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Universidad Católica de Murcia

Murcia, Spain
jlabellan@ucam.edu

Manuel E. Acacio
Universidad de Murcia

Murcia, Spain
meacacio@um.es

Tushar Krishna
Georgia Institute of Technology

Atlanta, USA
tushar@ece.gatech.edu

Abstract—The design of specialized architectures for accelerating the
inference procedure of Deep Neural Networks (DNNs) is a booming area
of research nowadays. While first-generation rigid accelerator proposals
used simple fixed dataflows tailored for dense DNNs, more recent
architectures have argued for flexibility to efficiently support a wide
variety of layer types, dimensions, and sparsity. As the complexity of
these accelerators grows, the analytical models currently being used for
design-space exploration are unable to capture execution-time subtleties,
leading to inexact results in many cases as we demonstrate. This opens
up a need for cycle-level simulation tools to allow for fast and accurate
design-space exploration of DNN accelerators, and rapid quantification
of the efficacy of architectural enhancements during the early stages of
a design. To this end, we present STONNE (Simulation TOol of Neural
Network Engines), a cycle-level microarchitectural simulation framework
that can plug into any high-level DNN framework as an accelerator device
and perform full-model evaluation (i.e. we are able to simulate real,
complete, unmodified DNN models) of state-of-the-art rigid and flexible
DNN accelerators, both with and without sparsity support. As a proof
of concept, we use STONNE in three use cases: i) a direct comparison
of three dominant inference accelerators using real DNN models; ii)
back-end extensions and iii) front-end extensions of the simulator to
showcase the capability of STONNE to rapidly and precisely evaluate
data-dependent optimizations.

I. INTRODUCTION

Deep Neural Networks (DNNs) constitute nowadays a promising
breakthrough for a large number of artificial intelligence (AI) appli-
cations [1]. The fact that their inference phase must be primarily
done in-situ has paved the way for the development of a plethora
of accelerator architectures so as to maximize performance per watt
while meeting latency and energy-efficiency demands ([2], [3], [4],
[5], [6], [7], [8], [9] are a few examples). The key behind all of these
recent architectures has been the capture of the different patterns of
data reuse in what is known as a dataflow [10], [11] and the use
of data-dependent optimizations to reduce computation and memory
footprint [6].

First-generation rigid DNN inference accelerators ([2], [3], [12],
[7]) focused their designs on fixed-size clusters of multipliers-and-
accumulate units interconnected by means of a fixed tightly-integrated
on-chip network fabric specifically tailored to efficiently support a
particular dataflow. For example, the Google TPUv1 [2] is built
by interconnecting 256×256 Multiply-Accumulate (MAC) units to
a tightly-coupled 2D grid and supports a weight-stationary dataflow,
while ShiDianNao [12] groups 8×8 MAC units supporting an output-
stationary dataflow.

Unfortunately, as DNN models evolve at a rapid pace, these fixed
designs fail to adapt well to the great diversity of layer types and
dimensions in contemporary proposals. Table I shows the seven DNN
models considered in this work. These models fall into three different
application domains that mostly cover the diversity of machine
learning models in the MLPerf benchmark suite [13], and represent
different design tradeoffs for accuracy, memory requirements and

Domain DNN Model Sparsity Dominant Layer Types

Image
Classification

Mobilenets-V1 (M) [15] 75% Factorized Convolution (FC)
Linear (L)

Squeezenet (S) [16] 70% Squeeze Convolution (SC)
Expand Convolution (EC)

Alexnet (A) [17] 78% Convolution (C)
Linear (L)

Resnets-50 (R) [18] 89% Residual Function (RF)
Convolution (C)

VGG-16 (V) [19] 90% Convolution (C)
Linear (L)

Object
Detection SSD-Mobilenets (S-M) [20] 75% Factorized Convolution (FC)

Linear (L)
Language
Processing BERT (B) [21] 60% Transformer (TR)

Linear (L)

TABLE I: Contemporary DNN models explored in this work.a

aImageNet [22], COCO [23] and squad-1.1 [24] dataset have been used to train the
image classification, object detection and language processing models, respectively.

computational complexity. From the data in this table, we can high-
light two main sources of inefficiency in terms of performance and
energy that are inherent to these first-generation DNN accelerators:
i) Wide range of DNN types: DNN models are continuously evolving
featuring different sizes and types of layers (e.g., the fourth column in
Table I), hence leading to varying computing demands; ii) Sparsity:
Modern DNN workloads exhibit different degrees of weight and input
sparsity due to both network pruning and the use of the non-linear
activation functions such as ReLU, respectively. Table I shows the
significant state-of-the-art average weight sparsity ratio (from 60% to
90%) after applying an unstructured weight pruning approach similar
to that described by Zhu et al. [14].

Exploiting this large diversity in computing demands makes rigid
DNN accelerators, which are based on fixed on-chip topologies,
highly ineffective, leading to poor scalability, under-utilization of the
computing resources, and low energy efficiency [8], [9].

To overcome these limitations, recent proposals such as
FlexFlow [5], MAERI [8] and SIGMA [9] advocate using flexible
DNN accelerator fabrics, which can be reconfigured to efficiently map
different dataflows and dot product partitions through the creation of
dynamic-size clusters (i.e., a set of multipliers computing the same
output) in the same hardware substrate. Of course, this flexibility
comes at the cost of increased architectural complexity that urges
for a more exhaustive design-space exploration for fine tuning before
building the particular ASIC-based or FPGA-based DNN accelerator.

