hêche, whom I thank

indirectly. Finally, I would like to thank my classmates for their camaraderie and help during my studies and

my bachelor thesis.

TagFS

11

• Any reference to a file (or directory) name, path, parameter usage, variable, user-usable command, or

source code snippet is written in monospaced font.

This document begins with the introduction, recalling the motivations of the project and the goals to be

achieved. It then discusses existing applications providing a service similar to the purpose of the project, but

with some limitations for the most part. It continues with a section on the software architecture of the final

system, with its various components and needs. Afterwards, a technological analysis of the Rust language

and the tools used for the technical realization is carried out. The following section illustrates the technical

realization itself, with the two programs designed. The system is tested in the following section, explaining

the protocol and the test results. Finally, the document ends with a discussion section of the results, project

status, future improvements and differences between Rust and C and a final concluding section. The

references are at the very end of the document.

• In listings, lines preceded by a "$" are executed in a shell.

println!("Hello, world!");

Steven Liatti

Thanks

Document structure

Typographic conventions

2

3

Machine Translated by Google

CLI Command Line Interface, Command line interface: text-based human-machine interface: the user

enters commands in a terminal and the computer responds by executing the user's commands

and displaying the result of the operation . 13, 28, 47, 53

55, 60, 63

GUI Graphical User Interface, Graphical interface: means of interacting with software where controls

and objects can be manipulated. Opposes the command line interface (CLI). 15

API Application Programming Interface, Programming Interface: services offered by a producer

program to other consumer programs. 17, 49, 51, 53, 55, 64

Acronyms

XATTR Extended Attributes, Extended attributes: see section 4.2. 11–13, 17, 18, 47–49, 53,

12–14, 18–21, 24, 25, 27, 47, 49–51, 64, 67, 85

12

TagFS

SYSCALL System call, System call: when a program needs privileged access to certain parts of the

operating system (file system, memory, peripherals), it asks the kernel to perform the desired

operation for it. 49–53

FS File System, File System: logical organization of physical files on disk.

Steven Liatti

OS Operating System, Operating system: software layer between the hardware of a computer and

the user applications. Offers abstractions for managing processes, files, and devices among

others. 11, 13, 16, 39, 47, 53, 64, 76, 85

Acronyms

Machine Translated by Google

With the increase in computing power and growing mass storage capacity at a reasonable price,

our personal computers manage very large quantities of files, in the order of a thousand or a million

files. Whether it's pictures, documents or music, the file storage reserves seem endless. This raises

the question of the organization of these numerous files. How should we order our personal photos?

By date, by place, by theme? These are three good answers, but unfortunately for the user, today's

operating systems (OS) only offer one native way of organizing files: the classic hierarchy of

directories, sub-directories and files, in the form of a tree structure.

13

Rust is a modern programming language with a growing and passionate community. It performs very

well, close to or better than C depending on the situation. It is reliable thanks to its strict rules on the

use of memory and its very intelligent compiler.

1 INTRODUCTION

Steven Liatti

These two qualifiers, powerful and reliable, sum up the Rust programming language.

TagFS

The purpose of this work is therefore to design and develop a tag management engine that meets

the needs mentioned above and to learn the notions of Rust necessary for its realization.

How to quickly find the photo of your cat sleeping on your balcony at the beginning of its life in a

mass of more than 10,000 images? How to classify your repertoire of studies, a repertoire for the

courses, another for the practical work, or for each course, two sub-directories "theory" and "practice"?

How to retrieve a song without knowing its title or the artist but knowing the genre? One solution to

these problems is to give the user the possibility of affixing one or more labels, or "tags", to his files

and to provide him with an interface with which he can easily find his files. He must keep control over

his files and be able to manipulate them as he always has. Tags should be stored with files, so they

won't be lost if there's a big change in the system. The use of extended attributes, or extended

attributes (XATTR), is the most natural way to meet this last need: the tags thus "travel" with the files.

We will see that there are applications that partly solve this problem. Finally, this interface must be

efficient and reliable.

It is a language totally adapted to our situation. Through this work, the reader will be able to get an

illustration of the possibilities offered by Rust.

1 Introduction

1.1 Motivations

Machine Translated by Google

— Study and appropriate the Rust language for the realization of a system application under

— Measure the performance of this system.

— Study the XATTRs during common manipulations on the files.

In more detail, the goals of this project are:

1 INTRODUCTION

— Design and implement a system that responds to the motivations. It must be efficient, usable

in real time and manage many files, directories and tags.

— List existing applications for tagging files.

Steven Liatti

TagFS

— Analyze ways to index a file tree.

Linux.

14

— Carry out a demonstration.

— Explore file system (FS) monitoring methods.

1.2 Goals

Machine Translated by Google

2.1 User Apps

TMSU [2] is a command-line tool (CLI) that allows assigning tags to files and performing

searches by tags. We start by initializing TMSU in the chosen directory. One command lists the

tags associated with one or more files and another lists the files that have the given tag(s).

TMSU offers the possibility for the user to "mount" a virtual Filesystem (FS) with FUSE

(Filesystem in UserSpacE). The tool is fast and efficient, but it has some flaws:

Each directory has a specific role. Everything is done with the terminal and usual commands

(cp, ls, mkdir, etc.). In Tagsistant, a directory created in the tags directory corresponds to a tag.

We finally end up with a tree structure of tags and files

— Storage of tags in an SQLite database: if the database is lost, the tags

— No GUI.

Steven Liatti

/

Tagsistant [3] is another command-line (CLI) tag management tool. It depends on FUSE and

a database (SQLite or MySQL) to work. As for TMSU, it is necessary to give a directory to

Tagsistant for its internal use. Inside it, there are different directories:

2.1.1 TMSUs

alias –- Directory containing the most common requests archive –- Directory

listing relation files –- Directory containing relations between tags and stats files

–- Directory containing information on the use of Tagsistant store –- Directory where tags are

managed files and added tags tags -- Tag management directory

2 ANALYSIS OF THE EXISTING

are equally.

In this section, we will analyze the main existing solutions, whether in the form of user

applications or integrated directly into an operating system (OS). Jean-Francois Dockes also

lists them with advantages and disadvantages on his site [1]. What we are looking for is an open

source application, running on Linux, storing tags in extended attributes (XATTR), not modifying

files and performing well.

2.1.2 Tagsistant

15

— Dependency on FUSE to mount the virtual FS.

TagFS

2 Analysis of the existing

Machine Translated by Google

TagFS

also.

2 ANALYSIS OF THE EXISTING

— No GUI.

— Use of the different directories not very intuitive.

TaggedFrog [5] is a program available on Windows only and does not share its

sources. Its inner workings are not documented. The interface is nice, you can add files

by Drag & Drop. The interface gradually creates a "cloud" of tags, as can be found on

certain websites. You can perform searches on tags and files. Presumably TaggedFrog

maintains a database of tags associated with files, which again does not meet our needs.

[4]. Although this tool is powerful from a speed of execution point of view, it has the

shortcomings of TMSU as well as new ones:

— Dependency on FUSE to mount the virtual FS.

Figure 1 – TaggedFrog in use [5]

— All files are contained in a single directory and their names are modified for the

internal needs of the application. Obligation to go through the application to access
the files.

Steven Liatti 16

— Storage of tags in a database: if the database is lost, the tags are

2.1.3 TaggedFrog

Machine Translated by Google

TagFS

1. The application copies the already existing files selected by the user, which creates an additional

constraint in the management of his personal files.

2 ANALYSIS OF THE EXISTING

TagSpaces [6] is a program with a graphical interface (GUI) allowing to label its files with tags.

The application is pleasant to use, we start by connecting a location that will act as a destination

directory for the files. You can add or create files from the application. Existing files added from the

application are copied into the directory (thus creating a duplicate). On the left panel is the tag

management area. TagSpaces automatically adds certain so-called "intelligent" tags to files newly

created with the application (eg a tag with the creation date).

2. TagSpaces stores tags directly in the file name, thereby changing its name [7]. Although handy

when syncing using a cloud service, the file becomes dependent on TagSpaces. If the user

decides to change his name without respecting the internal nomenclature, he risks losing the

tags associated with the file.

2.1.4 TagSpaces

Figure 2 – TagSpaces in use

Steven Liatti

Overall, the application is functional and user friendly. However, two black points are to be

deplored:

17

Machine Translated by Google

2.2.1 Windows

In the file explorer, the tags are found on the bottom side, to access them more quickly.

macOS has its own system for labeling files. It has been integrated since version OS X 10.9

Mavericks. From the file explorer, the user has the possibility to add, modify, delete and search for

tags. Files can have multiple tags associated with them. A color code makes it easier to remember

and visualize the assigned tags.

2 ANALYSIS OF THE EXISTING

18

2.2.2 macOS

Steven Liatti

TagFS

Starting with Windows Vista, Microsoft gave users the ability to add metadata to files; among

these metadata are the tags. There is a feature called Search Folder which allows to create a virtual

directory containing the result of a search on filenames or other criteria [8]. Since Windows 8, the

user has the possibility of adding metadata to certain types of files (those of the office suite for

example), including tags. He can then perform targeted searches via the Windows file explorer of the

meta:value type [9]. It's a shame that Windows doesn't support more file types, like PDFs or .txt files.

Figure 3 – View and management of a tag in the macOS Finder [10]

2.2 Features available in the OS

Machine Translated by Google

6

5

1 % mdls -name kMDItemUserTags Hello 2

kMDItemUserTags = (

Listing 1 - mdls listing file tags on macOS [13]

When clicking on a tag, a Spotlight search is performed. Spotlight is macOS' internal search engine.

Spotlight keeps an index of tags, providing quick access to matching files [11]. All these tags can be

synchronized on the different "iDevices" via iCloud. Finally, a settings menu allows the management of

tags (display, deletion, etc.) [10], [12]. The implementation of this system uses XATTRs to store tags. The

different tags are found in the kMDItemUserTags attribute, listed one after the other. Via the Terminal,

using the mdls command, we can display the list of tags associated with a file, named "Hello" for the

example:

Essential

19

2 ANALYSIS OF THE EXISTING

)

Red,

Steven Liatti

TagFS

Green,

Here, the Hello file is tagged with three tags, "Green", "Red" and "Essential". The fact that the indexing

is carried out with Spotlight implies a re-indexing of the files in the case of a name change for a given tag

under macOS. The FSEvents system framework provides a partial solution: it is an API (also used by

Spotlight) which offers applications the possibility of being notified if a change has taken place on a

directory (one event every 30 seconds). FSEvents maintains logs of these changes in files, so applications

can retrieve the history of changes whenever they want [14]. The only negatives of this implementation are

that it's not open source, only exists on macOS, and it's not written in Rust. But it is the solution towards

which this project tries to get closer because it corresponds to the criteria on the XATTRs and the internal

functioning.

3

4

Machine Translated by Google

3.2 Indexing files and tags

3.1 Tag management

This section presents the software architecture chosen to implement the system. He is

The physical management of tags stored in extended attributes (XATTR) is a feature that is

independent of the rest of the system. As explained in section 4.2, system tools exist to manipulate

file XATTRs. However, to provide a higher level of abstraction, consistency on tag naming for indexing

and more comfort for the end user, a tool becomes necessary for tag management. This tool comes,

in its basic form, as a command-line program. It must, at a minimum, offer the possibility of reading

the tags contained in the files and adding and deleting the tags given as input by the user. He must

be able to handle several tags and files simultaneously. From an algorithmic and data structures point

of view, this part is not particularly difficult.

3 ARCHITECTURE

20 Steven Liatti

TagFS

composed of four distinct entities, described in the following subsections.

Indexing files and associated tags is one of the two pillars of the system. An index of relationships

between tags and files must be created. The term "index" used here does not take on its exact literary

meaning, id is the list of important terms of a book with the list of pages in which they appear. In our

situation, it is closer to its use for databases: it is a data structure allowing to quickly find the data, in

our case, to quickly recover the relation between tags and files. Two architectures have been imagined

for the indexing of tags and files, they are described in the following two subsections. Table 1 lists the

events that occur during normal use of the File System (FS) by assigning them a number. These

numbers are taken up and used to lighten the reading of tables 2 and 3.

3 Architecture

Machine Translated by Google

6

5 Adding a directory to the watched tree

born, is as follows:

Renaming a tag3

3.2.1 Indexing with hash table and tree

Adding a tag to a file or directory

Table 1 - Events occurring on the FS

21 Steven Liatti

Event Number

9 Deleting a directory from the watched tree

2. A tree, corresponding to the tree structure of files, with the directories, sub-directories and files

as nodes. The directory to watch represents the root of the tree. Links between nodes represent

the contents of a directory. The node data contains the name of the file or directory and all the

tags associated with the file.

7 Moving or renaming a directory in the monitored tree

TagFS

The first version of the indexing architecture, featuring two donation structures

4 Adding a file to the watched tree

The following explanations mention the notion of time complexity (the number of operations

necessary to accomplish the algorithm, depending on the size of the inputs) with the notation of

Landau, or Big O [15].

2 Removing a tag from a file or directory

1

Deleting a file from the watched tree

3 ARCHITECTURE

8

Figure 4 – A directory represented as a hash table - [16]

Moving or renaming a file in the watched tree

1. A hash table (or hashmap) associating a tag (its name, in the form of a character string) to a

set (in the mathematical sense) of file paths on disk.

Machine Translated by Google

root

graph.pdf

report.tex

22

user

Consider the following hierarchy as an example:

It can be obtained using the tree command under Linux for example. The same representation in the

form of a tree is illustrated in Figure 5:

kiss. mp3

home

Steven Liatti

3 ARCHITECTURE

images

img1.png

img2.png

The tree, in the computer sense, is a representation of the FS hierarchy in our case.

A hash table is an associative array. The components of the association are the "key", linked to one or

more "values". To insert, access or delete an entry from the table, it is necessary to calculate the "hash" of

the key, id is its unique hash. In figure 4, we see the keys in blue, the result of the hash in red and the

associated values in green. The risk that two or more keys produce the same hash is called a "collision",

which is why a good hash table implementation must not only use a good hash function but also a way to

solve collisions. This is how the three operations above can be performed, on average, in constant time

(O(1)) and in the worst case (if the collisions follow one another) in linear time (O(n)) . In our case, using a

hash table to store the relationship between a tag and its files is effective when a search by tags is

requested. Moreover, by associating a set of file paths, set operations (union, intersection) can be

performed when a search involving several tags is performed.

music

docs

TagFS

Machine Translated by Google

— t = Name of tags.

Steven Liatti

Table 2 gives, for each event occurring on the FS, the operations to be executed for the two data

structures (the hash table and the tree) and an approximation of the complexity. The events are

represented by their numbers, in table 1. The following variables are defined:

23

TagFS

— c = Constant operation.

3 ARCHITECTURE

— p = Shaft depth.

Figure 5 – Tree representation of a hierarchy of files and directories

The "home" node represents the root of the tree. Each node represents either a file (in orange)

or a directory (in blue) on disk. Each directory can be seen as a subtree of the main tree. From a

programmatic point of view, a node would be defined, at a minimum, as a data structure containing a

"data" field (in our case, the name of the file/directory and all of its tags) and a "children" field. , a list

or a set of pointers to child nodes. In this case, only the directory nodes point to child directory or file

nodes, the files would only have an empty list of pointers.

