Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time

Editing Conditional Radiance Fields

Project | Paper | Video | Demo

Editing Conditional Radiance Fields
Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang, Jun-Yan Zhu, Bryan Russell
MIT, Adobe Research, CMU
ICCV 2021.

Editing Results

Color Editing

Our method propagates sparse 2D user scribbles to fill an object region, rendering the edit consistently across views. The user provides a color, a foreground scribble for the region to change, and a background scribble for regions to keep unchanged. To conduct the edit, we optimize a reconstruction-based loss to encourage the model to change the color at the foreground scribble, but maintain the color on the background scribbles.

Shape Editing

Our method propagates 2D user edits to remove or add an object part, propagating the 2D edit consistently across views. For shape removal, the user scribbles over a region of the object to remove. To conduct the removal, we optimize both a reconstruction loss and a density-based loss, encouraging the model to remove density at the scribbled regions. For shape addition, the user selects an object part to paste into the instance. To conduct the addition, we optimize a reconstruction loss similar to the one used for color editing.

Color and Shape Transfer

Our method can transfer shape and color between object instances simply by swapping the color and shape codes between instances.

Editing a Real Image

Our method is able to render novel views of the real object instance and conduct color and shape editing on the instance.


To propagate sparse 2D user scribbles to novel views, we learn a rich prior of plausible-looking objects by training a single radiance field over several object instances. Our architecture builds on NeRF in two ways. First, we introduce shape and color codes for each instance, allowing a single radiance field to represent multiple object instances. Second, we introduce an instance independent shape branch, which learns a generic representation of the object category. Due to our modular architecture design, only a few components of our network need to be modified during editing to effectively execute the user edit.

Getting Started


  • Clone this repo:
git clone
cd editnerf
  • Install the dependencies
conda create --name editnerf python=3.6
conda activate editnerf
conda install --file requirements.txt
pip install lpips imageio-ffmpeg
cd torchsearchsorted
pip install .
cd ../
  • Obtain pre-trained models and editing examples:
bash scripts/
  • Optionally, download the relevant datasets. This step is required to evaluate edits and to train/test a conditional radiance field:
bash scripts/

Our code is tested on using Python 3.6, PyTorch 1.3.1, and CUDA 10.1.

Editing a Conditional Radiance Field

To conduct your own edits, please check out our demo. Alternatively, you can run the demo locally using jupyter notebook and using the notebook ui/editing.ipynb.

To execute the edits used in our paper, please run:

bash scripts/

To evaluate the edits used in our paper, please run:

bash scripts/

Feel free to check out additional editing examples, which can be run via scripts/

Learning a Conditional Radiance Field


To train a conditional radiance field on the PhotoShapes dataset, please run:

python --config configs/photoshapes/config.txt --skip_loading

The --skip_loading flag tells the script not to load the pretrained weights during training.

To train on other datasets, or use a different model architecture, you can replace the config file with your own. Feel free to check out example config files under configs/. For additional training options, please visit


To render train and test views from a conditional radiance field, you can run:

python --config config-file --render_test --render_train

where config-file is the same config file used during training.

Then, to run evaluation metrics on the rendered samples, you can run:

python utils/ --expdir path-to-log-dir

To evaluate the conditional radiance fields used in our paper, please run:

bash scripts/

Training and Editing Your Own Models

To train a model on a different dataset, first setup the directory to store the dataset. The structure should be


Each instance subdirectory should contain transforms_train.json, transforms_test.json, and transforms_val.json. Each of these .json files should contain the camera focal, as well as the camera extrinsics for each image. Please refer to data/photoshapes/shape09135_rank02/transforms_train.json for an example. instances.txt should contain a list of the instance names.

Then you can run python --config config-file to train a conditional radiance field, and evaluate it using the instructions in the above section.

To edit the conditional radiance field, first make a directory in ui which will contain all the relevant data for the model. Then, copy over the config file, model weights, camera intrinsics, and camera extrinsics (last three are automatically saved under logs/). The directory structure should be


Please refer to ui/photoshapes for an example.

Editing a Real Image

To edit a real image, we first decide on a base model to finetune to the real image. In our experiments, we use the Dosovitskiy chairs model. Then, visually estimate the pose of the image. One way to do this is by finding the nearest neighbor pose in the training set of the base model. Then, construct the dataset folder containing the .json files mentioned in the above section.

The directory structure should be


As an example, please refer to data/real_chairs/shape00001_charlton.

To finetune the radiance field on this image, you can run

python --config base-config --real_image_dir data-dir --savedir savedir --n_iters_code_only 1000 --style_optimizer lbfgs

where base-config is the model to fit, data_dir is the directory containing the real images, and savedir is where you want to save the results. The last two flags tell the training script to first finetune the shape and color codes using LBFGS. Please refer to scripts/ for an example.

To edit this instance, copy the finetuned model weights from savedir and to a subdirectory of the base model in ui. Then, copy over the camera intrinsics and camera extrinsics (located under logs/). The directory structure should be


Please refer to ui/dosovitskiy_chairs/real_chair for an example.


This codebase is heavily based on the nerf-pytorch code base, and our user interface is heavily based on the GAN rewriting interface. We also use LBFGS code from PyTorch-LBFGS, SSIM code from pytorch-ssim, and job scheduling code from the GAN seeing codebase.

We thank all authors for the wonderful code!


If you use this code for your research, please cite the following work.

      title={Editing Conditional Radiance Fields},
      author={Steven Liu and Xiuming Zhang and Zhoutong Zhang and Richard Zhang and Jun-Yan Zhu and Bryan Russell},