Additionally, other works are exploring data-dependent optimiza-
tions in DNN accelerators that try to reduce computation and memory
footprint by exploiting hardware optimizations based on the input
data. For example, SNAPEA [6] implements a data-dependent op-
timization that leverages the fact that there are no negative values
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in the input values of a Convolutional Neural Network (CNN). This
approach statically re-orders at compile time the weights according
to their signs, and periodically performs in hardware a single-bit sign
check on the partial sum during the execution. Once the partial sum
drops below zero, the rest of the computations are cut off, since
the output value will inevitably be zero after applying the typical
ReLU activation function in CNNs. In these cases, it is crucial to
get access to the precise data values that will be used during the
inference procedure.

Microarchitectural simulators have been extensively used during
the design process of CPU and GPU architectures ([25], [26], [27],
[28], [29], [30] are just a few examples), albeit as we explain in
Section II, most recent efforts have focused on using analytical
models to describe an accelerator design by means of simple yet
insightful formulas. However, as we also demonstrate in Section II,
contemporary analytical models, while very useful for exploring
Pareto-optimal accelerator parameters [11], [31] lag far behind in
timing accuracy when modeling more complex flexible architectures,
and when running non-trivial computation (e.g., sparse computation
or DNN layers that do not map well onto the accelerator substrate and
lead to compute under-utilization) or data-dependent optimizations.
In these cases, analytical models are not able to capture performance
bottlenecks or unexpected behaviors that may occur during a real
DNN full-model execution.

To the best of our knowledge, there is still no detailed, cycle-
level, open-source microarchitectural simulator for extensive and
accurate design-space exploration of DNN inference accelerators
(further details are given in Section II and are summarized in
Table II). To bridge this gap, in this work we present STONNE
(which stands for Simulation TOol of Neural Network Engines),
the first attempt to derive a cycle-level, highly-modular and highly-
extensible simulator for DNN inference accelerator microarchitec-
tural exploration1. STONNE builds on the observation that most
current DNN accelerator architectures can be logically organized
as three configurable on-chip network fabrics (distribution network,
multiplier network, and reduction network) and the corresponding
memory controller and buffers, and provides an easily expandable
and configurable set of microarchitecture modules (for buffers, on-
chip data delivery and memory controllers) that, conveniently selected
and combined, can faithfully simulate both rigid DNN accelerators
(e.g., the Google TPU [2]) and flexible DNN accelerators (e.g.,
MAERI [8] or FlexFlow [5]), including those exploiting sparsity
(e.g., SIGMA [9]). Additionally, and unlike prior tools, STONNE is
directly integrated with the widely used PyTorch DL framework [32]
as an accelerator device, which enables cycle-level simulation of
complete DNN models and precise evaluation of data-dependent opti-
mizations used in a plethora of DNN accelerators (e.g. SNAPEA [6]).

We see the following contributions in this work:

• We demonstrate the value of cycle-level simulation for accurate
design-space exploration of DNN accelerators (Section II). Par-
ticularly, we show that a state-of-the-art analytical model can
underestimate the number of clock cycles for certain DNN layers
by more than 400%.

• We present (Sections III and IV) and validate (Section V)
STONNE2, the first simulator, to the best of our knowledge, that
is connected as an accelerator device with a contemporary DL
framework (PyTorch [32]), and enables cycle-level microarchi-

1Support of training procedures in STONNE is part of our ongoing work.
2The STONNE Simulator can be found here: https://github.com/stonne-

simulator/stonne.

Cycle Architecture Sparsity FullModel DataDep
Level Type Support Eval Opt

MAERI BSV D Flexible 7 7 7

SIGMA RTL D Flexible D 7 7
SCALE-Sim 7 Rigid 7 7 7
MAESTRO
TimeLoop 7 Both 7 7 7

DNNSim 7 Rigid D 7 7

SMAUG D Rigid 7 D 7

STONNE D Both D D D
TABLE II: State-of-the-art Simulators for DNN Accelerators.

tectural simulation of inference accelerators (with both dense and
sparse computation support) running complete DNN models.

• We demonstrate the usefulness, versatility and capability of
STONNE via three diverse use cases. In the first one, we perform
a direct comparison between TPU, MAERI and SIGMA type
inference architectures running the seven DNN models shown
in Table I. In the other two use cases, we demonstrate the
capacity of STONNE to be extended and to model data-dependent
optimizations. Particularly, the second use case considers the
modification of the back-end of the simulator by implementing
SNAPEA [6], whereas the third use case analyzes the potential of
static filter scheduling in DNN sparse accelerators, which entails
modifications to STONNE’s front-end.

II. MOTIVATION AND RELATED WORK

Table II shows a qualitative comparison of STONNE with respect
to contemporary publicly available tools for design-space exploration
of DNN inference accelerators. For the comparison, we consider five
desirable features that a DNN inference simulator should meet: 1)
cycle-level simulation; 2) support for both rigid and flexible DNN
accelerator architectures; 3) support for sparse executions; 4) ability
to perform complete evaluations of deep learning models; and 5)
ability to implement and evaluate data-dependent optimizations.