Machine Translated by Google

2

2

9

5

For all file tags, add the tag if

necessary and associate the file path

-> O(t ÿ c)

O(c)

and remove the tag from the set of existing

tags -> O(p ÿ c)

O(p ÿ c)

This version was partly abandoned and adapted for two major reasons:

1. Having two interrelated data structures increases the complexity of update operations (adding,

moving, deleting files and tags).

ÿ c)

7

Browse the tree in search of the file

tag -> O(c)

4

1

Same as previous lineFor all tags of all subdirectories and

files, associate the new file path ->

O(tÿ p ÿ c)

O(t ÿ c)

Browse the tree in search of the file

Number Operations on the hashmap

Browse the tree in search of the parent and

change the link of the node with its parent /

simple renaming of the name in the label ->

O(p ÿ c)

8

For all tags in all subdirectories and

files, remove file path -> O(t ÿ p ÿ c)

6

Same as previous line

Browse the tree in search of the parent

directory of the file, add the new node and all

of its tags -> O(pÿc)

TagFS

Steven Liatti

Table 2 – Operations and complexity, first architecture

Traverse the tree in search of the parent and

delete the link and the node ->

Delete key and re-insert new key and

associated set ->

2

3

Remove the file from all file paths

associated with the

and add the tag to the set of existing tags ->

O(p ÿ c)

For all file tags, remove file path ->

O(tÿc)

If tag not present, add tag as key and

add file path to set -> O(c)

parent directory, delete the node, all of its

tags, and recursively, its children (subdirectories

and files) -> ÿ O(p

24

Browse the tree in search of the parent

directory, add the new node and all of its tags,

then, recursively, add its children

(subdirectories and files) -> ÿ O(p

3 ARCHITECTURE

Tree operations

For all tags in the file, associate the

new file path ->

Browse the tree in search of the re

For the set of paths retrieved with the

hashmap, modify the corresponding nodes ->

O(t ÿ c)

ÿ c)

Machine Translated by Google

3.2.2 Indexing with a graph and a hash table

2. A hash table, associating the name of a tag with its unique identifier as

25

2. The implementation turned out to be more difficult than expected, due to some constraints of

Rust (see section 7.2).

Steven Liatti

Each node is a data structure comprising a name and type and is uniquely identified. Thanks

to this identifier, the nodes are easily accessible.

3 ARCHITECTURE

Figure 6 – Undirected graph

1. A graph, with a node representing either a directory, a file or a tag.

A graph represents a network of nodes that can be linked to each other. Jean François Hêche,

professor at the heig-vd, gives the definitions of undirected and directed graphs in his course on

"Graphs and Networks". Let's start by defining what an undirected graph is: "An undirected graph is

a structure made up of a set V, whose elements are called the vertices or nodes of the graph, and a

set E, whose elements are called the edges of the graph, and such that each edge is associated with

a pair of vertices of V called the endpoints of the edge." (Ash, page 1, [17]). Figure 6 shows an

example of such a graph.

TagFS

During the implementation of this part of the program, a new architecture was imagined. It uses

the basics of the previous one, but simplifies the data structure. Rather than maintaining two different

structures, this solution proposes a main data structure, supported by a secondary structure, optional,

but nevertheless effective:

graph node.

Machine Translated by Google

Figure 7 shows an example of such a graph.

Steven Liatti

A directed graph is similar to an undirected graph. The only difference is that a direction is given

to the link between two nodes and this link is no longer called "edge" but "arc".

The use of such a graph faithfully represents the tree structure of the FS (the schema of a tree is

kept) and greatly simplifies the operations when events occur on the latter. Adding the tags as graph

nodes maintains a single consistent data structure and decreases the number of different operations

required when updating the FS. The traversal of this graph is done according to the given file path,

keeping the unique identifier of the node corresponding to the root directory, the traversal is done

from the root to the final node of the file path.

3 ARCHITECTURE

A graph is therefore a set of nodes connected by edges or arcs, depending on whether the graph

is oriented or not. In our case, the use of a graph is not so far from that of a tree. Moreover, according

to graph theory, "a tree is a cycle-free and connected graph" (Hêche, page 33, [17]). "Without cycle"

means that a traversal of the graph is possible in such a way that the starting and ending nodes are

different. "Connected" defines a graph such that for each pair of nodes in the graph there is a path

connecting them.

TagFS

Figure 7 – Directed graph

26

Machine Translated by Google

As for subsection 3.2.1, table 3 gives for each event occurring on the FS, the operations to be

executed for the two data structures (the graph and the hash table) and an approximation of the

complexity. The events are represented by their numbers, in table 1. The following variables are

defined:

We can see that the operations on the hash table are few and often optional, which results in a gain

on the number of total operations.

The hash table used in this version can be seen as a "cache" for accessing tag nodes. Indeed,

we could do without this hash table and when access to a tag is requested, search the entire graph

for the tag in question. However, this last operation quickly becomes significant when the graph has

a large number of nodes. In addition, this hashmap is accessed much less often than in the first

version of the architecture, because it is updated only during operations on tags and no longer on

those linked only to files and directories (potentially heavier operations) .

— t = Name of tags.

3 ARCHITECTURE

— p = Depth of the graph.

27

TagFS

— c = Constant operation.

Steven Liatti

Machine Translated by Google

2

5

2

9

Browse the graph looking for the file, if necessary

create the tag node, and link the file node to the

tag node -> O(p ÿ c)

Obtain the identifier thanks to the hashmap and

rename the corresponding node -> O(c)

Browse the graph in search of the parent

directory, add the new node. For existing tags,

link the new node, if not create the corresponding

new tag node. Repeat for the subtree -> ÿ O(p

Traverse the graph looking for the parent and

change the link of the node with its parent /

simple renaming of the name in the label -> O(p

ÿ c)

7

ÿ t ÿ c)

For each tag, operation identical to

number 1

If the tag node is not connected to

any other node, delete the entry

-> O(c)

No operation required

3

For each sub-directory or sub-file,

operation identical to number 8

O(t ÿ c)

Number Operation on the graph

Delete the entry and recreate one

with the new name and

Steven Liatti

No operation required

1

4

TagFS

6

Browse the graph in search of the file node and

remove the link between tag node and file. If the

tag node is not connected to any other node,

delete it -> O(p ÿ c)

Browse the graph in search of the parent

directory, add the new node. For existing tags,

link the new node, if not create the corresponding

new tag node -> O(p ÿ t ÿ c)

ÿ t ÿ c)

If not existing, add the name of the

tag as a key and its identifier in the

graph as theirs -> O(c)

same identifier -> O(c)

Browse the graph in search of the directory node

and remove the links between tag nodes and

parent node. Repeat for subtree -> ÿ O(p

Operation on the hashmap

28

For each tag, operation identical to

number 1

3 ARCHITECTURE

2

For each tag in the file, delete the

tag node if it no longer has links to

other nodes ->

Table 3 – Operations and complexity, second architecture

Identical to number 6

Browse the graph in search of the file node and

remove the links between tag nodes and parent

node -> O(p ÿ t ÿ c)

8

Machine Translated by Google

new monitoring if directory.

— IN_MOVE_SELF: deletion of a file/directory in the monitored directory.

— Request the list of files and directories associated with one or more tags. The query can be in

the form of a simple logical expression (with the logical operators "and" and "or").

To exchange requests and responses, client and server communicate by sockets, with a very simple

protocol format (described in table 4) to distinguish the type of a request.

— IN_DELETE: deletion of a file/directory in the monitored directory.

— Request the list of existing tags.

— IN_ATTRIB: change on tags (addition, deletion, renaming).

One thread takes care of listening to the events of the FS and writes them in a buffer while another

will update the graph to reflect the changes that have occurred by reading in this same buffer (simple

producer-consumer pattern).

— IN_CREATE: creation of file/directory in the monitored directory. Add a

Once FS monitoring is in place, the system should be able to respond to user queries. Through a

command line tool, the user has the possibility to:

3 ARCHITECTURE

— IN_MOVE_FROM: moving/renaming the directory (old name).

Steven Liatti

Monitoring of FS and associated tags is the second pillar of the system. Initial indexing is

mandatory, but it is also necessary to constantly monitor the file tree to keep this index up to date. To

achieve this, we will use inotify (see section 4.3), paying particular attention to the following events:

— IN_MOVE_TO: moving/renaming the directory (new name).

29

— Renaming a tag.

— IN_DELETE_SELF: deletion of the monitored directory.

TagFS

3.3 FS Monitoring

3.4 Requests for tags and files

Machine Translated by Google

4.1 Rust

fluent.

1 $ curl https://sh.rustup.rs -sSf | sh 2 $ source

$HOME/.cargo/env

This section introduces the Rust programming language and some of its mechanisms, through

some examples, which are either absolutely necessary to start programming with Rust, or used in the

code of this project. Rust is a strongly typed, compiled, high-performance, multi-paradigm language.

It can be used, among other things, for system-oriented programming, to create command-line

programs (CLI) or to create web applications. With an active community, many packages and modules

are available on Crates.io [18] and many discussions are present on the reddit [19] dedicated. For

more details, the excellent book [20] produced by the maintainers of Rust will be able to give more

detailed and precise information to the reader eager to know about Rust. Another book [21], more

specialized, guides the beginner in Rust in the design of linked lists, because not trivial in Rust

because of its constraints.

Cargo is Rust's built-in build-and-run system and package manager. From the terminal, its main

commands allow you to create a new pro

Listing 2 – Installing Rust on Linux or macOS

TagFS

Steven Liatti

4.1.1 Installation

30

4 TECHNOLOGICAL ANALYSIS

On Windows, the procedure is a little longer but just as simple, make sure you have the C++ build

tools for Visual Studio 2013 or higher. Rust installs its compiler, rustc, which allows you to compile a

source file (.rs) into an executable file. However, we won't talk about it any further, the compilation

will be done with the Cargo package and compilation manager (see subsection 4.1.2). For more

details, refer to chapter 1.1 of the book [20]. Are we (I)DE yet? [22] gives an overview of text editors

compatible with the Rust development chain. Regarding the bachelor project presented here, all the

code was written with Visual Studio Code.

Installing Rust on Linux and macOS is very simple. Prerequisites are a C compiler (some Rust

libraries require one) and the data transfer tool curl. Then just open a terminal and enter the

commands in Listing 2. The second command is optional and only necessary if you want to use Rust

without logging out of the shell

4.1.2 Cargo and Crates.io

4 Technological analysis

Machine Translated by Google

https://crates.io
https://www.reddit.com/r/rust/
https://areweideyet.com/

The "package" section contains information about the project itself. The "depen dencies" section

lists the packages that our application depends on, called "crates" by the Rust community. Thousands of

crates are available on Crates.io [18]. Other sections can be added to the Cargo.toml file to customize

compilation commands, create workspaces from several crates or add specific commands for example.

A subchapter (1.3) and a whole chapter (14) are dedicated to Cargo in the Rust book [20] and it also has

full documentation [23] (like the book dedicated to Rust).

31

6 [dependencies]

3 version = "0.1.0"

Variables First of all, to declare a variable in Rust, you have to use the let keyword .

A variable is by default declared immutable, id is that it cannot be modified in the rest of the code.

Although Rust is a strongly typed language, its compiler can in most cases infer the correct type of the

variable, either by analyzing the assigned value or by analyzing the first use of the variable (arguments

of a function, insertion of data in the case of collections). However, there is the possibility of explicitly

declaring the type of the variable by indicating it before the "=". To declare a variable mutable, you must

add the keyword mut before its name. Then, the constants are declared with the const keyword and their

type must be indicated. The main difference between constants and immutable variables is that a

constant cannot be the result of a value

4 authors = ["Firstname Lastname <me@mail.com>"]

Steven Liatti

4 TECHNOLOGICAL ANALYSIS

4.1.3 General

1 [package] 2

name = "myproject"

Comments Any text written after two consecutive slashes "//" is considered a comment in Rust. The

multiline syntax that exists in C for example is not taken into account. By putting three consecutive

slashes "///", the commenter tells the compiler that this comment is part of the documentation (which can

be generated with Cargo, see subsection 4.1.2).

jet (cargo new myproject), to compile it (cargo build), to run it (cargo run) or to generate the associated

documentation (cargo doc). When a new project is created with Cargo, a Cargo.toml file is generated

(like the package.json file with Node.js and npm) with the following minimal content:

Listing 3 – Contents of the Cargo.toml file

TagFS

5

Machine Translated by Google

https://crates.io
https://doc.rust-lang.org/cargo/

5 // Declaration of a variable "z", mutable and of type declared char

12 let answer = 42;

— Compounds (two primitive types): tuples and arrays.

Steven Liatti

6 let mut z : char = ’A’;

Integers can be signed or unsigned and on 8, 16, 32, 64 bits or depending on the architecture of

the processor (i8, u8, i16, u16 , i32 , u32, i64, u64, isize, usize).

2 let x = 3;

For more details, refer to chapter 3.1 of the book [20].

Types There are two families of types in Rust:

3 // Declaration of a variable "y", mutable and of inferred type bool 4 let mut y = true;

— Scalars: integers, floating point numbers, booleans and characters.

4 TECHNOLOGICAL ANALYSIS

13 let answer = answer.to_string();

32

1 // Declaration of a variable "x", immutable and of inferred type i32

calculated when the program is run. Finally, a variable can be "hidden" or "shadowed": a new

declaration with let and the same name overwrites the previous value and can be of a different

type. Listing 4 shows some cases of variable declarations:

Listing 4 - Examples of variable declarations in Rust

Decimal numbers have two possibilities, either on 32 bits or on 64 bits (f32 or f64). The classic

bool type can take two values, true or false. Finally, the last scalar primitive type, char, stores a

Unicode character between single quotes. The first compound primitive type is the tuple. It is a

grouping of several values which can be of different types. When declaring, variable names, types,

and values of a tuple are enclosed in parentheses and separated by commas. Finally, the array

type, or array: classic type grouping together several values of the same type this time. An array

has a fixed size, determined at compile time. The declaration of the values of an array is done

between square brackets "[]". To access a value of the array, use the syntax array[i] where i is a

valid index of the array (between zero included and the size of the array not included). Some

examples are given in Listing 5.

7 // The 64-bit floating-point PI constant 8 const PI: f64 =

3.1415; 9 // Shadowing. The first declaration creates a

variable named "answer" 10 // of type i32 and value 42, while the second overwrites the previous

variable 11 // by taking its name and is of type String.

TagFS

Machine Translated by Google

Functions As in C, any program has the main() function as its entry point. A function declaration

begins with the fn keyword , followed by the name of the function, a list of any parameters, and any

return types. When a function has a return value, the last line of the function that does not have a

semicolon at its end is evaluated as an expression and returned. The return keyword nevertheless

exists if the function must return in very specific cases (in a condition for example). Variables declared

inside the function are not accessible from outside the function. Function arguments are passed by

copy by default (see subsection 4.1.8 for details). The following listing gives an example of the same

function, in two more or less short versions.

x + y + 1

let x_plus_y = x + y;

x_plus_y + 1

Listing 6 – Examples of functions in Rust

These functions expect two integers and also return an integer.

Listing 5 - Some Rust Primitive Types

4 }

33

For more details, refer to chapter 3.2 of the book [20].

6 fn x_plus_y_plus_one_short(x : i32, y : i32) -> i32 {

4 TECHNOLOGICAL ANALYSIS

For more details, refer to chapter 3.3 of the book [20].

9 let myarray = ['a', 'b', 'c', 'd', 'e', 'f']; 10 let x = myarray[4]; // x is

'e'

1 let myint: i32 = 1234 ; 2 let

mychar: char = 'a'; 3 let myfloat: f64

= 2.0; 4 // Declaration of a tuple 5 let

tuple: (char, u32, f64) = ('c', 42, 2.8);

6 // Destructuring the tuple into three distinct variables 7 let (letter,

age, score) = tuple; 8 // Declaration of an array

Steven Liatti

8 }

1 fn x_plus_y_plus_one(x : i32, y : i32) -> i32 {

TagFS

3

7

2

5

Machine Translated by Google

6 else {

println!("Hello buddy !");

11 let condition = true;

Listing 7 - Examples of conditions in Rust

12 let n = if condition { 42 }

2 let name = "fred";

8 }

3 if name == "fred" {

10 // Example of assigning a variable with an if. Here, n will be 42

4 TECHNOLOGICAL ANALYSIS

println!("Hello World !");

Steven Liatti

1 // Example of a simple if ... else

Control structures Like any programming language, Rust has control structures to manage conditions

and repetitions (loops). There is the classic if condition { ... } else if other_condition { ... } else { ... }

with a notable difference compared to C: it is possible to affect a variable with an if, as in Listing 7.

There is no switch ... case per se in Rust, we will see the match ... case in subsection 4.1.6. As far as

loops are concerned, there are three of them: loop (infinite loop), while (loop with initial condition) and

for, loop to traverse collections mainly by their iterators (see subsection 4.1.7).

34

13 else { 66 };

5 }

TagFS

7

4

9

Machine Translated by Google

println!("{}", x);

5 // Loop with condition

For more details, refer to chapter 3.5 of the book [20].

6 let mut x = 0;

15 }

10 }

As in C, Rust grants the possibility to the programmer to define his own compound types, the structs.

Declaring and instantiating a structure is done like in C with some shortcuts available. A structure without

field names is also available, called "tuple struct". To access the fields of a structure, just use the dot

notation (player.name).

4 }

11 // Path of an array 12 let myarray =

[1, 2, 3, 4, 5]; 13 for elem in myarray.iter()

{ println!("value : {}", elem);

Steven Liatti 35

4 TECHNOLOGICAL ANALYSIS

x = x + 1;

Organization of files and modules A program written in Rust can be split into several files and modules.

A module can contain declarations of functions, structures and their implementations (see section 4.1.4),

etc. The keyword for declaring a module is mod. The code inside the module is by default private, to

make it accessible outside the module, the pub prefix is available. To use a module within another or in

main.rs, it must be imported with the use keyword . By default, any module is defined in a project's src/

lib.rs file. If many modules are declared, it is possible to mention them in src/lib.rs in this way: mod

mymodule; and create a file with the same name as the module (in this example, src/mymodule.rs)

containing the code in question. A module declaration can contain others as well, creating a hierarchy of

modules. For more details, refer to chapter 7 of the book [20].

2 loop

{ println!("Forever");

1 // Infinite loop

4.1.4 Data structures

Listing 8 - Examples of loops in Rust

7 while x < 10 {

TagFS

3

8

9

14

Machine Translated by Google

4

active: bool

7 }

The particularity of structures, compared to C, is that it is possible to define methods attached to

structures, like methods in Java, without obtaining a class stricto sensu of object-oriented languages,

even if the final result is very similar.

To define methods to a structure, it is necessary to declare a block of code starting with the keyword

impl followed by the name of the structure and braces. Inside this block are defined functions related to

the structure. In Listing 10, we see the declaration of the Player framework and its implementation, with

three methods (with function syntax) for creating a new character, for it to attack another, and for it to

greet. The only difference between a method and a function is that a method which is called on a

variable of the type of the structure with the dotted notation expects the parameter self as the first

parameter, obligatorily. self refers to the variable itself, like this in Java. We can see that self and the

other parameters have a syntax not yet described (& and &mut), subsection 4.1.8 gives further

explanation.

life: 100,

20 // Structure vide ()

life: i32,

Listing 9 - Examples of Structures in Rust

21 struct Nil;

active: true

4 TECHNOLOGICAL ANALYSIS

8 // Création d’une variable Player 9 let player_one

= Player { name: String::from("Groumf"), class:

String::from("Wizard"),

16 // Structure sans noms aux champs 17 struct

Coordinates(f64, f64); 18 let geneva =

Coordinates(46.2016, 6.146);

1 // Structure defining a character in a video game 2 struct Player { name: String,

class: String,

14 };

Steven Liatti 36

TagFS

15

11

6

13

5

3

10

12

19

Machine Translated by Google

7

6

Player { name, class, life : 100, force : 10 }

}

other.life = other.life - self.force;

}

5 impl Player { fn

new(name : String, class : String) -> Player {

String::from("Bard"));

player_one.attack(&mut player_two);

player_one.say_hi();

4.1.5 Traits and genericity

Traits in Rust are the equivalent of interfaces in Java. It is a way of defining an abstract behavior

that a type could follow. Listing 11 defines a "vehicle" trait

(Vehicle) that implement the "bicycle" (Bicycle) and "plane" (Plane) structures. The Vehicle trait gives

the signature of a single function, description() which describes the variable of the type in question. Both

structs implementing the trait must also implement all the functions of the trait.

fn say_hi(&self) { println!

("Hi, I’m {}, powerfull {} !", self.name, self.class);

Listing 10 – Block impl of a structure in Rust

3 }

fn attack(&self, other : &mut Player) {

String::from("Wizard")); let mut

player_two = Player::new(String::from("Trabi"),

For more details, refer to chapter 5 of the book [20].

4 TECHNOLOGICAL ANALYSIS

19 fn main() {

name: String, class: String, life: i32, force: i32

1 struct Player {

}

17 }

let player_one = Player::new(String::from("Groumf"),

26 }

Steven Liatti 37

TagFS

4

22

21

10

16

2

9

8

20

15

14

25

12

13

11

23

18

24

Machine Translated by Google

8

println!("I’m a plane, I have {} engines and \ can carry {}

passengers. I fly with {}.", self.engines, self.passengers,

self.fuel);

21 fn main() {

27 }

Listing 11 - Rust Trait Implementations

let bicycle = Bicycle { wheels : 2, passengers : 1 }; bicycle.description();

let plane = Plane { engines : 1, passengers : 100, fuel :

String::from("kerosene") };

Traits can be declared generic, just like functions. Genericity is not a concept reserved for Rust,

many programming languages use it.

3 struct Bicycle { wheels : u8, passengers : u8 } 4 impl Vehicle for

Bicycle { fn description(&self) {

10 }

plane.description();

println!("I’m a bicycle, I have {} wheels and \ can carry {}

passengers.", self.wheels, self.passengers);

12 struct Plane { engines : u8, passengers : u16, fuel : String } 13 impl Vehicle for Plane { fn

description(&self) {

19 }

38

This is where genericity comes in: the declaration of a function expects a generic type, usually named

T, and handles it like a real type. Many types of bookstore

}

4 TECHNOLOGICAL ANALYSIS

1 trait Vehicle { fn description(&self); }

}

Steven Liatti

This is a way to avoid repeating the same code for different types of data, but which would have

similarities. Let's take the example of a function that adds two numbers. Arguments could be either

integers or floating point numbers.

The method for adding these two types is the same. But for a strongly typed language like Rust, it is

necessary to precisely define the types of function arguments.

TagFS

16

5

14

6

11

18

20

26

17

24

2

9

25

15

22

7

23

Machine Translated by Google

6

9

North, South, East, West

_

Enumerations are another way to design your own types. As in C, an enumeration lists all the

possible variants of a value of the same type. The classic example of an enumeration are the days of

the week. Seven different cases, without possible evolutions. Enumerations in Rust take on their full

meaning in combination with pattern matching: a control structure resembling a switch ... box in C but

with a side borrowed more from functional programming (we find them elsewhere in Scala). All

possible cases of an enumeration must be treated with a match (hence the default clause _). The

block of code to the right of each => can be returned, like a function (see Listing 12).

Direction::North => println!("Go North"), Direction::South

=> println!("Go South"), => println!("Go East or West") //

clause par défaut

Rust has a very powerful enumeration in the standard library: Option (recopied in Listing 13). It

replaces the infamous NULL in C or other languages. It simply removes countless bugs often

encountered due to NULL. If a variable exists, it ends up in the Some case of the option, if it does not

exist, in the None case. This enumeration is also generic (see subsection 4.1.5), it accepts any type

of data.

1 enum Direction {

39 Steven Liatti

4 TECHNOLOGICAL ANALYSIS

11 }

5 fn print_direction(direction : Direction) { match direction {

4.1.6 Enumerations and pattern matching

standard are generic, like the Option and Result types (see subsection 4.1.6). For more details, refer

to chapter 10 of the book [20].

Listing 12 – Defining an enum and using it with pattern matching in Rust

}

3 }

TagFS

4

10

8

2

7

Machine Translated by Google

8

2

6

For more details, refer to chapter 6 of the book [20].

match value {

4 }

10 }

12 }

1 // Declaration of a vector with new, then with the macro 2 let v: Vec<char> =

Vec::new(); 3 let mut v = vec!['a', 'b', 'c']; 4 // Add element to vector 5 v.push('d');

6 // Access to the second element of the vector, in two different ways 7 let second:

&char = &v[1]; 8 let second: Option<&char> = v.get(1); 9 // (immutable) traversal

of the vector with the syntax for .. in ..

None,

}

10 for i in &v {

println!("{}", i);

4 TECHNOLOGICAL ANALYSIS

4.1.7 Collections

40

Some(T),

1 enum Option<T> {

Some(data) => println!("{}", data), None =>

println!("Error, no data")

Listing 13 – The Option enumeration and its use with pattern matching in Rust

This subsection describes the two most used collections in Rust, namely vectors (Vec) and

associative hash tables (HashMap). A vector is an array that has no fixed size, elements can be added

or removed from it. It is the equivalent of ArrayList in Java. A vector is generic (see subsection 4.1.5),

it can contain any type of data, but only one type at a time. Many methods exist to manipulate a vector,

either to add or remove elements from it or to convert it to other forms. A macro, vec! is available to

quickly create a vector (comma separated elements between "[]"). Listing 14 gives some examples:

Listing 14 – Examples of declarations and uses of a vector

5 fn process(value : Option<u32>) {

Steven Liatti

TagFS

11

3

9

7

Machine Translated by Google

The unique feature of Rust is undoubtedly ownership, or "possession".

Listing 15 – Examples of declaration and use of a HashMap

When a variable whose size is not known in advance (high type, for example collections) is declared,

it is placed in the heap. A program wanting to store a variable on the heap is obliged to ask the OS to

find an available space large enough to store the variable and to give it a pointer to this area, to find

it later.

Steven Liatti

For more details, refer to chapter 8 of the book [20].

When a value is assigned to a variable, it is held by that variable until it is

— When the owner is destroyed or changes range, the value is destroyed.

— There can only be one owner for a value.

10 }

Before continuing on this notion, a brief reminder on the use of memory is necessary. The operating

system (OS) provides a program with two different memory areas to store its variables: the stack

(stack) and the heap (heap). The stack access mechanism is simple and fast and stores variables

whose size is fixed and known at compile time. Primitive type variables (see paragraph 4.1.3) are

stored in the stack.

Ownership is defined by these three rules:

4 TECHNOLOGICAL ANALYSIS

41

1 // Declaration of a hashmap with new 2 let h:

HashMap<char, u32> = HashMap::new(); 3 // Add key-value

pair to hashmap 4 h.insert('a', 97); 5 // Access to the value

associated with the key 'a', returns an Option 6 let a:

Option<&u32> = h.get('a'); 7 // (immutable) traversal of the hashmap with the syntax for ..

in .. 8 for (key, value) in &h { println!("{}: {}", key, value);

A HashMap is an associative hash table, such as exists in Java. It is, like the vector, generic (see

subsection 4.1.5), it accepts any type of data. It is an efficient data structure for quickly accessing

information. Listing 15 gives some examples:

— Each variable is said to be the "owner" of a value.

destruction. Listing 16 illustrates an example:

4.1.8 Ownership, Borrowing and References

TagFS

9

Machine Translated by Google

3

let b = a;

The my_vec variable is on the stack, but the data it points to is on the heap. When my_vec goes

out of range, the data in the stack and in the heap will be freed. If my_vec is assigned to another

variable, the ownership of the data is transferred to this new variable, my_vec will no longer be

accessible and usable after the assignment, as shown in Listing 17. This scenario does not occur

with types primitives whose size in memory is known at compile time and where a copy of the data is

made. For an advanced type to be copied in this way, it must implement the Copy trait.

Listing 17 – Transfer of ownership and Rust

5 } // the scope of my_vec ends here, my_vec is then deleted

In line 8 of Listing 17, the variable my_vec is invalidated, but not the data to which it points. Only

the pointer to this data is transferred to other_vec.

let a = 10;

10 }

4 TECHNOLOGICAL ANALYSIS

let mut my_vec = vec![3, 2, 1]; let other_vec

= my_vec; my_vec.push(42); // Error, the

value has been moved (move)

1 {

// my_vec is the "owner" of this vector let my_vec = vec![3, 2,

1]; ... // my_vec is used

1 {

// No problem here, a and b are of i32 primitive type, of // fixed and known size, the

value of a is copied into b.

This is where the second rule of ownership applies, there cannot be more than one owner of the same

value at the same time. To make a real copy of the data from one vector to another, or in general for

an advanced type, you must call the clone() method, which copies the data entirely in memory. This

ownership transfer situation also occurs during calls to functions. If a parameter is given to a function,

the function takes ownership of it, as shown in Listing 18.

42

Listing 16 - Scope a variable in Rust

Steven Liatti

TagFS

2

4

8

7

4

3

6

9

2

5

Machine Translated by Google

1. The function must return the possessed value. This is impractical if the purpose of the function is

to return the result of an operation. It can return a tuple made up of the grabbed value(s) and the

result of its operation. This way of doing things is cumbersome

7 fn print_vec(v : Vec<i32>) { println!("My

super vector : {:?}", v);

Fortunately, functions can "lend" variables to each other by borrowing.

43

5 }

and not recommended.

To overcome this problem of transfer of ownership during calls to functions, two

Listing 18 - Transferring ownership to a function in Rust

2. Mutable references (syntax &mut my_variable).

solutions existent :

Listing 19 shows an example of immutable and mutable borrowing.

Steven Liatti

4 TECHNOLOGICAL ANALYSIS

Two types of variable references are available:

let mut my_vec = vec![3, 2, 1];

print_vec(my_vec); // The function takes possession of the vector my_vec.push(42); //

Error, the value has been moved (move)

9 }

1 fn main() {

2. The function can "borrow" the variable in different ways (see below).

1. Les références immutables (syntax &ma_variable).

TagFS

4

2

8

6

3

Machine Translated by Google

7 }

Thanks to references, Rust avoids concurrency problems on pointed values as well as invalid pointers. For

more details, refer to chapter 4 of the book [20]. There are also other types of pointers, called "intelligent".

The book on Rust dedicates an entire chapter to them (chapter 15 of the book [20]).

13 fn ref_mutable(v : &mut Vec<i32>) {

4.1.9 Error handling

println!("My super vector : {:?}", v);

These references are conceptually close to pointers in C (Rust also accepts the dereferencing of

variables with the symbol *) but obey two fundamental rules: 1. At any time, there can be either a single

mutable reference, or several references

11 }

immutable, but not both at the same time.