Analytical Modeling. SCALE-Sim [33], MAESTRO [11],
TimeLoop [31] and DNNSim [34] have recently been proposed as
frameworks that enable the analysis of different dataflows in DNN
architectures. These tools are very powerful for fast exploration of
high-level architectural details, as they are based on analytical models
that calculate the degree of data reuse and computations using simple
equations. These types of simulators work accurately when it comes
to rigid architectures as they are simple enough to be represented by
a set of formulas. However, when the complexity of the accelerator
grows and/or the computation does not follow regular patterns, these
models fail to faithful capture the exact behavior of the architecture.

Figure 1 shows this fact quantitatively. First, SCALE-Sim only
models simple rigid architectures (e.g., TPU-like systolic arrays)
and do not have support to handle sparsity. Figure 1a shows the
number of cycles obtained with this analytical model and with the
cycle-level execution model implemented in STONNE after running
eight different representative layers (Squeeze, Expand, Factorized and
Regular Convolutions – SC, EC, FC, C; Linear – L; and Transformers
– TR) extracted from Squeezenet (S), Resnets-50 (R), Mobilenets
(M) and BERT (B). We have configured both models to simulate
an Output-Stationary systolic array varying the size of the array of
processing elements (PEs) from 16× 16 to 64× 64. As we can see,
we obtain for the three configurations almost the same number of
cycles for both alternatives, demonstrating that analytical models are
valuable tools when it comes to rigid DNN accelerator architectures.
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(a) Rigid TPU varying array sizes.
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(b) Flexible MAERI varying bandwidth (BW).
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(c) Flexible SIGMA varying sparsity (%).

Fig. 1: Runtime for 8 DNN layers run on a simulated DNN inference accelerator using STONNE (ST) and an analytical model (AM). We
use the following notation when plotting the results: X-Y, where X is the DNN model and Y is the layer type.

Contrarily, we have observed that analytical models fail to faith-
fully capture microarchitectural details of flexible DNN accelerator
architectures, and therefore, are not appropriate to identify many
of the bottlenecks or unexpected behaviors that may occur during
a real DNN full-model execution. To demonstrate this claim, we
perform a set of experiments for a 128-multiplier flexible dense
accelerator simulating MAERI [8], using the detailed analytical
model provided by the authors of the MAERI paper [8]. Figure 1b
plots the number of cycles reported by both STONNE and the
analytical model for different global buffer bandwidth (i.e., number of
elements that the global buffer can deliver per cycle to the processing
elements) configurations. In both cases we modify the parameter that
controls the bandwidth to consider 128 (full bandwidth), 64 and 32
elements/cycle. We use the same layers as before. As we can see,
the analytical model perfectly matches the performance obtained with
STONNE when there is full bandwidth (average difference of 1.03%),
as this ideal case can be easily represented by a set of mathematical
formulas. However, as the bandwidth decreases, STONNE begins to
report a much higher number of cycles. This is due to the ability of
a cycle-level simulator like STONNE to faithfully capture the stalls
produced in the architectural pipeline and that arise as a result of
the increasing number of conflicts in the MAERI’s distribution and
reduction networks. The difference between the results reported by
STONNE and the analytical model for 32 elements/cycle increases
up to 400% (see M-FC in Figure 1b), alerting about the important
limitations of the analytical models.

Furthermore, we also observe that an analytical model is not
capable of accurately representing DNN sparse executions. Figure 1c
shows the same executions as before, but this time we have configured
STONNE to model a sparse accelerator like SIGMA [9]. Again, we
compare the results against the analytical model provided by the
authors of SIGMA [9]. This time, we assume full bandwidth and
variable sparsity ratio of the matrices between 0% and 90%. In this
case, we also observe a perfect match between both STONNE and
the analytical model when the sparsity ratio is 0%, but this similarity
begins to diverge as the sparsity ratio increases (diverging up to
92% for a sparsity ratio of 90%). The reason for this difference is
that the actual distribution of zeros in the matrices, which affects
the cluster sizes, and in the end, the performance obtained by the
architecture, cannot be modeled analytically. Instead, cycle-level, full-
model evaluations with real weight values are needed to capture it.

Cycle-level Simulation. Among all the alternatives, only the
MAERI BSV [35], SIGMA RTL [36] implementations and
SMAUG [37] claim to model flexible accelerator architectures with
cycle-level precision. However, none of them really allows for effi-
cient design-space exploration and rapid prototyping. MAERI BSV

and SIGMA RTL are just two limited hardware implementations in
Bluespec HDL and Verilog, respectively, written to demonstrate the
effectiveness of these two flexible architectures. Hence, they are not
prototypes adapted to be extended or to carry out the inference proce-
dure of a complete DNN model or perform design-space exploration.
Although SMAUG is aimed to efficiently support full-model simula-
tion of flexible architectures, actually this flexibility only means that
it is able to execute any layer with any tile configuration mapping.
However, the architectures currently being supported are a systolic
array and the NVIDIA Deep Learning Accelerator (NVDLA), which
cannot be considered flexible accelerators. Besides, since SMAUG
is a trace-based simulator, it is unable to run whole modern DNN
models, and therefore, has to resort to a sampling approach, which
impedes its use for real full-model evaluations or examine data-
dependent architectural optimizations. STONNE addresses all the
above shortcomings.