2. References must always be valid.

4 TECHNOLOGICAL ANALYSIS

15 }

44

let mut my_vec = vec![3, 2, 1]; // The function

immutably borrows the vector ref_immutable(&my_vec); // The function mutable

borrows the vector ref_mutable(&mut my_vec);

1 fn main() {

9 fn ref_immutable(v : &Vec<i32>) {

v.push(42);

Listing 19 – Borrowing variables between functions in Rust

Notwithstanding its very restrictive compiler, which detects many compile-time errors, Rust has

advanced run-time error handling. It distinguishes two types: recoverable errors and unrecoverable errors

(not like in languages like Java where the concept of exceptions mixes these two types of errors). For the

latter, Rust provides a macro, panic!, which abruptly stops the program and prints an error message to

standard output indicating at which line the program crashed. For recoverable errors, a more elegant way

exists: like the Option enum seen in Section 4.1.6, the Result enum was designed to handle runtime errors

(see Listing 20).

Steven Liatti

TagFS

8

3

14

2

10

6

5

4

12

Machine Translated by Google

7

9

5

6 fn process(value : Result<u32, std::io::Error>) {

Listing 20 – The Result enumeration and its use with pattern matching in Rust

}

45

4 }

Listing 21 - Opening a file and processing it in Rust

14 }

Err(E),

Ok(data) => println!("u32 value : {}", data), Err(error) => println!

("Error : {}", error)

1 fn main() {

};

// Version 1 let f

= File::open("test.txt"); let f = match f { Ok(file)

=> file,

// Version 2

let f = File::open("test.txt").expect("Error on opening test.txt");

let f = File::open("test.txt").unwrap(); // Version 3

4 TECHNOLOGICAL ANALYSIS

match value {

Many functions in the standard library and in the community return

Ok(T),

1 enum Result<T, E> {

Result, especially when opening a file. As these kinds of operations are common, Rust provides two

functions equivalent to performing a match on a Result, unwrap() and expect(). The only difference between

the two is that with the second function, a custom message is expected as an argument. Listing 21 shows

the different ways to process a Result when opening a file:

11 }

panic!("Error on opening file : {:?}", error)

},

For more details, refer to chapter 9 of the book [20].

Err(error) => {

Steven Liatti

TagFS

3

3

6

7

10

8

4

13

8

12

2

2

11

9

5

10

Machine Translated by Google

5

#[test]

Listing 22 - Test module added automatically

— assert! : expects a bool type argument.

Steven Liatti

fn it_works() {

Each function preceded by the #[test] attribute is considered by the compiler as a test. To run the

tests, Cargo provides a command, cargo test. When this command is executed, all tests are performed

in parallel, without guaranteeing a predefined execution order. A summary of the tests performed,

passed, and failed is printed to standard output when the command completes. To perform our tests,

Rust provides some

46

unit tests is de facto added to the lib.rs file, as in Listing 22:

}

There is also another attribute, #[should_panic], for performing functions that test if a piece of code

should "panic", thus failing. Finally, the killer feature of testing in Rust is that the cargo test command

also checks sample code in our code documentation, to keep documentation up to date with our code.

For more details, refer to chapter 11 of the book [20].

1 #[cfg(test)] 2 mod

tests {

7 }

4.1.11 Concurrence et threads

Rust provides an implementation of threads in its standard library. A thread in Rust corresponds

to a system thread. Listing 23 gives an example of creating a thread. The spawn() method returns a

handler to terminate the thread properly with the join() method.

4 TECHNOLOGICAL ANALYSIS

— assert_eq! : expects two arguments of the same type, to check that they are equal.

When a new library project is created with cargo new mylib --lib, a

4.1.10 Tests

— assert_ne! : inverse of the previous one, checks the inequality of the two given arguments.

macros :

assert_eq!(2 + 2, 4);

TagFS

3

6

4

Machine Translated by Google

4

5

6

10 }

1 use std::thread;

println!("{:?}", my_thing);

Steven Liatti

println!("Hello from thread !");

Listing 23 - Creating a Thread in Rust

47

3 fn main() {

let my_vec = vec![’a’, ’b’, ’c’]; let handle =

thread::spawn(move || {

println!("Hello from main !");

handle.join().unwrap();

let handle = thread::spawn(|| {

Listing 24 - Creating a thread in Rust and passing a variable

To communicate between threads, a message mechanism is available. The threads communicate

through a channel according to the Multiple Producer, Single Consumer topology ("multiple producer,

single consumer", see figure 8): it is possible that several threads send (produce) messages in the

channel but only one thread can receive (consume). Listing 25 gives an example.

4 TECHNOLOGICAL ANALYSIS

1 use std::thread;

3 fn main() {

A thread can take ownership of a variable if the move keyword is added to the spawn() call. The

variable is no longer available in the function that called the thread. Listing 24 shows an example of this

situation.

});

handle.join().unwrap();

9 }

});

TagFS

2

7

6

2

7

9

4

5

8

8

Machine Translated by Google

4 fn main() {

});

thread::spawn(move || { let val

= String::from("Hello from second thread"); tx.send(val).unwrap();

Listing 25 – Message passing with two producers and one consumer in Rust

let (tx, rx) = mpsc::channel();

for received in rx {

Lower level primitives (Mutex) as well as traits are available to manipulate Rust threads more finely.

For more details, refer to chapter 16 of the book [20].

An article illustrating the use of threads in Rust by creating a simple hash calculation program gives a

good basis for building your own program [24].

2 use std::sync::mpsc;

});

21 }

4 TECHNOLOGICAL ANALYSIS

let new_tx = mpsc::Sender::clone(&tx);

thread::spawn(move || { let val = String::from("Hello

from first thread"); new_tx.send(val).unwrap();

1 use std::thread;

Figure 8 – Canal de communication entre threads - [24]

}

println!("Message from threads: {}", received);

Steven Liatti 48

TagFS

6

17

11

9

8

15

3

16

10

20

13

19

7

14

12

5

18

Machine Translated by Google

The Rust compiler is not only very verbose on errors but also very restrictive. This constraint is

the guarantee for the programmer to obtain safe and reliable code on memory management. However,

there are times when code must violate Rust's memory rules and best practices. This is particularly

the case for low-level code (kernel manipulation for example). For these scenarios, Rust can run in

unsafe mode. Any block of code that needs to be unsafe must be prefixed with the unsafe keyword .

It is then the responsibility of the programmer to check that the code is not buggy or dangerous. For

more details, refer to chapter 19.1 of the book [20].

The namespace, or namespace in English, defines the different classes of attributes. As part of this

project, the focus is on the ext4 [25] file system (FS) on Linux, there are currently four namespaces

or classes: user, trusted, security and system.

4.1.12 Unsafe Rust

Extended attributes (XATTR), or "extended attributes" in French, are a way to attach metadata to

files and folders in the form of space.name:value pairs.

4 TECHNOLOGICAL ANALYSIS

49

4.2.1 Operation of XATTRs

Steven Liatti

TagFS

The space that interests us is user. This is where the user or the application, provided it has the usual

UNIX rights on the files, can manipulate the XATTRs. The other three namespaces are used, among

other things, for ACL access lists (system), kernel security modules (security) or by root (trusted) [26]

[27]. The name is a string and the value can be a string or binary data. XATTRs are stored in files.

Many FS manage their use: ext2-3-4, XFS, Btrfs, UFS1-2, NTFS, HFS+, ZFS. These FS are used by

the four most popular OS: Windows, macOS, Linux and FreeBSD. Windows uses XATTR notably in

its management of Unix permissions in the Linux shell integrated into Windows 10 [28]. macOS, as

seen in section 2.2.2, uses them among other things in its tag management system. The xattr

command allows you to manipulate them. Under Linux, there are three: attr, getfattr and setfattr.

Under Linux with ext2-3-4, each attribute has a data block (1024, 2048 or 4096 bytes) [27]. Apple

and freedesktop.org advocate reverse DNS notation for naming attributes [29], [30] because any

process can modify attributes in user space. Prefixing the name of the program to the name of the

attribute, for example user.myprogram.myattribute, reduces the risk of another application using the

same attribute name. Unfortunately, most Linux CLI tools for manipulating files like cp, tar, etc. do not

take into account the attributes with their default syntax, it is necessary to specify additional arguments

[31].

4.2 Extended attributes

Machine Translated by Google

~ $ cp --preserve=xattr file.txt /media/pc/cle1 ~ $ cd /media/pc/cle1

ext4

ext4

~ $ cp --preserve=xattr file.txt /media/pc/cle1

55 The "author" attribute set to a value of 6 bytes for file.txtÿ:

59G

334G 96G 78% /

46 The "author" attribute set to a value of 6 bytes for file.txt:

7.7g

~ $ attr -s author -V steven file.txt

~ $ attr -s author -V steven file.txt

Listing 27 – Copy to 8 GB USB flash drive, FAT32

4.2.2 Behavior during common access operations

vfat

28, 29 and 30:

61 steven

Steven Liatti

49 cp: setting attributes for '/media/pc/key1/file.txt': Operation no

3 /dev/sdg1 4 /

dev/sdg1 5 /dev/

sdg1 6

192.168.1.21:/home/user nfs4

Listing 26 – Output of df -Th: the system disk, the USB keys and the NFS

TagFS

47 steven

1 Sys. of files 2 /dev/sda2

916G

56 steven

50

Type Size Used Avail Uti% Mounted on

fuseblock 7.7g

To verify the portability of the XATTRs, some tests were carried out between an SSD acting as a Linux

Mint 18.2 Sonya system disk with two USB keys (8 and 64 GB) and a network location mounted in NFS.

Listing 26 shows the output of the df command, which returns the usage of the various storage locations, in

order: the system disk, in ext4, the 8 GB key formatted once in FAT32, then again in NTFS, the 64 GB key

formatted in ext4 and finally a virtual machine under Debian 9 mounted in NFS.

The approach is as follows: an XATTR in the user space with the name author and the value steven is

added to the file file.txt with attr. This file is copied with cp taking care to preserve the attribute (option --

preserve=xattr). Once copied, we try to read the same attribute, always with attr. The results can be seen in

the 27 listings,

4 TECHNOLOGICAL ANALYSIS

4.0K 7.7G 1% /media/pc/cle1 41M 7.7G 1% /

media/pc/cle1 33G 23G 59% /media/pc/

cle2

supported

59 /media/pc/cle1 $attr -g author file.txt 60 The "author" attribute

had a value of 6 bytes for file.txtÿ:

198G 673G 23% /mnt/debian

451G

57

48

58

45

54

Machine Translated by Google

4.3 inotify

68 steven

We see that the operation is unsuccessful on the key in FAT32 and on the location

1. int inotify_init(void) : initializes an inotify instance and returns a descriptor

~ $ cp --preserve=xattr file.txt /media/pc/cle2 ~ $ cd /media/pc/cle2

supported

of file.

~ $ cp --preserve=xattr file.txt /mnt/debian

Listing 29 - Copy to 64 GB USB flash drive, ext4

67 The "author" attribute set to a value of 6 bytes for file.txtÿ:

79 cp: setting attributes for '/mnt/debian/file.txt': Operation no

Under Linux, a tool (included in the kernel) dedicated to FS monitoring exists, inotify [32].

As the name suggests, inotify gives an application the ability to be notified about filesystem-level events. A

programming interface (API) in C exists and offers the following system calls (SYSCALL):

4 TECHNOLOGICAL ANALYSIS

network mounted in NFS while it succeeds on USB keys in NTFS and ext4.

Steven Liatti

~ $ attr -s author -V steven file.txt

Listing 28 - Copy to 8GB USB stick, NTFS

73 steven

Listing 30 - Copy to remote network location, NFS

Two other little experiments were done with the mv command and copying/moving files with Linux Mint's

Nemo file explorer. Both of these operations preserve the XATTRs by default.

2. int inotify_add_watch(int fd, const char *pathname, uint32_t mask): this function expects the file descriptor

returned by inotify_init, a file path or directory to watch and a binary mask consisting of the events to watch

(see below). It returns a new file descriptor that can be read with SYSCALL read().

71 /media/pc/cle2 $attr -g author file.txt 72 The "author" attribute

had a value of 6 bytes for file.txtÿ:

3. int inotify_rm_watch(int fd, int wd): inverse call to the previous one, removes the monitoring of the file

descriptor wd from the inotify instance returned by fd.

51

TagFS

69

78

66

70

Machine Translated by Google

5

4

uint32_t mask;

uint32_t cookie; /* Cookie unique d’association des

uint32_t len;

/* Event mask */

— IN_ATTRIB: change to file attributes.

— IN_MOVE_TO: moving/renaming the directory (new name).

— IN_MOVE_SELF: deletion of a file/directory.

/* Size of the name field */ name[]; /

* Optional null-terminated name */

wd;

by logical "or" -> "|"):

Listing 31 – Structure inotify_event - [32]

— IN_DELETE_SELF: deletion of the monitored directory itself.

52

— IN_DELETE: deletion of a file/directory.

inotify is used as follows: you must initialize the instance, add the files and directories for monitoring

with the desired event mask and, generally, in a loop, call the SYSCALL read() with the returned file

descriptor as an argument by inotify_init(). Each successful call to read() returns the structure

available for listing

8 };

Steven Liatti

— IN_ALL_EVENTS: macro combining all previous events.

— IN_CLOSE_NOWRITE: file opened for writing closed.

int

TagFS

— IN_ACCESS: file access.

/* Watch descriptor */

— IN_MOVE_FROM: moving/renaming the directory (old name).

The mask field can take the following values (multiple values allowed, separated

1 struct inotify_event {

events (for rename(2)) */

— IN_MODIFY: modification of a file/directory.

31 :

The cookie field of the inotify_event structure takes on its full meaning during IN_MOVE events: a

unique number is generated to link these two sub-events, which are actually only one. inotify

therefore offers a very good basis for FS monitoring. However, it has some limitations:

— IN_CREATE: file/directory creation.

4 TECHNOLOGICAL ANALYSIS

— IN_OPEN: opening a file.

char

— IN_CLOSE_WRITE: file opened for writing closed.

7

3

6

2

Machine Translated by Google

— There is no way to discriminate which process or user generated an event.

given, but according to a given event on a file.

of execution.

Finally, there is also a newer API to receive notifications from FS, fanotify [36]. It erases some of

inotify's flaws (in particular access to mounted devices, such as USB keys), but has a major flaw for

this project: there is no support for file creation, deletion and movement events and directories.

fanotify cannot therefore be used for this project.

There are several system tools that use inotify [33]:

— inotifywatch: returns a list of events from monitored directories.

ment.

terminal :

— inotify-tools: two commands allowing to use inotify directly in the

— inotify only allows userspace directory monitoring by default.

— inotifywait: executes a wait on an event, before continuing the thread

1. Create the socket with socket().

Steven Liatti 53

4 TECHNOLOGICAL ANALYSIS

— lsyncd: synchronization tool, based on rsync. Synchronization is performed on each change in

the monitored directory to a list of remote locations configured in advance.

— File paths may change between event emission and event processing

— No recursive monitoring of a directory: if a complete tree must be monitored, a dedicated

monitoring must be added for each sub-directory.

— iwatch: triggering a command according to an inotify event.

For more information, the inotify man page exists [32] and a very good two-part article on the additions

of inotify over dnotify (its predecessor) [34] and its limitations by Michael Kerrisk [35] .

Sockets (literally "socket" in French) are a means of communication between different processes,

whether they are on the same machine or in a network. There are several types of sockets, the two

best known are "local" sockets (type AF_UNIX or AF_LOCAL), only possible on the same machine

because they are linked by a special file on the FS of the machine, and IP sockets (type AF_INET or

AF_INET6) which are linked by pairs of IP addresses and ports. During a socket communication

between two processes, one of the processes assumes the role of server and the other of client. The

server must, in order, execute the following SYSCALLs:

— incron: equivalent of cron, but the execution of the tasks is not done according to a schedule

TagFS

4.4 Sockets

Machine Translated by Google

2. Connect to a listening server with connect().

7. Close the connection with close().

When establishing the connection, a channel is established between the two processes, whatever the

server writes is received by the client and vice versa. For more information, the sockets man page is

available [37].

The client, for its part, must execute the following SYSCALLs:

Steven Liatti

4. Accept an incoming connection with accept().

5. Close the connection with close().

Figure 9 summarizes the procedure for initializing and using sockets.

5. Receive messages with read(). 6. Emit

messages with write().

Figure 9 – Procedure for initializing and using sockets

3. Receive messages with read().

4 TECHNOLOGICAL ANALYSIS

3. Listen for an incoming connection with listen().

2. Bind the socket to a listening address with bind().

4. Emit messages with write().

54

1. Create the socket with socket().

TagFS

Machine Translated by Google

xattr is a Rust application programming interface (API) for retrieving, listing, adding/editing, and

deleting XATTRs hooked to files with Rust. It is essentially a wrapper of the C system calls

(SYSCALL) provided by Linux and other operating systems (OS) to manipulate XATTRs. Note that

the functions offered do not follow symbolic links (it is the same for Tag Manager itself). Four functions

are available: get(), list(), set() and remove(). All expect the name of the file and, depending on the

case, the name of the XATTR as well as its value.

Steven Liatti

clap (Command Line Argument Parser for Rust) is a library for parsing the arguments of a CLI

program. It analyzes and validates the arguments provided by the user. It has several syntaxes to

define the arguments of the commands and options expected by our program. On clap's github

repository, in the examples folder, several usage examples are provided. To illustrate its use, Listing

32 repeats example 01a_quick_example.rs with most of the comments truncated and layout changes.

From lines 2 to 13, the expected arguments and information about the application are defined with

among others the version of the program, the name of the author, etc. In this example, the arguments

are defined from a character string respecting a very specific format. clap automatically generates

program help from the defined arguments if it is run without any of the required arguments. From line

15, the received arguments are used. The value_of() method returns the value of an argument

present at runtime. It is therefore easy to use the given arguments as program variables. clap also

gives the possibility to group the arguments. Only one argument of a group can be present at runtime,

which avoids many conditions for detecting and excluding arguments.

TagFS

The first realization of this project is a command line tool (CLI), written in Rust, allowing to easily

list, add and delete tags to files and directories (with a recursive option for these) and to execute

requests to the server (Tag Engine, subsection 5.2) to list existing tags, rename a tag and request

the list of files corresponding to given tags. This tool depends on two crates available on crates.io :

clap [38] and xattr [39]. Tags are stored in an extended attribute (XATTR) named user.tags and are

separated from each other by commas.

5 REALIZATION

55

5.1.1 Program and code description

5 Achievement

5.1 Tag Manager

Machine Translated by Google

https://crates.io

.about("does testing

things") .arg_from_usage("-l, --list ’lists test values’")) .get_matches();

.author("Kevin K. <kbknapp@gmail.com>") .about("Does

awesome things") .args_from_usage("-c, --

config=[FILE] ’Sets a custom config file’ <output>

’Sets an optional output file’ -d... ’Turn debugging information on’")

0 => println!("Debug mode is off"), 1 => println!

("Debug mode is kind of on"), 2 => println!("Debug mode

is on"), 3 |

if let Some(c) = matches.value_of("config") { println!("Value for

config: {}", c);

if let Some(matches) = matches.subcommand_matches("test") {

}

.subcommand(SubCommand::with_name("test")

_

Steven Liatti

}

match matches.occurrences_of("d") {

}

println!("Not printing testing lists...");

=> println!("Don’t be crazy"),

TagFS

}

36 }

let matches = App::new("MyApp") .version("1.0")

1 fn main() {

if let Some(o) = matches.value_of("output") { println!("Value for

output: {}", o);

}

Listing 32 - Example of using clap (truncated comments) - [40]

56

if matches.is_present("list") { println!

("Printing testing lists..."); } else {

5 REALIZATION

23

4

11

18

5

27

22

10

33

15

21

31

20

8

26

32

25

19

6

13

35

34

28

17

16

2

30

14

7

24

29

12

9

3

Machine Translated by Google

the file \"myfile\"\n

tag_manager -f myfile -d work to the

file \"myfile\"\n \ tag_manager -f

myfolder -r -s geneva => Set the tag \"geneva\" \ to the folder \"myfolder\" and his subtree\n

\ => Show files corresponding to query\ tag_manager -q bob AND fred OR max => Show the list of existent tags\n

tag_manager -l => Rename the tag \"old_name\" to \"n tag_manager -R old_name new_name let matches =

App::new("tag_manager") .help(help) .group(ArgGroup::with_name("ops").args(&["set",

"del"])) .group(ArgGroup::with_name("queries")

Steven Liatti

\

5 REALIZATION

.args(&["list", "query",

"rename"])) .arg(Arg::with_name("set").short("s").long("set") .takes_value(true).multiple(true)) .arg(Arg::with_name("del").short("d").long("del") .takes_value(true).multiple(true))

.arg(Arg::with_name("recursive").short("-r")

57

TagFS

=> Delete the tag \"work\" \

.arg(Arg::with_name("files").short("-f").long("--

files") .takes_value(true).multiple(true).required(false))

Tag Manager consists of two files. The first, main.rs contains the definitions and detections of the

arguments supplied by the user with clap (see listing 33), the calls to the functions manipulating the

tags of the files and the connection socket part, requests and waiting for a response from the server

(Tag Engine, subsection 5.2). The second file, lib.rs, contains the public API for retrieving, assigning,

renaming, and deleting tags for a given file and a test module for those functions. Note that in the

output of the program, there is no distinction between files and directories. As an example, Listing 34

shows code for the del_tags() function that removes given tags from a file. It preserves existing tags

that should not be deleted and completely removes the XATTR in case of an empty tag array. The

use of Option and Result enums in association with pattern matching are used whenever possible.

Listing 33 - Declaration of arguments in main.rs

46

52

53

44

60

50

49

57

43

51

58

59

47

55

62

48

56

54

61

45

Machine Translated by Google

=> ()

Ok(res) => match res {

xattr::set(file, ATTR_NAME,

}

}

}

println!("Tag(s) {:?} for file {:?} have been deleted", tags_to_del, file);

&hash_set_to_vec_u8(&tags)) .expect("Error

when (re)setting tag(s)");

=> () }

55 pub fn del_tags(file: &str, tags_to_del: &HashSet<String>, recursive:

// To avoid to let an empty array of tags if tags.is_empty()

{

return;

}

Err(err) => {

Some(mut tags) => { //

Delete only the given tags for tag in

tags_to_del { tags.retain(|ref e| e != &tag);

5 REALIZATION

Steven Liatti

Listing 34 - Code for del_tags() function in lib.rs

82 }

else {

}, _

_

recursion(file, recursive, Delete, tags_to_del); match

check_existent_tags(file) {

bool) {

eprintln!("Error for file \"{}\" : {}", file, err);

58

match xattr::remove(file, ATTR_NAME) {

TagFS

}

},

Socket communication is achieved using the standard UnixStream library, equivalent to AF_UNIX

sockets in C (see subsection 4.4). The sockets address file is by default written in /tmp/tag_engine. The

request format respects the small protocol described in table 4. The start of the request is formed by the

three-character code. The query listing the files according to a logical expression of the tags accepts the

AND and OR operators, with the logical precedence of the first over the second (see subsection 5.2 for

more details). Operators and operands (tags) must be separated by a space.

65

57

62

74

63

76

81

75

60

59

66

56

61

70

71

72

73

78

69

79

80

64

67

77

58

68

Machine Translated by Google

Code Example

0x2 0x2 old_name new_name

Figure 10 – Tag Manager operation diagram

Steven Liatti

0x0 0x0 tag1 OR tag2 AND tag3

5.1.2 Using the program and examples

List of existing tags

2. Execution of the commands (either on the files, or request to the server).

1. Analysis of arguments.

Renaming a tag

3. Printing of results.

TagFS

Table 4 – Protocol format for requests to the Tag Engine server

59

Files and directories corresponding to a

logical expression of tags

Query

Figure 10 summarizes how the program works:

The use of the different arguments of the program is summarized in table 5. The arguments are

divided into two groups, the first to directly manipulate the files and their tags, the second to execute

requests to the Tag Engine server. For the first

0x1 0x1

5 REALIZATION

Machine Translated by Google

--files

-f

-r

or

so many

b

a1

tag_manager -l

or

Arguments Example

-q

b1

Assign tags to one or

more fi les

List cor files

-R

--list

group, the -f or --files argument is required. For the operations of the second group, it is obviously necessary

that the Tag Engine server is launched.

Show folder tags

recursively

-d or --del tag_manager -f file1 file2 -d bob fred

Table 5 – Usage and arguments expected by Tag Manager

Listing 35 illustrates the uses and returns of Tag Manager. First, Tag Manager is used to recursively list

tags of given files and subdirectories, assign in_a and myfiles tags to different files and directories, list

existing tags, and query on both tags. The tree structure used for the example consists of the following four

files and two directories:

tag_manager -R old_name new_name

List exis tags

tag_manager -h

tag_manager -f file1 file2

--recursive

5 REALIZATION

b2

60

a2

--query

-h

tag_manager -f myfolder -r

or

a

tag_manager -q bob AND fred

Show help

Remove tags from one

or more files

--rename

Operation

or

Steven Liatti

-s ou --set tag_manager -f file1 file2 -s bob fred

TagFS

Show tags of one or

more files

-l

Rename a tag

or

respondents to a tag

request

Machine Translated by Google

TagFS

20 Tag(s) ["myfiles"] for file "a/b/b2"

5.2.1 Program and code description

5 REALIZATION

19 Tag(s) ["myfiles"] for file "a/b/b1"

61

Listing 35 - Examples of using Tag Manager

Steven Liatti

18 Tag(s) ["in_a", "myfiles"] for file "a/b"

24 myfiles

25 $./tag_manager -q myfiles AND in_a 26 /

home/stevenliatti/a/b

1 $./tag_manager -f a -r 2 File

"a" has no tags 3 File "a/a1" has

no tags 4 File "a/b" has no tags

5 File "a/b/b1" has no tags 6 File

"a/a2" has no tags 7 $./

tag_manager -f a/* -s in_a 8 Tag(s)

{"in_a"} for file "a/a1" have been setted 9

Tag(s) {"in_a"} for file "a/a2" have been setted 10 Tag(s) {"in_a"}

for file "a/b" have been setted 11 $./tag_manager -f a/b a/b/b1

a/b/b2 -s myfiles 12 Tag(s) {"myfiles"} for file "a/b" have been

setted 13 Tag(s) {"myfiles"} for file "a/b/b1" have been setted 14

Tag(s) {"myfiles"} for file "a/b/b2" have been setted 15 $./

tag_manager -f a -r 16 File "a" has no tags 17 Tag(s) ["in_a"] for file "a/

a1"

The second practical realization of this project is a program indexing and monitoring a

tree structure of directories, files and associated tags. This program also acts as a server for

requests issued from Tag Manager. It is divided into several files and modules:

21 Tag(s) ["in_a"] for file "a/a2" 22 $./

tag_manager -l 23 in_a

5.2 Tag Engine

Machine Translated by Google

walkdir is a library for efficiently and recursively traversing a tree of files. It offers different structures,

including WalkDir and DirEntry. WalkDir expects a directory path and returns an iterator listing each

subdirectory and file contained in the starting directory. Each entry of this iterator is represented by the

DirEntry structure, which holds methods for obtaining information about the entry (the full path, the

metadata, if it's a directory or a file, its name, etc.) . Listing 36 illustrates an example of traversing a

directory and displaying information for each entry encountered. walkdir is used to perform the first scan

of the provided tree and build the graph (see listing 38).

— parse.rs: module for converting an infix expression to a postfix (see paragraph Analyzing a logical

expression).

62

— server.rs: module building the socket server and responding to the various requests sent from Tag

Manager (see the Sockets server paragraph).

— main.rs: program entry point, initializes shared variables, the server socket thread and listens

indefinitely on events occurring on the monitored tree

3 fn main() {

for entry in WalkDir::new("/home") { let entry =

entry.unwrap(); println!("{}",

entry.path().display());

(see paragraph Mutex and multiple references).

petgraph is a graph representation library. It provides different data structures to represent a graph

and modules for manipulating and traversing graphs.

There are three data structures:

Steven Liatti

TagFS

1 use walkdir::WalkDir;

8 }

— lib.rs: groups the other modules and contains the dispatcher() function, called during an event on

the monitored tree (see notify paragraph).

— graph.rs: module relating to the construction and maintenance of the graph of tags, files and

directories (see paragraph petgraph).

Listing 36 - Traversing a directory with walkdir

}

This program depends on four external crates. The first is tag_manager (the library of functions handling

XATTRs, see subsection 5.1), made during this project. The other three are available on crates.io, these

are walkdir [41], petgraph [42] and notify [43].

5 REALIZATION

5

7

4

2

6

Machine Translated by Google

https://crates.io

5 REALIZATION

Before continuing the explanations on the use of petgraph, let's briefly review the architecture chosen

to represent the tree structure of files and tags to monitor. A graph node can be either a file, or a

directory, or a tag. The link between a directory and a sub-directory or a file is symbolized by an arc

starting from the directory in question.

TagFS

2. StableGraph<N, E, Ty = Directed, Ix = DefaultIx> : similar to Graph, with a notable difference, it

keeps the identifiers of nodes and arcs or edges removed.

The link between a tag and a directory or a file is also an arc starting from the tag in question. An arc

has no data to save, so it has no effective type. To speed up access to a tag in the graph from its

name, a hashmap associating the name of the tag with its identifier in the graph is maintained.

63

1. Graph<N, E, Ty = Directed, Ix = DefaultIx> : represents a graph and its data in the form of two

adjacency lists (two Vec, one for the nodes and the other for the arcs or edges) . The nodes

are of the generic type N, the arcs or edges of the generic type E, the graph is oriented by

default (Directed type) and the type for the index (the numerical identifier of a node and of an

arc or edge in the respective vectors, determining the maximum size of the graph) is by default

u32 (which allows more than four billion nodes, 4'294'967'296 precisely).

This structure also has fewer methods.

The StableGraph structure was chosen because of its retention of identifiers when deleting nodes

and arcs. Indeed, during tag or file deletion operations, to maintain consistency in the hashmap of the

tags associated with the identifiers of the graph, these identifiers must not change. Otherwise, this

hashmap would not be usable. Listing 37 shows the data structures used for our graph. A graph node

is represented by the Node structure, containing the name of the node and its type (tag, file or

directory). An arc is simply defined by an empty type, named Nil. petgraph offers many methods for

StableGraph: access, addition and deletion of nodes and arcs, an iterator on the neighbors of a node

(with direction indication), search for arcs between two nodes, etc. The make_graph() function listed

in listing 38 is the primary function of our module, it creates the graph and the hashmap with walkdir

from the root directory path. It returns the graph containing the files, directories and tags found, the

hashmap filled in and the identifier of the root node, starting point for the following updates of the

graph (on the files and directories). The make_subgraph() function, called in the loop, makes sure to

correctly add the nodes according to the path, to avoid

3. GraphMap<N, E, Ty> : represents a graph and its data in the form of an associative table,

whose keys are the nodes of generic type N, with the obligation for this type to be compliant

for the use as a key. Allows to test the existence of a node in constant time with the counterpart

of not being able to store more than one node with the same data.