III. STONNE FRAMEWORK

STONNE is a cycle-level microarchitectural simulator for DNN
inference accelerators. STONNE is open-sourced under the terms
of the MIT license. To allow for full-model evaluations, STONNE
is connected with a Deep Learning (DL) framework (PyTorch [32]
and Caffe [38] DL frameworks in the current version). Therefore,
STONNE can fully execute any dense and sparse DNN model sup-
ported by the DL framework that uses as its front-end. The simulator
has been written entirely in C++, following the well-known GRASP
and SOLID programming principles of object-oriented design [39].
This has simplified its development and makes it easier the implemen-
tation of any kind of DNN inference accelerator microarchitecture,
tile configuration mapping and dataflow.

Figure 2(a) shows a high-level view of STONNE with its three
major modules for full-model simulation flows.

Simulation platform: This constitutes the principal block (see the
central block in Figure 2(a)), since it includes the implementation
of the simulated DNN accelerators (i.e., Simulation Engine)
whose different internal microarchitecture modules allow to compose
and cycle-by-cycle simulate both rigid and flexible DNN accelerators.
These modules are further described in Section IV. The composition
of each accelerator (i.e., the selection of the microarchitecture mod-
ules) is defined by the user through a hardware configuration file
given by the input module. These modules are configured through
the Configuration Unit at runtime according to a set of signals
generated by the Mapper based on the configured microarchitectural
modules and the DNN layer type and shape to be executed.

The simulation platform is interfaced by means of a set of coarse-
grained instructions called the STONNE API (Table III). This API
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1: import torch
2: import torch.nn as nn
3: import torch.nn.functional as F
4:
5: class My_DNN(nn.Module):
6:   def __init__(self):
7:     super().__init__()
8:     self.conv = nn.conv2d(3, 64, 3)
9:     self.max = nn.MaxPool2d(kernel_size=3)
10:   self.fc = nn.Linear(64, 32)
11: def forward(self, x, y):
12:   x = self.conv(x) #on cpu
13:   x = self.max(x) #on cpu
14:   x = self.fc(x) #on cpu
15:   x = F.sparse_mm(x, y) #on cpu
16:   x = F.log_softmax(x, dim=1) #on cpu
17:   return x

Native PyTorch code run on CPU

1: import torch
2: import torch.nn as nn
3: import torch.nn.functional as F
4: 
5: class My_DNN(nn.Module):
6:   def __init__(self):
7:      super().__init__()
8:      self.conv = nn.Simulatedconv2d(3, 64, 3, conf='stonne_hw.cfg')
9:      self.max = nn.MaxPool2d(kernel_size=3, conf='stonne_hw.cfg')
10:    self.fc = nn.Linear(64, 32, conf='stonne_hw.cfg')
11:  def forward(self, x, y):
12:     x = self.conv(x) #simulated
13:     x = self.max(x) #simulated
14:     x = self.fc(x) #simulated
15:     x = F.simulated_sparse_mm(x,y,conf='stonne_hw.cfg')#simulated
16:     x = F.log_softmax(x, dim=1) #on cpu
17:     return x

Modified PyTorch code run on STONNE

d)

Fig. 2: a) STONNE framework. b) DNN simulation example. c) Native PyTorch code for CPU. d) Modified PyTorch code for STONNE.

Instruction Description
CreateInstance Creates an instance of STONNE.
ConfigureCONV Configures the accelerator to run a convolution operation.
ConfigureLinear Configures the accelerator to run a fully-connected layer.
ConfigureDMM Configures the accelerator to run a matrix multiplication.

ConfigureSpMM Configures the accelerator to run a sparse matrix
multiplication.

ConfigureMaxPool Configures the accelerator to run a max pooling layer.

ConfigureData Configure weights, inputs and outputs addresses from the CPU
to the accelerator memory.

RunOperation Launches the simulation according to the current configuration
of the architecture.

TABLE III: STONNE API Instruction Set.

is the manner in which the input module (i.e., the DL framework)
can interact with the simulated accelerator, configuring its simulation
engine according to the user configuration file, loading layer and
tile parameters, and configuring the weights and the inputs addresses
in the main memory. The STONNE API can be easily extended to
support new instructions.

Input Module: Due to the flexibility that the STONNE API pro-
vides, the simulator can be fed easily using a standard DL framework.
To this end, we have modified the PyTorch DL framework3 (see the
left block in Figure 2(a)) to connect it to the simulator and to make it
able to run an instance of the Simulation Engine transparently
to the user. This way, a PyTorch user just needs to select the typical
.pb file with the weights, choose the inputs (e.g., a set of images
or sentences) and briefly modify each DNN model to include the
path of the hardware configuration file with the parameters of the
accelerator to simulate, and the tile configuration for every layer.
Furthermore, since PyTorch requires a more complicated installation
and use, apart from this mode of execution, we have also enabled
the STONNE User Interface. This is basically a tool inside
STONNE in which the user is presented with a prompt and a set
of well-defined commands to load any layer and tile parameters onto
a selected instance of the simulator, and run it with random weights
and input values. This allows for faster executions, facilitating rapid
prototyping and debugging.

Output module: Once a simulation for a certain layer has been
completed, this module is used for reporting simulation statistics
such as performance, compute unit utilization, and activity counts
of different components such as wires, FIFOs or SRAM usage (i.e.,
number of accesses). In particular, STONNE reports two different
output files: First, a general file in json format that includes a
summary of the statistics and facilitates their processing through
user-created scripts; Second, a counter file written in a customized

3Other DL frameworks, such as Tensorflow, can be easily integrated with STONNE
using the same STONNE API philosophy.

format which contains the activity counts for each component of the
architecture (e.g., multiplier, wire, adder, etc). From these activity
counts, the output module is able to report the amount of energy
consumed by the simulated architecture. To do so, STONNE includes
a script that given the counter file and a table-based energy model
similar to Accelergy [40], computes the total consumed energy
taking into account the cycle-level activity stats for each module
and the corresponding energy costs. Similarly, the area numbers are
obtained by employing a table-based model, calculating the final area
based on the architectural parameters and the area cost of each one.
Obviously, these statistics depend, for example, on the particular data
format (e.g., FP16 or INT8) utilized to represent the parameters of
the DNN model. So, STONNE includes different energy and area
tables that can be used. To derive these tables, we ran synthesis
using Synopsys Design-Compiler, and place-and-route using Cadence
Innovus on each module of the simulated accelerator (further details
in Section V).

Walk-through example: Figures 2(b-d) clarify the interaction
between the Input Module (i.e., PyTorch) and the Simulation Plat-
form with a walk-through example illustrating the execution of a
simple DNN model composed of 5 typical DNN operations: Conv2d,
MaxPool, Linear, sparse mm and log softmax. First, Figure 2b
graphically shows this interaction over time (x-axis) when running
these operations. As we can see, the execution is driven layer-by-
layer by the DL framework (PyTorch in this case) that offloads
compute-intensive layers (e.g., a convolution layer) to the simulated
accelerator, and runs natively in the real CPU those layers that are not
compute-intensive enough for acceleration (e.g., a SoftMax layer).

More specifically, for each intensive computational operation such
as a convolution (nn.Conv2d), the DL framework configures the
corresponding memory addresses onto the simulator (using the Con-
figureData instruction) and configures the layer to be run (Config-
ureCONV instruction). Then, the simulator takes control and runs
the operation on a cycle basis on the simulated accelerator. Once the
simulator finishes, it reports the statistics through the Output Module,
notifies back the DL framework and returns it control to continue
with the next operations (nn.MaxPool, nn.Linear and F.sparse mm).
As shown, those operations that are not worth for acceleration (e.g.,
softmax operation) are executed directly by the DL framework (as
it would be done in a real scenario), so correctness of the entire
execution is ensured.

Figure 2c shows the native PyTorch code that would be used to
run these operations on a CPU (or GPU), while Figure 2d shows
the required modifications to off-load the aforementioned intensive
computational operations onto STONNE (lines 8, 9, 10 and 15). As
we can see, each operation instance to be off-loaded is replaced by
a similar operation that adds the prefix Simulated to its name. This
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allows PyTorch to distinguish when the operation has to be run on
STONNE rather than natively on the CPU (or GPU). Furthermore,
the arguments of the operations have to be extended to include the
hardware configuration file (i.e., stonne hw.cfg) that will be used
by the simulation platform to create the instance of the simulated
accelerator. As it may be appreciated, those lines that do not change
will run normally on PyTorch, maintaining the correctness of the
execution.

Note that mapping of non matrix multiplication layers on
STONNE, such as Pooling (e.g., nn.MaxPool) and batch normaliza-
tion, is not a problem, as they can be easily supported in flexible
accelerator architectures without additional specific SIMD modules
(as required in some other architectures) [8]. Even crossing layers
(i.e., kernel fusion) operations could be mapped onto the processing
units of a flexible architecture, although this latter feature has not yet
been incorporated into STONNE. As we illustrate with use cases 2
and 3 in Section VI, STONNE can be easily extended to incorporate
other hardware and software optimizations.

IV. STONNE SIMULATION ENGINE

STONNE builds on the observation that most current DNN ac-
celerator architectures can be logically organized as three config-
urable network fabrics (distribution network, multiplier network, and
reduction network) and the corresponding memory controller and
buffers [41], and provides an easily expandable and configurable set
of microarchitecture modules (for buffers, on-chip data delivery and
memory controllers) that, conveniently selected and combined, can
model both rigid and flexible DNN accelerators (see Figure 3a).

A. On-Chip Networks

All the on-chip components are interconnected by using a general
three-tier network composed of a Distribution Network (DN), a
Multiplier Network (MN), and a Reduce Network (RN), inspired
by the taxonomy of on-chip communication flows within DNN
accelerators [8]. These networks can be configured to support any
topology to model state-of-the-art accelerators such as the TPU,
Eyeriss-v2, ShDianNao, SCNN, MAERI and SIGMA, among others.

1) Distribution Networks (DNs): In order to deliver the data from
the Global Buffer (GB) to the MN, we implement the next DNs:

• Tree Network (TN): A TN (illustrated in Figure 3b(e)) is
a binary-tree-based network topology inspired by the MAERI
distribution network that is replicated as many times as the
number of read ports available in the GB, and that provides single-
cycle unicast, multicast and broadcast data delivery from the GB
to the multipliers [8].

• Benes Network (BN): A BN (illustrated in Figure 3b(f)) is an
N-input N-output non-blocking topology with 2 × log(N) + 1
levels, each with N tiny 2×2 switches. This DN is implemented
in SIGMA [9] and ensures efficient single-cycle unicast, multicast
and broadcast data delivery from the GB to the MN.

• Point to Point Network (PoPN): Unlike the two DNs described
above, the PoPN (illustrated in Figure 3b(g)) provides only unicast
data delivery from one source point (typically the GB) to a
destination (typically a multiplier). This is the basic component
to build an interconnect for a systolic array such as the TPU.