Steven Liatti

Machine Translated by Google

Tag,

27 pub struct Node {

64

File,

pub name : String, pub

kind : NodeKind

24 }

32 pub type MyGraph = StableGraph<Node, Nil>;

19 #[derive(Debug, Clone)] 20 pub

enum NodeKind {

26 #[derive(Clone)]

Listing 37 – Structures for graph nodes and edges in src/graph.rs

Steven Liatti

TagFS

Directory

30 }

16 #[derive(Debug, Clone)] 17 pub

struct Nil;

to create the same node twice or for a child node to be created before its parent (there is no guarantee

of traversing the file tree in parent-child order).

5 REALIZATION

29

22

21

28

18

23

25

31

Machine Translated by Google

&mut graph, root_index);

Listing 38 – Fonction make_graph() dans src/graph.rs

let mut is_root = true;

is_root = false;

Steven Liatti

For each file and directory, the update_tags() function, listed in Listing 39, compares the tags in

the XATTRs to the tags present in the graph and updates the relations if necessary.

);

update_tags(path_root.clone(), &mut tags_index,

.filter_map(|e| e.ok()) { if is_root {

let mut path = entry.path().display().to_string(); let path =

local_path(&mut path, base_path.clone()); make_subgraph(root_index,

&mut tags_index, &mut graph,

108 }

}

(graph, tags_index, root_index)

TagFS

Node::new(local_root, NodeKind::Directory)

-> (MyGraph, HashMap<String, NodeIndex>, NodeIndex) { let mut

graph : MyGraph = StableGraph::new(); let mut tags_index =

HashMap::new(); let local_root = local_path(&mut path_root.clone(),

base_path.clone()); let root_index = graph.add_node(

83 pub fn make_graph(path_root : String, base_path : String)

for entry in WalkDir::new(path_root).into_iter()

}

continue;

path, base_path.clone());

65

5 REALIZATION

89

94

86

98

87

102

103

104

84

91

96

85

92

97

101

107

95

100

90

106

93

88

99

105

Machine Translated by Google

Debounced API is used here to help detect rename events. Both APIs require the creation of a

communication channel between two or more threads: notify will act as a producer by emitting events.

In an infinite loop, the events needed to update the graph are caught and processed. This is the game

Steven Liatti

Some(tags) => tags,

};

notify is a cross-platform FS event notification library. It uses different implementations depending

on which OS it is used on. On Linux, it relies on inotify. It expects a file or directory path. It also has a

recursive option for monitoring a directory. It offers two distinct APIs:

None => HashSet::new()

remove_tags(existent_tags.difference(&fresh_tags), tags_index,

graph, entry_index); add_tags(fresh_tags.difference(&existent_tags),

tags_index, graph, entry_index);

— Raw API: returns all events without pre-processing by notify and immediately. It has the advantage

of being exhaustive but more logical processing must be performed (especially for renaming

events). Each event is contained in the RawEvent structure, itself containing the path of the file

having undergone the event (path), the event in question (op) and a "cookie" making the link

between two sub-events forming part of a single rename event (see section 4.3 for more details).

— Debounced API (default): returns all events with pre-processing done by notify, grouping some

events into one, for example: renaming a file, single create event when creating a file rather than

a create+write+chmod. The events are sent after a delay (defined at creation), precisely to be

able to group them upstream if necessary. Each event is a member of the DebouncedEvent

enumeration.

TagFS

230 }

tags_index : &mut HashMap<String, NodeIndex>, graph : &mut

MyGraph, entry_index : NodeIndex) { let existent_tags =

get_tags(graph, entry_index); let fresh_tags = match

tag_manager::get_tags(&path) {

218 pub fn update_tags(path : String,

Listing 39 – Fonction update_tags() dans src/graph.rs

66

5 REALIZATION

220

227

224

219

226

223

222

229

225

228

221

Machine Translated by Google

— File or directory creation.

The detail of this mechanism is available in Listing 40, lines 14 to 33.

channel consumer thread. The graph updating events are as follows:

67

— File or directory renaming.

TagFS

Steven Liatti

— Delete file or directory.

The solutions to both of these problems are atomic multiple references, or Atomic Reference

Counting (Arc) and locks, or Mutex. The former allow multiple concurrent and concurrent owners

at a value, at the cost of a slight performance degradation for memory safety issues. The second

are classic locks in concurrent programming, like those existing in C for example. In Listing 40, we

can see in lines 5 and 6 the graph and the hashmap being wrapped in a Mutex, itself wrapped in

an Arc, and in lines 7 and 8 the creation of a reference to this graph and hashmap thanks to the

Arc::clone() function. From there, if the main thread wishes to use the graph or the hashmap, it

must take the lock, as in lines 23 and 24 of this same listing. The socket server thread must do the

same on its side, this is the reason why in line 11 it receives the variables graph and tags_index

defined in lines 5 and 6.

5 REALIZATION

— Modification of attributes (in our case, tags).

Mutex and multiple references Since the main thread, consuming events emitted by notify,

and the server socket thread, listening on incoming requests, both need to read and modify the

graph and the associated hashmap, the basic rule of a single owner per value is not respected.

Moreover, the threads must not access these two variables at the same time, at the risk of ending

up with inconsistent data.

Machine Translated by Google

match event {

33 }

12 });

13 // Initialisation de la surveillance avec notify 14 let (tx, rx) = channel();

15 let mut watcher = watcher(tx, Duration::from_secs(1)).unwrap(); 16

watcher.watch(path, RecursiveMode::Recursive).unwrap(); 17 loop {

&mut ref_graph, root_index, base_path);

Listing 40 – Tag Engine main.rs function (reduced and simplified, non-functional)

3 // Accès concurrent grâce à Mutex 4 let (graph,

tags_index, root_index) = make_graph(path, base_path); 5 let graph = Arc::new(Mutex::new(graph));

6 let tags_index = Arc::new(Mutex::new(tags_index)); 7 let main_graph = Arc::clone(&graph); 8

let main_tags_index = Arc::clone(&tags_index);

9 // Launch the server socket in a separate thread 10 thread::spawn(move ||

{ server(base_path, &graph, &tags_index);

dispatcher(event, &mut ref_tags_index,

// Taking the lock on the graph and the hashmap // for possible

modifications let mut ref_graph = main_graph.lock().unwrap();

let mut ref_tags_index = main_tags_index.lock().unwrap();

}

TagFS

Create(_) | Chmod(_) | Remove(_) | Rename(_, _) => {

2 // Multiple references possible thanks to Arc

1 // Initialization of shared variables: graph and hashmap

// dispatcher takes care of performing the right action // depending on

the event

}

Steven Liatti

match rx.recv() {

}

68

5 REALIZATION

11

28

21

24

22

32

20

19

26

31

27

25

30

18

23

29

Machine Translated by Google

RenameTag(String)

Listing 42 - Illustration of the use of the collect() function

Steven Liatti

Entries(String),

Each request is first parsed with the parse_request() function which determines if the request is

valid and what type it is. Locks are then taken to access the graph and the hashmap to construct the

response. Functions reading and writing requests and responses manipulate a UnixStream.

There is an interesting mechanism to show in the request_tags() function copied in Listing 42.

The function itself is not very complex, it takes the lock on the hashmap of the tags associated with

the identifiers of the nodes of the graph and returns a vector containing all the tags, id is the keys of

the associative table. It is this last operation which is particularly powerful, in lines 5 and 6 of the

function. To generate the entries vector from the tags_index keys, the collect() function is used. This

function allows you to transform one iterator into another, very simply.

Tags,

1 fn request_tags(tags_index_thread : &Arc<Mutex<HashMap<String, NodeIndex>>>,

stream : &mut UnixStream) { println!("Request for Tags"); let tags_index =

tags_index_thread.lock().unwrap(); let mut entries : Vec<String> =

tags_index.keys() .map(|key| key.clone()).collect();

9 }

TagFS

5 }

1 enum RequestKind {

entries.sort();

write_response(entries, stream);

Sockets server The src/server.rs file contains all the logic for processing requests from Tag

Manager. As seen in Listing 40 on lines 10-12, the server is started in a separate thread. Therefore,

Tag Engine can listen on both FS events and requests from Tag Manager. Three types of queries are

implemented, the detail is available in table 4 of subsection 5.1.1. The code received is converted

into an enum, RequestKind, visible in Listing 41, to facilitate manipulation by pattern matching.

Listing 41 - RequestKind enumeration in server.rs file

69

5 REALIZATION

8

4

5

7

3

4

2

3

2

6

Machine Translated by Google

15 }

(&AND, &OR) => 1,

}

21 }

_

Operand(String),

match (self, other) {

}

Operator(Operator)

TagFS

Steven Liatti

5 #[derive(Debug, Clone, PartialEq)] 6 pub enum

Operator { AND, OR } 7 impl Operator { fn

compare(&self, other : &Operator) -> i8 {

Parsing a logical expression The file src/parse.rs mainly contains a function transforming an infix

logical expression into a postfix (also called "reverse Polish notation" [44]). In the context of this

program, it is used by the request providing one or more tags, separated by logical "and" or "or" to

retrieve the list of corresponding files and directories. The infix expression type is the "natural" way in

mathematics or logic to declare the sequence of operators and operands of a calculation or Boolean

logical expression. The following examples are more explicit: the infix logical expression bob OR fred

AND max would result in the postfix expression bob fred max AND OR. The algorithm used to

implement this function is available here [45]. Listing 43 shows the two enums used for the conversion.

An Arg is either an operand with a name, or an "AND" or "OR" operator. The compare() method,

inspired by Java, compares the two operators to give priority to "AND" over "OR". This method

illustrates the power of pattern matching, destructuring two variables at the same time in an elegant

way.

=> 0

17 #[derive(Debug, Clone, PartialEq)] 18 pub enum

Arg {

Listing 43 – Operator and Arg enumerations and compare() method

70

(&OR, &AND) => -1,

The reason for manipulating a postfix rather than an infix expression is that the postfix evaluation

algorithm is much simpler to implement, it only requires a stack to store the operators [44]. The

algorithm is available in Listing 44.

5 REALIZATION

9

8

20

10

19

12

14

11

16

13

Machine Translated by Google

1. Thread main, maintaining graph and hashmap and monitoring tree.

result <-- evaluate token with operand_1 and operand_2 push result back

onto the stack

Listing 44 – Postfix expression evaluation algorithm - [44]

9 result <-- pop from the stack

push token onto the stack

71

operand_2 <-- pop from the stack operand_1

<-- pop from the stack

TagFS

2. Sockets server thread responding to requests.

if token is an operator:

Steven Liatti

1 for each token in the postfix expression:

It is thus not necessary to establish an expression parsing grammar, as for a source code parser

or regular expressions. For the simple evaluation of an expression comprising only two different

operators, this solution is largely satisfactory and efficient. The function converting the infix expression

to postfix is called infix_to_postfix() and is found in the src/parse.rs file and the function implementing

the algorithm for evaluating a postfix expression is called expression_to_entries() and is found in the

server.rs file. The operands of the expression are tags and the two operators are "AND" and "OR".

"AND" takes precedence over "OR", like multiplication over addition. For each tag, a set in the

mathematical sense of the files and directories it points to is made and placed on the stack. When an

operator occurs, the last two sets of inputs are popped and the corresponding set operation is applied

to them (an intersection for an "AND" and a union for an "OR"). The resulting new set is again pushed

onto the stack. At the end of the algorithm, the final set is returned. Figure 11 summarizes how the

program works:

else if token is an operand:

5 REALIZATION

8

2

6

5

7

3

4

Machine Translated by Google

5 REALIZATION

Figure 11 – Tag Engine operation diagram

72 Steven Liatti

TagFS

Machine Translated by Google

5 REALIZATION

5.2.2 Using the program and examples

Steven Liatti

The program expects a valid absolute path pointing to a directory. It takes an optional argument,

-d or --debug, which prints the state of the graph and hashmap to standard output and writes two

files, graph.dot and graph.png, after each event that occurs. Listing 45 shows the Tag Engine outputs

corresponding to tree operations manipulated by Tag Manager (see section 5.1.2 and Listing 35). We

see in lines 11 to 16 the addition of the "in_a" and "myfiles" tags and in lines 30 and 31 the requests

for tags and entries made. Both files also represent the state of the graph. The graph.dot file respects

the syntax of a tool called Graphviz [46], dedicated to graph modeling and visualization. It includes

several engines for generating graphs from text or raw data, including dot used here. From the file

graph.dot, available in listing 46, figure 12 is obtained. petgraph gives the possibility of generating a

file respecting the semantics expected by dot to draw a graph. We can see that the result obtained

agrees with the tree structure obtained.

TagFS

73

Machine Translated by Google

10 }, tags_index {} 11

chmod : "a/a1" 12 chmod :

"a/a2"

15 chmod : "a/b/b1"

(6, 1), (7, 1), (7, 2), (7, 3),

6: Tag "in_a", 7: Tag "myfiles"

0: Directory "a", 1: Directory "b", 2: File "b1",

13 chmod : "a/b"

},

free_node: NodeIndex(4294967295),free_edge: EdgeIndex(4294967295)

31 Request for Entries "myfiles AND in_a"

Listing 45 - Example of using Tag Engine

Steven Liatti

free_node: NodeIndex(4294967295),free_edge: EdgeIndex(4294967295)

Ty: "Directed", node_count: 8, edge_count: 11, edges: (0, 1),

(1, 2), (1, 3), (0, 4), (0, 5), (6, 5), (6, 4),

29 }

74

30 Request for Tags

TagFS

16 chmod: "a/b/b2"

3: File "b2", 4: File "a2", 5: File "a1",

Ty: "Directed", node_count: 6, edge_count: 5, edges: (0, 1),

(1, 2), (1, 3), (0, 4), (0, 5), node weights: {

1 $./tag_engine /home/stevenliatti/a -d 2 graph

StableGraph {

},

17 graph StableGraph {

14 chmod : "a/b"

node weights: {

3: File "b2", 4: File "a2", 5: File "a1"

0: Directory "a", 1: Directory "b", 2: File "b1",

27 }, tags_index { "in_a":

NodeIndex(6), "myfiles": NodeIndex(7)

5 REALIZATION

6

24

20

3

22

8

4

9

23

18

19

26

28

21

25

7

5

Machine Translated by Google

5 [label="File \"a1\""]

1 -> 3

7 -> 1

Steven Liatti

3 [label="File \"b2\""]

0 -> 1

7 -> 2

75

6 [label="Tag \"in_a\""] 7

[label="Tag \"myfiles\""]

6 -> 5

Listing 46 – Dot file produced by petgraph

6 -> 1

6 -> 4

Figure 12 – Image of the graph obtained with the dot command

TagFS

0 -> 4

0 [label="Directory \"a\""] 1

[label="Directory \"b\""] 2 [label="File

\"b1\""]

1 digraph {

0 -> 5

1 -> 2

7 -> 3

21 }

4 [label="File \"a2\""]

5 REALIZATION

16

15

17

2

13

3

8

14

20

5

11

6

12

18

10

19

4

9

7

Machine Translated by Google

TagFS

2. Tree and server indexing and monitoring with Tag Engine.

5 REALIZATION

1. Tag management with Tag Manager.

76

Figure 13 summarizes the overall operation of the TagFS system, including Tag Manager and

Tag Engine:

Steven Liatti

Figure 13 – Global Flow Diagram of TagFS

5.3 TagFS

Machine Translated by Google

let now = Instant::now(); let (graph,

tags_index, root_index) =

tag_engine::graph::make_graph(String::from(absolute_path_root), base_path.clone()

In all, 200 executions were carried out, 100 with the program compiled in bug mode (cargo build,

not optimized) and 100 with release mode (cargo build --release, with maximum optimizations). Cargo

and rustc versions are: cargo 0.26.0 (41480f5cc 2018-02-26) and rustc 1.25.0 (84203cac6 2018-03-25).