2) Multiplier Networks (MNs): These networks are made up of
a set of Multiplier Switches (MSs) that can be configured to act
as either forwarders or multipliers. The forwarding configuration is

used to forward psums from the GB to the RN so that folding4 can
be supported, whereas the multiplier configuration mode is utilized
to compute a multiplication between a weight and an input value.
Currently, we support two MN topologies:

• Linear Multiplier Network (LMN) (Figure 3b(h)): This RN is
capable of leveraging the spatio-temporal data reuse (e.g., when
processing the sliding window operation of convolution DNN
layers) by using forwarding links between each pair of multipliers.
This reduces the bandwidth pressure on the memory and on the
DN by reusing data across different multipliers. The LMN is
utilized in several DNN accelerators (such as MAERI and TPU).

• Disabled Multiplier Network (DMN) (Figure 3b(i)): Removes
completely the forwarding links between the multipliers and is
aimed at performing basic GEMMs. This MN is presented in
DNN accelerators such as SIGMA [9] and SpARCH [42] whose
basic primitive is the GEMM operation, and therefore, the sliding
window operation has no longer effect.

3) Reduction Networks (RNs): These networks are composed
of adders whose purpose is to accumulate the different clusters of
partial sums that are generated by the MN. Currently, we support the
following RNs:

• Reduction Tree (RT) and Augmented Reduction Tree
(ART+DIST) (Figure 3b(a)): An ART integrates a tree-based
topology built upon a reduction tree but augmented with one 3:1
adder unit per node for efficiently executing reduction operations.
The tree structure is augmented with links between the nodes
of the same level (horizontal links) that do not share the same
parent. This augmented tree enables flexible support of multiple
and non-blocking virtual reduction trees over a single physical
tree hardware substrate [8].

• ART + Accumulation Buffer (ART+ACC) (Figure 3b(b)):
This RN is similar to ART, but allocates a set of accumulators
at the output of the reduction network, allowing partial sums
from consecutive iterations to be temporarily accumulated in the
accumulators, and enabling them to be pipelined.

• Forwarding Augmented Network (FAN) (Figure 3b(c)): As it
is demonstrated in SIGMA [9], the ART topology is inefficient in
terms of area and power due to the 3:1 adders. SIGMA proposed
a more sophisticated RN called FAN, which equivalently to ART,
allows to create any arbitrary number of dynamic-size clusters, but
replaces the inefficient 3:1 adder switches by simpler 2:1 adders.

• Linear Reduction Network (LRN) (Figure 3b(d)): In order to
support all types of accelerators, in STONNE we also implement
a linear reduction network which is typically used in rigid
accelerators such as the TPU [2], Eyeriss [4], Eyeriss-v2 [43]
or ShDianNao [12], to perform the cluster reductions.

B. Memory Hierarchy and Memory Controllers

STONNE implements the typical configurable memory hierarchy
found in most DNN accelerators composed of local storage, some
on-chip global storage (i.e., the Global Buffer, GB), and the off-chip
DRAM memory. These three levels of the hierarchy are configurable
by the user through the STONNE configuration file, which defines
parameters such as bandwidth, different FIFO sizes, GB size or
DRAM size and technology (e.g., HBM). Data orchestration between

4Folding is utilized when a dot product needs more multiplication operations than the
number of multiplier units available in hardware. Then, the dot product is “folded” to
be processed in several sequential steps and partial results should be accumulated and
taken at inter-steps boundaries.
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Fig. 3: (a) Overview of the general flexible DNN inference accelerator considered in STONNE. (b) Basic building blocks.

the GB and the distribution and reduction networks is performed
by a memory controller (i.e., control unit) which is also selected
by the user based on their preferences. As data movement differs
depending on both the dataflow and whether the execution is dense
or sparse, STONNE implements different types of memory controllers
which are configurable and interact with DRAM memory assuming
double-buffering prefetching at the Global Buffer. These memory
controllers use internal counters to calculate the next addresses that
the accelerator will read or write and their implementation is inspired
by Buffets [44]. We described these memory controllers as follows:

• Dense controller (DC): it takes inspiration from mRNA [45]
and hence, orchestrates the data based on a fixed tile partition that
cannot change during the execution of the layer (see Figure 3b(j)).
First, a DNN layer is defined with 7 parameters as Layer(R, S, C,
K, N, X’, Y’) where R and S are the number of rows and columns
in a filter respectively, C is the number of channels, K is the
number of filters, G is the number of groups (i.e., to give support
for factorized convolutions), N is the batch size, and X’ and Y’
are the number of rows and columns in the output respectively.
We define a tile as Tile(T R, T S, T C, T G, T K, T N, T X’,
T Y’), where T R × T S × T C parameters are a subset of
the filter dimensions, and therefore, what defines the size of the
dot product. Similarly, T G × T K × T N × T X ′ × T Y ′

parameters represent the subset of number of groups, filters
per group, input fmaps, and output dimensions, respectively,
thus defining the number of clusters that are mapped onto the
architecture. Note that, if the size of the cluster is smaller than
the filter size (i.e., (T R/R× T S/S × T C/C) > 1), then the
architecture will have to enable folding as it will be necessary to
iterate over the same cluster to process the entire filter.

• Sparse Controller (SC): The use of the sparse controller (Fig-
ure 3b(k)) changes drastically the way in which the data flows
throughout the elements of the architecture as when sparsity
is enabled, the size of the dot products varies according to
the sparsity of the data. The sparse controller implemented in
STONNE runs GEMM operations (any CONV operation can be

TPU-like MAERI-like SIGMA-like
Memory Controller Dense Dense Sparse

Distribution Network PoPN TN BN
Multiplier Network LMN LMN DMN

Reduce Network LRN ART FAN

TABLE IV: Modeling DNN Accelerators in STONNE.

mapped to GEMM using the img2col function) and supports both
bitmap and CSR formats to represent the sparsity of the MK and
KN matrices.

Obviously, the configured memory controller must always be com-
patible with the hardware substrate selected to be modelled. In terms
of dataflows, STONNE implements the weight-stationary, output-
stationary and input-stationary dataflows. Other alternatives could
also be easily implemented from the existing memory controllers.
DRAM is modeled using DRAMsimv3 [46].

C. Modeling DNN Accelerators in STONNE

Cycle-level simulation: Figure 4 shows the class diagram used
in the STONNE Simulation Engine to model each component. As
can be observed, all the components contain a cycle() method
which implements their behaviour during a clock cycle. To enable the
abstraction and allow the user to configure its own accelerator, we
employ a hierarchical abstract class implementation whose specific
instances are selected at runtime by the main Accelerator class.
This top class iterates over every configured component in the
accelerator and runs its cycle() method, emulating a cycle-by-
cycle microarchitectural behaviour.

Variability: Using the building blocks shown in Figure 3b(a-k),
STONNE is able to model a variety of DNN accelerator architectures.
Examples of particular architectures directly supported in STONNE
and the basic building blocks used in each case are given in Table IV
(also drawn in Figure 3b(l-o)). Moreover, STONNE can be easily
extended with additional models of DNs, MNs, RNs and memory
controllers, giving rise to new accelerator architectures.
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Fig. 4: Simulation Engine class diagram. Acronyms from Figure 3b.

Data-dependent optimizations: Since STONNE connects with
DL frameworks, the aforementioned building blocks can be extended
to precisely evaluate data-dependent architectural optimizations. The
last two use cases presented in Section VI showcase this.

Limitations of STONNE: In essence, STONNE is aimed to
model MAC-based accelerators. Modelling other types of accelerators
(e.g., bit-wise or analog ones) could require major changes to the
Simulation Platform component of STONNE.

V. VALIDATION AND RESULTS

Timing validation: To validate the timing accuracy of STONNE
against real hardware, we focus on three open-source implemen-
tations of DNN accelerators: the MAERI BSV code, the SIGMA
Verilog code, and the TPU RTL implementation used to validate
SCALE-Sim [33] implemented in Verilog. This helps us also validate
the experimental results performed in our three use cases in Sec-
tion VI. For the validation process, we configure three instances of a
MAERI-like, a SIGMA-like and an output stationary TPU-like archi-
tecture using their corresponding building blocks (see Figures 3b(l),
3b(n) and 3b(o)).

Since these RTL versions do not provide the large flexibility of our
cycle-level architectural simulator–which can model any combination
of the parameters of the accelerator (e.g., number of MSs, number of
trees in the DN, number of input/output ports in the Global Buffer)–
we are heavily constrained in the number of validation experiments
that we can carry out. This way, for the MAERI-like architecture,
we have configured both STONNE and BSV versions with 32 MSs
and 4 DN/RN elements/cycle bandwidth parameters. In addition, the
MAERI BSV version can only execute the three different types of
layers listed in Table V, with the tile shape: Tile(T R=3, T S=3,
T C=1, T G=1, T K=1, T N=1, T X’=3, T Y’=1). For the SIGMA-
like version, we have configured both the RTL and STONNE versions
with 128 MSs and 128 DN/RN elements/cycle bandwidth parameters
running 4 layers. For the TPU-like, we have configured both the RTL
model and STONNE using a 16 × 16 PE-array and full bandwidth.
Given this set of microbenchmarks targeting specific layer types, we
run STONNE using its direct user interface (the STONNE User
Interface in Figure 2).

To evaluate the accuracy of timing simulation, Table V shows
a comparison of the total number of executed cycles reported by
the RTL versions and STONNE after running the eleven layers

Design Layer M N K RTL STONNE Error
# cycles # cycles %

MAERI
MAERI-1 6 25 54 1338 1381 3.10%
MAERI-2 20 25 180 16120 16081 0.24%
MAERI-3 6 400 54 26178 26581 1.51%

SIGMA

SIGMA-1 64 128 32 2321 2304 0.73%
SIGMA-2 256 64 64 8594 8448 1.72%
SIGMA-3 256 128 64 17192 16896 1.75%
SIGMA-4 128 1 64 139 138 0.72%

TPU

TPU-1 16 16 32 66 67 1.50%
TPU-2 16 16 16 50 51 2.00%
TPU-3 32 32 16 200 204 2.00%
TPU-4 64 64 32 1056 1072 1.50%

TABLE V: Timing accuracy of STONNE using RTL versions of
MAERI, SIGMA and an OS-dataflow TPU.

supported by the RTL versions. As we can see, the differences in
the total number of executed cycles obtained with STONNE and
the RTL versions range from 0.14% to 3.10% (1.53% on average),
demonstrating that STONNE closely mimics the characteristics of the
hardware versions.