The target directories differ greatly in their number of sub-directories and files contained, ranging from

five directories and 863 files to several thousand directories and a hundred thousand files (15,172

directories and 112,046 files precisely). These directories do not contain tags. Table 6 lists the directories

used and their contents.

1 fn main() {

);

// ...

Steven Liatti

Execution time measurements were made with a slightly modified version of Tag Engine: the

main() function was truncated from the launch of the server socket thread and the infinite loop listening

on the events occurring on the tree on

vigil. Thus, the program traverses the tree structure only once and builds the graph and the associated

hash table. This modification was made in order to measure several executions of the program (with

Rust's Duration type) for a given directory to achieve an average time. It is illustrated in Listing 47.

Listing 47 – modified Tag Engine main.rs to measure execution time

12 }

6 TESTS

let new_now = Instant::now(); let elapsed

= new_now.duration_since(now); println!("{}",

elapsed.as_secs() as f64 +

elapsed.subsec_nanos() as f64 * 1e-9);

77

TagFS

6.1 Performance Metrics

10

9

8

5

4

11

7

3

6

2

6 Tests

Machine Translated by Google

553

3’331

Documents

Dropbox

1 arg_list = argv(); 2 filename =

arg_list{1}; 3 data_file =

importdata(filename); 4 data = data_file(3:102); 5 m =

mean(data); 6 fid = fopen(filename, "a"); 7 fprintf(fid,

"%f\n", m); 8 fclose(fid);

— System disk: Samsung 850 EVO Basic 500 GB.

android-studio

tories

1’352 135

8’659

— RAM: 4x4 GB DDR3 1333 MHz.

— Processeur : Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz, boost @ 3.90GHz, x86_64, 4 coeurs, 8 threads.

Directory

5

64’486

Steven Liatti

Music

15’442

13’287

TagFS

Table 6 – Directories used for execution time measurements

15’172

bin

— OS : Linux Mint 18.2 Sonya, kernel 4.15.0-24-generic.

863

Number of files

Android

— Motherboard: Asus Maximus V Formula, Chipset Intel(R) Z77.

Player name

78

9’306

2’377

6 TESTS

The bash script used to perform these 200 executions is shown in Listing 49. It writes for each directory two files

containing the measurements of the 100 executions for the two compiled versions of the program. The last loop of the

script executes the average.m file, found in Listing 48, which averages the 100 measurements. The machine used to

compile and run the measurements has the following hardware and software characteristics (the commands lscpu,

lshw, uname -r and lsb_release -a were used):

Listing 48 - Octave script to calculate run average

112’046

Images

Machine Translated by Google

target/release/tag_engine $entry >> measures/release$name.txt

5 do

23 for entry in measures/*

79

do

name=$(echo $entry | tr / -)

done

24 do

3 iter=100

find $entry -type d | wc -l > measures/debug$name.txt find $entry -type f

| wc -l >> measures/debug$name.txt for i in ‘seq 1 $iter‘

21 done

4 for entry in ~/*

do

The averages obtained are represented in FIG. 14. The y-axis represents the average execution

time of the program. The abscissa axis represents the seven directories used for this test. For each

directory, there is a measure of the program compiled in debug mode (blue bar) and a measure of the

program compiled in release mode (orange bar). Note that the two directories containing the most

files, namely Android and Documents, are those whose execution time is the longest. Overall, the less

entries a directory contains, the less execution time it will take. With two directories equivalent in terms

of entries, the variations that may occur are most certainly due to the specifics of the files contained,

such as their size on disk.

Steven Liatti

6 TESTS

find $entry -type d | wc -l > measures/release$name.txt find $entry -type f |

wc -l >> measures/release$name.txt for i in ‘seq 1 $iter‘

1 #!/bin/bash

done

Listing 49 - Bash script to run 100 runtime measurements

octave average.m $entry

target/debug/tag_engine $entry >> measures/debug$name.txt

26 done

TagFS

7

12

17

22

10

9

16

15

20

25

13

19

2

8

14

11

18

6

Machine Translated by Google

It is interesting to note that the execution time ratio between the unoptimized and the optimized

version can be significant. Figure 15 illustrates these time relationships. We see that the difference

varies between 5.93 for android-studio and 1.33 for Images, generally speaking again the directories

with the most entries have the highest ratios. The Images directory containing few elements, fewer

operations are executed, so it is more difficult to optimize this reduced number of operations during

the execution of the program. The lesson to be learned from these reports is that the Rust compiler is

capable of great code optimizations.

6 TESTS

Steven Liatti 80

TagFS

Figure 14 – Execution time according to the directory and by type of compilation mode

Machine Translated by Google

TagFS

81

6 TESTS

Steven Liatti

Figure 15 – Relationship between execution time in debug and release mode

Machine Translated by Google

7.1.1 Advantages of Rust over C

Listing 50 - Creating an undefined pointer in C

Clever because almost all memory-related errors are caught at compile time.

&data[3]

Rust's main advantage over C is the memory safety guarantee. As long as the code compiles, it

will be safe in terms of memory allocation/deallocation and concurrency (logic errors are still the

responsibility of the programmer, however).

1 fn undefined_pointer() -> &i32 {

Steven Liatti 82

In this subsection, we will discuss the system implementation in Rust rather

4 }

than in C. The advantages are numerous and the disadvantages are acceptable.

4 }

Listing 51 - Creating an undefined pointer in Rust

Another example is unauthorized access to memory. Listings 52 and 53 show a function, written

in C and Rust respectively, that prints an element of an array at an incorrect index to standard output.

In C, "no problem", the function will print this

7 DISCUSSION

He even goes further by being very verbose about the errors that have occurred, often suggesting

the way to solve the problem. What over time have become best practices to know when programming

in C, Rust forces programmers to implement before the code is even compiled. The following code

listings show two examples where Rust behaves "better" than C. Listings 50 and 51 show a function,

written in C and Rust, respectively, that returns an undefined pointer. In C, the detection of the error

would occur at the execution of the program (although according to the C compiler used, a warning,

warning, will be displayed to the programmer), with the famous Segmentation fault. The Rust

equivalent would refuse to compile this code, because of the broken lifetime rule.

1 int* undefined_pointer() { int data[10]

= {114, 117, 115, 116, 105, 115, 98, 101, 115, 116}; return &data[3];

let data = [114, 117, 115, 116, 105, 115, 98, 101, 115, 116];

This guarantee is provided by Rust's compiler, which could be defined as "intelligent".

TagFS

7.1 Rust VS C

3

2

2

3

7 Discussion

Machine Translated by Google

1 fn print_data() {

We can also mention that Rust is sometimes faster than C for certain tasks, or almost as fast.

The Computer Language Benchmarks Game [47] compares Rust and C, C++, Go, and Java one-by-

one on runtimes, amount of memory, and CPU load for a variety of applications. Rust compared to C

and C++ is sometimes faster and often a little behind. Rust compared to Go and Java is still the

fastest. We can conclude that security can literally and figuratively rhyme with speed.

Then come several advantages that are less decisive, but nevertheless very practical in the

everyday life of the programmer. Examples include the great Cargo tool and the crate source available

at crates.io, containing thousands of libraries made and tested by the community. The unit tests of

the program are integrated directly into the language and their execution is facilitated with Cargo. The

standard Rust library is well supplied, especially with collections (vectors, hash tables, etc.). Finally,

if it were necessary to finish, the management of generic types directly included in the language is a

very practical asset.

4 }

Another great advantage of Rust over C is its error handling and the absence of NULLs.

int data[10] = {114, 117, 115, 116, 105, 115, 98, 101, 115, 116}; printf("%d\n", data[10]);

4 }

Listing 53 - Unauthorized access to memory in Rust

7 DISCUSSION

let data = [114, 117, 115, 116, 105, 115, 98, 101, 115, 116]; println!("{}", data[10]);

Steven Liatti

1 void print_data() {

that she finds at this memory address, without complaining. This kind of error is potentially a

vulnerability that can be exploited for malicious purposes. In Rust, this error wouldn't be caught at

compile time, but at least the program would crash on execution (panicked) and the error could be

fixed.

83

Tony Hoare, a computer science researcher, is the inventor of NULL and today calls it his billion-

dollar mistake [48]. NULL allows many unexpected errors, despite the fact that the idea is not bad (it

is convenient to declare a variable containing no value). In Rust, NULL does not exist, instead a very

powerful enumeration is available, Option (see Listing 13). It thus avoids handling empty data.

Listing 52 - Unauthorized access to memory in C

TagFS

3

3

2

2

Machine Translated by Google

crates.io

Rust nevertheless has two defects, more or less disabling depending on the time and the

situation, linked to each other. The first is the language learning curve which can be long and

daunting. Rust is governed by certain binding rules, simple but not easy to pin down in all situations.

This is particularly the case for the rules of ownership, borrowing and references (see subsection

4.1.8), quite unique to Rust. The second defect stems from the first: it is sometimes necessary to

review certain algorithms or data structures that are easily implemented in C or other similar languages. This is notably what happened during the implementation of Tag Engine

and its data structure to contain the tree structure of directories, files and tags (see subsection 7.2 for

more details). Other small flaws can be mentioned, such as the lack of default arguments when

declaring functions or the overloading of methods or functions. These are not defects strictly speaking,

but facilities that it would have been desirable to have.

1 struct Node {

4 };

7.1.2 Disadvantages of Rust compared to C

84

The main problem encountered during this work was the implementation of a tree in Rust for the

needs of Tag Engine. The simple implementation of a tree node in C is similar to that described in

Listing 54.

Steven Liatti

7 DISCUSSION

It is a recursive structure and relatively easy to understand: a node consists of data of a chosen

type and an array of pointers to child nodes. This kind of declaration is impossible in Rust, because

the compiler needs to know the exact size of the data at compile time (avoid infinite recursive

structures). One solution is to wrap the child nodes in a Box -like smart pointer (see chapter 15 of the

book [20]). But another problem will arise when using nodes, because Rust does not allow multiple

mutable references to the same value. To solve this last problem, the use of Rc<T>, or reference

counting. This is another smart pointer, allowing multiple ownerships for a single value. We then meet

with

struct Node** children;

TagFS

Finally, the major obstacle to the mass adoption of the language (like many other new languages) is

the lack of support from a major company (even if Mozilla uses it for its Firefox browser) and the

"laziness " programmers to turn away from C or C++.

Listing 54 – Implementing a tree structure in C

int data; // the type is not important for the example

7.2 Problems encountered

2

3

Machine Translated by Google

|

4 struct Node<T> {

|

|

|

//

previous: Rc<RefCell<Box<Node<T>>>>, //

dynamically checked borrow rules.

|

//

|

|

|

|

2 use std::cell::RefCell;

Needed because ‘Box‘ is immutable.

Needed to create multiple node references.

next: Vec<Rc<RefCell<Box<T>>>>,

// ...

Steven Liatti

// - Reference counted pointer, will be

Not only is this solution not very readable, but it also has the defect of removing all the advantages offered by the Rust

compiler on the constraints of scope and lifetime of variables. A solution that seems to solve all the above problems is described in

Listing 56. It uses an arena, a memory region [50]. Rather than having pointers between nodes of the tree, this solution uses a

collection to store the data (here a vector) and the relations between nodes are held thanks to the identifiers in this same collection

(here the indices of the vector). Thus, the problem of lifetime of values and multiple ownerships is resolved, because the arena is

the sole holder of the data (therefore of the nodes). The nodes remain accessible from outside the arena by keeping their identifiers

in the arena.

//

a nesting of advanced pointers, as in Listing 55, a solution proposed by Rust

^ ̂

|

| //

- The next Node with generic ‘T‘

TagFS

24 }

dropped when every reference is gone.

- A mutable memory location with

//

|

|

|

|

|

85

|

- Heap allocated memory, needed if ‘T‘ is a trait object.

1 use std::rc::Rc;

// // // //

//

data: T,

Leipzig [49] :

|

Listing 55 - Rust node structure with smart pointers - [49]

//

7 DISCUSSION

^ ̂

|

|

//

3

23

16

17

21

14

10

15

12

19

7

13

8

20

22

18

11

5

9

6

Machine Translated by Google

/// The actual data which will be stored within the tree

Listing 56 - Structure of a node in Rust with an arena - [49]

13 }

5 pub struct Node<T> {

pub data: T,

The crate petgraph used to store data for files, directories and tags in a tree structure works like this:

it uses two vectors, one for nodes, the other for arcs, to store data. This crate perfectly met the needs of

the new architecture for indexing files, directories and tags: it provides an implementation of a graph and

allows access to nodes from outside the graph. For more details on this subsection, these various articles

address this issue and give more details on possible solutions [21] [51] [49] [52] [53] [54].

index: help,

3 }

17 }

7 DISCUSSION

nodes: Vec<Node<T>>,

1 pub struct Arena<T> {

15 pub struct NodeId {

Steven Liatti

parent: Option<NodeId>,

previous_sibling: Option<NodeId>, next_sibling:

Option<NodeId>, first_child: Option<NodeId>,

last_child: Option<NodeId>,

86

TagFS

8

7

4

11

6

10

14

16

9

2

12

Machine Translated by Google

The results of the performance measurements carried out in subsection 6.1 show that the initial

traversal of the graph is relatively fast, at least it takes place with very little latency even for a directory

containing more than 15,000 directories and more than 100' 000 files (a running average of two

seconds to scan the whole tree). It is reasonable to say that this operation is among those most

cumbersome for a given tree, the program can therefore be labeled efficient. However, to be

completely sure, it would be necessary to carry out additional tests during longer uses.

— Transformation of Tag Engine into Daemon (a process detached from the parent shell and

which does not print its results on standard output). It could run at OS startup and write its

results and indexes to files.

Steven Liatti

— Create a cache of the last logical requests sent to the server, to speed up the response. The

cache should be cleared if the tree or hashmap changes.

— Integration with a Linux file manager (Nautilus, Nemo, etc.) for handling tags (adding, deleting)

and for executing queries. An alternative would be to create a similar interface in the form of a

web application, for example.

7 DISCUSSION

— Carry out more tests, more global than unit and performance tests.

not perfect, here is a non-exhaustive list of improvements that could be made:

— Management of removable devices and their FS. inotify does not monitor the /media folder the

same as any other directory. It is therefore necessary to be able to detect the connection of a

storage device and add a new watch to the mounted directory.

TagFS

Although the specification was met, the state of the system at render time was not

87

— Ability to add new directory paths to monitor after initial launch of Tag Engine. Currently the

program launches with a single directory path to monitor. This requires modifying the

management of threads and data in Tag Engine. The problem can be partially solved by giving

Tag Engine a directory high enough in the hierarchy to monitor a larger number of files.

7.3 Results and future improvements

Machine Translated by Google

Steven Liatti

Other topics have been studied, such as indexing methods, extended file attributes, or file system

monitoring systems. The limits of extended attributes have been shown (in particular regarding

incompatibility with certain file systems or network shares) and of the inotify notification system,

chosen for this project. Nevertheless, these two technologies, with the association of Rust, made it

possible to surpass existing tag management applications in certain respects. The requested

specifications have been completed and questions about the use of Rust in this type of application

verified. Thanks to this system, the user can now label his personal files without fear of losing them

and can find them easily and quickly using simple logical queries.

8 CONCLUSION

88

This project is the culmination of my studies at hepia, it made me discover a new language full

of potential, taught good programming practices and made me progress in the process of designing

and creating a system application. The whole project is available at this address: https://github.com/

stevenliatti/tagfs.

The two main objectives of this Bachelor project were to study and appropriate the Rust language

and to design an efficient and user friendly tag management engine. Rust is a modern, reliable and

powerful language. Its strengths are as numerous as the new concepts it introduces compared to a

language like C. With an active and serious community, there is the hope that it will be adopted by

more and more developers for many types of applications. Although studying Rust took up a lot of the

time allotted to this work, it was not wasted time. The constraints imposed by Rust should be a

beneficial standard for many languages.

TagFS

8 Conclusion

Machine Translated by Google

https://github.com/stevenliatti/tagfs

[4] Tagsistent. http://www.tagsistant.net/documents-about-tagsistant/0-8-1-howto , March 2017. Accessed

18.05.2018.

Tagsistant 0.8.1 howto.

An in-depth look at windows vista’s virtual fol https://www.techrepublic.com/

article/

[10] Apple team. Os x : Tags help you organize your files. https://support.apple.com/ en-us/HT202754, février

2015. Consulté le 08.05.2018.

89

Accessed on 18.05.2018.

[3] Tagsistant. Tagsistant : semantic filesystem for linux. http://www.tagsistant.net/.

Manage documents

properties. manage-

documents-with-windows-explorer-using-tags-and-file-properties, avril 2015. Consulté le 21.05.2018.

18.05.2018.

windows

[14] John Siracusa. mac os x 10.5 leopard: the ars technica review - fsevents. https://arstechnica.com/gadgets/

2007/10/mac-os-x-10-5/7/ , October 2007. Accessed 08.05.2018.

Accessed on 08.05.2018.

[6] Tag Spaces. Your offline data manager. https://www.tagspaces.org/. Consulted the

with

[12] John Siracusa. Os x 10.9 mavericks: The ars technica review - tags. https://arstechnica.com/gadgets/

2013/10/os-x-10-9/8/ , October 2013. Accessed 08.05.2018.

[5] Andrei Marukovich. Taggedfrog - quick start manual. http://lunarfrog.com/

Smith.

REFERENCES

rer

Accessed on 18.05.2018.

[8] Greg Shultz. ders

technology. an-in-depth-look-

at-windows-vistas-virtual-folders-technology/, tobre 2005. Consulté le 21.05.2018.

explode https://www.petri.com/

[2] Paul Ruane alias oniony. Tmsu. https://tmsu.org/. Accessed on 18.05.2018.

[7] TagSpaces. Organize your data with tags. https://docs.tagspaces.org/tagging.

Steven Liatti

[1] Jean-Francois Dockes. Extended attributes and tag file systems. https://www. lesbonscomptes.com/pages/

tagfs.html, July 2015. Accessed 04.05.2018.

[9] Russell

using tags and file

TagFS

projects/taggedfrog/quickstart. Accessed on 18.05.2018.

[13] John Syracuse. OS X 10.9 Mavericks : The Ars Technica Review - Tags Implementation. https://

artechnica.com/gadgets/2013/10/os-x-10-9/9/, October 2013.

oc

[11] John Siracusa. mac os x 10.4 tiger-spotlight. https://arstechnica.com/gadgets/2005/04/macosx-10-4/9/ , April

2005. Accessed 08.05.2018.

9 References

Machine Translated by Google

http://www.tagsistant.net/documents-about-tagsistant/0-8-1-howto
https://www.techrepublic.com/article/an-in-depth-look-at-windows-vistas-virtual-folders-technology/
https://support.apple.com/en-us/HT202754
https://support.apple.com/en-us/HT202754
http://www.tagsistant.net/
https://www.petri.com/manage-documents-with-windows-explorer-using-tags-and-file-properties
https://arstechnica.com/gadgets/2007/10/mac-os-x-10-5/7/
https://www.tagspaces.org/
https://arstechnica.com/gadgets/2013/10/os-x-10-9/8/
http://lunarfrog.com/projects/taggedfrog/quickstart
https://www.techrepublic.com/article/an-in-depth-look-at-windows-vistas-virtual-folders-technology/
https://www.petri.com/manage-documents-with-windows-explorer-using-tags-and-file-properties
https://tmsu.org/
https://docs.tagspaces.org/tagging
https://www.lesbonscomptes.com/pages/tagfs.html
https://www.lesbonscomptes.com/pages/tagfs.html
http://lunarfrog.com/projects/taggedfrog/quickstart
https://arstechnica.com/gadgets/2013/10/os-x-10-9/9/
https://arstechnica.com/gadgets/2005/04/macosx-10-4/9/

[20] Rust Team. The rust programming language, 2nd edition. https://doc.rust-lang. org/stable/book/

second-edition/. Consulté le 25.04.2018.

[18] The Rust community crate registry. https://crates.io/. Accessed on 05.05.2018. [19] r/rust. https://

www.reddit.com/r/rust/. Accessed on 05.05.2018.

18.06.2018.

[32] inotify - monitoring filesystem events. http://man7.org/linux/man-pages/man7/

channels. https://bit.ly/2AbJELg, November 2017. Accessed 18.06.2018.

Accessed on 23.06.2018.

[31] Jean-Francois Dockes. Extended attributes : the good, the not so good, the bad. https://

www.lesbonscomptes.com/pages/extattrs.html, juillet 2014. Consulté le

[23] The Cargo Book. https://doc.rust-lang.org/cargo/. Accessed on 05.05.2018.

2016/06/15/wsl-file-system-support/, June 2016. Accessed 21.05.2018.

90 Steven Liatti

25.04.2018.

[15] Wikipedia. Big O notation. https://en.wikipedia.org/wiki/Big_O_notation, June

[28] Jack Hammons. Wsl file system support. https://blogs.msdn.microsoft.com/wsl/

[33] Denis Dordoigne. Exploiting inotify is simple. https://linuxfr.org/news/

[21] Computational Geometry Lab. Learning rust with entirely too many linked lists. http: //cglab.ca/

~abeinges/blah/too-many-lists/book/. Consulté le 28.04.2018.

[27] Andreas Gruenbacher. attr(5) - linux man page. https://linux.die.net/man/5/attr.

REFERENCES

04.05.2018.

[17] Jean-François Heche. Graphs & Networks. February 2012. Accessed 13.06.2018.

[25] Wikipedia. ext4. https://en.wikipedia.org/wiki/Ext4, may 2018. Consulted the

[29] John Siracusa. Mac os x 10.4 tiger - extended attributes. https://arstechnica.com/ gadgets/2005/04/

macosx-10-4/7/, avril 2005. Consulté le 08.05.2018. [30] freedesktop.org. Guidelines for extended

attributes. https://www.freedesktop.org/ wiki/CommonExtendedAttributes/, mai 2018. Consulté le

04.05.2018.

[16] Wikipedia. A directory represented as a hash table. https://en. wikipedia.org/wiki/Hash_table#/

media/File:HASHTB08.svg, June 2015.

[24] Marcin Baraniecki. Multithreading in rust with mpsc (multi-producer, single consumer)

2018. Accessed 2018-06-18.

Accessed on 09.05.2018.

TagFS

[22] Manuel Hoffman. Are we (i)de yet? https://areweideyet.com/. Consulted the

exploit-inotify-it-is-simple, November 2014. Accessed 13.06.2018.

[26] Jeffrey B. Layton. Extended file attributes rock! http://www.linux-mag.com/id/8741/ , June 2011.

Accessed 09.05.2018.

inotify.7.html, September 2017. Accessed 13.06.2018.

Machine Translated by Google

https://doc.rust-lang.org/stable/book/second-edition/
https://doc.rust-lang.org/stable/book/second-edition/
https://crates.io/
https://www.reddit.com/r/rust/
http://man7.org/linux/man-pages/man7/inotify.7.html
https://bit.ly/2AbJELg
https://www.lesbonscomptes.com/pages/extattrs.html
https://doc.rust-lang.org/cargo/
https://blogs.msdn.microsoft.com/wsl/2016/06/15/wsl-file-system-support/
https://en.wikipedia.org/wiki/Big_O_notation
https://blogs.msdn.microsoft.com/wsl/2016/06/15/wsl-file-system-support/
https://linuxfr.org/news/exploiter-inotify-c-est-simple
http://cglab.ca/~abeinges/blah/too-many-lists/book/
http://cglab.ca/~abeinges/blah/too-many-lists/book/
https://linux.die.net/man/5/attr
https://en.wikipedia.org/wiki/Ext4
https://arstechnica.com/gadgets/2005/04/macosx-10-4/7/
https://arstechnica.com/gadgets/2005/04/macosx-10-4/7/
https://www.freedesktop.org/wiki/CommonExtendedAttributes/
https://www.freedesktop.org/wiki/CommonExtendedAttributes/
https://fr.wikipedia.org/wiki/Table_de_hachage#/media/File:HASHTB08.svg
https://fr.wikipedia.org/wiki/Table_de_hachage#/media/File:HASHTB08.svg
https://areweideyet.com/
https://linuxfr.org/news/exploiter-inotify-c-est-simple
http://www.linux-mag.com/id/8741/
http://man7.org/linux/man-pages/man7/inotify.7.html

[37] socket - create an endpoint for communication. http://man7.org/linux/man-pages/ man2/

socket.2.html, septembre 2017. Consulté le 13.06.2018.

[39] Steven Allen. xattr. https://crates.io/crates/xattr, July 2017. Accessed on

[43] Daniel Faust, Felix Saparelli, Joe Wilm, George Israel Peña, Michael Maurizi, and Pierre Baillet.

notify. https://crates.io/crates/notify, November 2017. Accessed 24.05.2018.

[46] Welcome to graphviz. http://www.graphviz.org/. Accessed on 08.06.2018.

[38] Kevin Knapp. clap. https://crates.io/crates/clap, March 2018. Accessed on

[44] Wikipedia. Reverse Polish notation. https://en.wikipedia.org/wiki/Reverse_Polish_notation , June

2018. Accessed 2018-06-29.

91

on 24.05.2018.

[36] fanotify - monitoring filesystem events. http://man7.org/linux/man-pages/man7/

[41] Andrew Gallant. walkdir. https://crates.io/crates/walkdir, February 2018. Accessed

fanotify.7.html, September 2017. Accessed 13.06.2018.

[42] petgraph. https://crates.io/crates/petgraph, March 2018. Accessed 24.05.2018.

[49] Rust Leipzig. Idiomatic tree and graph like structures in rust. https://rust-leipzig. github.io/

architecture/2016/12/20/idiomatic-trees-in-rust/, December 2016. Accessed 08.06.2018.

[50] Wikipedia. Region-based memory management. https://en.wikipedia.org/wiki/ Region-

based_memory_management, juin 2018. Consulté le 18.06.2018.

Steven Liatti

TagFS

14.05.2018.

[47] Rust versus C gcc fastest programs. https://benchmarksgame-team.pages.debian. net/

benchmarksgame/faster/rust.html. Consulté le 03.07.2018.

[35] Michael Kerrisk. Filesystem notification, part 2: A deeper investigation of inotify. https://lwn.net/

Articles/605128/ , July 2014. Accessed 13.06.2018.

[34] Michael Kerrisk. Filesystem notification, part 1 : An overview of dnotify and inotify. https://lwn.net/

Articles/604686/, juillet 2014. Consulté le 13.06.2018.

[40] Kevin Knapp. 01a quick example.rs. https://github.com/kbknapp/clap-rs/blob/ master/examples/

01a_quick_example.rs, mars 2018. Consulté le 29.06.2018.

[45] Premshree Pillai. Infix - Postfix. http://scriptasylum.com/tutorials/infix_postfix/algorithms/infix-

postfix/ , 2002. Accessed 29.06.2018.

[48] Tony Hoare. Null references : The billion dollar mistake. https://www.infoq.com/ presentations/Null-

References-The-Billion-Dollar-Mistake-Tony-Hoare, août 2009. Consulté le 03.07.2018.

14.05.2018.

REFERENCES

Machine Translated by Google

http://man7.org/linux/man-pages/man2/socket.2.html
http://man7.org/linux/man-pages/man2/socket.2.html
https://crates.io/crates/xattr
https://crates.io/crates/notify
http://www.graphviz.org/
https://crates.io/crates/clap
https://en.wikipedia.org/wiki/Reverse_Polish_notation
http://man7.org/linux/man-pages/man7/fanotify.7.html
https://crates.io/crates/walkdir
http://man7.org/linux/man-pages/man7/fanotify.7.html
https://crates.io/crates/petgraph
https://rust-leipzig.github.io/architecture/2016/12/20/idiomatic-trees-in-rust/
https://rust-leipzig.github.io/architecture/2016/12/20/idiomatic-trees-in-rust/
https://en.wikipedia.org/wiki/Region-based_memory_management
https://en.wikipedia.org/wiki/Region-based_memory_management
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/rust.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/rust.html
https://lwn.net/Articles/605128/
https://lwn.net/Articles/604686/
https://github.com/kbknapp/clap-rs/blob/master/examples/01a_quick_example.rs
https://github.com/kbknapp/clap-rs/blob/master/examples/01a_quick_example.rs
http://scriptasylum.com/tutorials/infix_postfix/algorithms/infix-postfix/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

TagFS

[54] Matthias Endler. Of boxes and trees - smart pointers in rust. https://matthias-endler.de/2017/

boxes-and-trees/ , August 2017. Accessed 08.06.2018.

REFERENCES

[53] Simon Sapin. Borrow cycles in rust: arenas vs. drop-checking. https://exyr.org/2018/rust-arenas-

vs-dropck/ , February 2018. Accessed 08.06.2018.

[52] Russell Cohen. Why writing a linked list in (safe) rust is so damned hard. https://rcoh. me/posts/

rust-linked-list-basically-impossible/, février 2018. Consulté le 08.06.2018.

92

[51] Nick Cameron. Graphs and arena allocation. https://aminb.gitbooks.io/ rust-for-c/content/graphs/

index.html, juin 2015. Consulté le 08.06.2018.

Steven Liatti

Machine Translated by Google

https://matthias-endler.de/2017/boxes-and-trees/
https://exyr.org/2018/rust-arenas-vs-dropck/
https://rcoh.me/posts/rust-linked-list-basically-impossible/
https://rcoh.me/posts/rust-linked-list-basically-impossible/
https://aminb.gitbooks.io/rust-for-c/content/graphs/index.html
https://aminb.gitbooks.io/rust-for-c/content/graphs/index.html