Functional validation: Since STONNE simulator is a back-end
compute platform of PyTorch, it also outputs the result of the
inference (the prediction) when running a particular DNN model
for certain input data. To validate the functionality of STONNE,
we have configured and run the three DNN accelerators presented
in Table IV with 256 processing elements and full bandwidth (i.e.,
256 elements/cycle). We have executed the seven DNN models listed
in Table I with a test set of 50 samples (e.g., an image or a
sentence) from their respective datasets, and for every sample, we
have compared the output of the last DNN layer (e.g., the score
digits of a fully-connected layer) reported by PyTorch when running
natively on the CPU, with the obtained for the executions with
STONNE. They perfectly match for all cases.

Accuracy of energy and area estimates: We ran synthesis
using Synopsys Design-Compiler and place-and-route using Cadence
Innovus on each module inside the TPU, MAERI and SIGMA RTL
to obtain the real energy and area numbers. We used those numbers
to derive the energy and area models implemented in STONNE.

VI. EXAMPLES OF USE CASES OF STONNE

Through three use cases, we demonstrate how STONNE can be
used to conduct comprehensive evaluations of several DNN accel-
erator architectures running complete DNN models. For the three
use cases we assume the next system parameters: 28-nm technology
node, 1 GHz clock, FP8 datatype, 108-KB Global Buffer (GB) size
and two 256 GB/s 512-MB HBM2 DRAM modules. Other relevant
parameters that are specific to each use case are given below.

A. Evaluation of DNN inference in TPU, MAERI and SIGMA

The aim of the first use case is to directly compare three different
accelerator architectures (namely, TPU, MAERI and SIGMA) consid-
ering their achievable performance, energy consumption and required
area. All the simulations were performed considering the complete
inference processing of the 7 DNN models presented in Table I.

Methodology and Configuration parameters. We assume the
next system parameters for the three architectures: For both MAERI
and SIGMA, we assume 256 multipliers and adders, and 128
elements/cycle GB read/write bandwidth. For the TPU, we have
configured 256 processing elements and full bandwidth (as this
architecture requires). Note that, configuring these three architectures
in STONNE does not require any modifications in the simulation
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framework as STONNE directly supports the required hardware
modules and dataflows for all of them (see Table IV).

Results. Figure 5a shows the number of cycles obtained for
the three simulated architectures. We observe that a MAERI-like
architecture reaches average performance improvement of 20% over
the TPU-like architecture for the execution of the seven DNN models,
with a maximum of 231% for Mobilenets and a minimum of 9%
for Resnets-50. Besides, we found that a SIGMA-like architecture is
91% faster on average than a MAERI-like one thanks to the sparsity
support.

Figure 5b shows a breakdown of the total amount of energy
consumed (µJ) in each case, distinguishing the main architectural
components: Global Buffer (GB), Multiplier Network (MN), Dis-
tribution Network (DN) and Reduction Network (RN). As we can
appreciate, the energy consumption is dominated by the RN as
it reaches 84%, 58% and 43% of the total energy on average
across the DNN models for the TPU-like, MAERI-like and SIGMA-
like architectures, respectively. In general, STONNE finds that the
SIGMA-like architecture is 70% and 54% more energy efficient than
the MAERI-like and TPU-like architectures, respectively. This is due
to the capacity of SIGMA to exploit sparsity, which reduces the
number of operations by 77%, thus bringing significant dynamic
energy savings. Finally, in terms of area, the SIGMA-like architecture
is 13% more efficient than the MAERI-like one, while the TPU-like
architecture is 17% and 6% more efficient with respect to the MAERI-
like and SIGMA-like architectures, respectively. As we observe, the
differences in area are not as noticeable as those in the energy and
runtime metrics. This is due to the area required in the three cases
is mainly dominated by the SRAM structure of the GB, which is the
same for the three architectures, and that represents 70%, 77% and
82% of the total area of the MAERI-like, SIGMA-like and TPU-like
architectures, respectively.

These results are consistent with the trends pointed in prior
works [8], [9] and validate that flexible architectures can adapt much
better to the current diversity of DNN layers.

B. Back-End Extension for Data-Dependent HW Optimizations

This second use case proves how the back-end of STONNE can be
easily extended to model other accelerators. In particular, we will use
STONNE to model the data-dependent accelerator SNAPEA [6]. This
architecture that aims to optimized CNN processing, exploits a prop-
erty in which all the activation values in the convolution operations
are either zero or positive. Any negative value calculated during the
convolution is directly converted into zero by the subsequent ReLU
operation. This means that the weights can be statically reordered
based on their signs so that the architecture can perform at runtime a
single-bit sign check on the partial sum. Once the partial sum drops to
zero, the rest of computations and memory accesses can be avoided,
since the output value will unfailingly be zero.

Implementation. The changes that have been introduced in
STONNE to model this architecture mainly affect its back-end, and
are as follows:

1) Inclusion of a prior-simulation function in the input module (see
Figure 2a) to reorder the weights as explained in SNAPEA [6]
and that creates a table of indexes to locate the inputs. This table
is passed to the memory controller (i.e., control unit) which will
use it to match every sorted weight with its activation.

2) A new memory controller (i.e., Control Unit) in the Simulation
Engine (see Figure 2a) that utilizes this table of indexes to
correctly deliver the weights and inputs to the multipliers.
This unit is just an extension of the previous dense memory

controller already provided in STONNE and explained in
Section IV-B.

3) We use the current linear multiplier network (see MNs Sec-
tion IV-A) configured to use the output-stationary dataflow.

4) We have extended the accumulation logic in the processing
units to detect when the results are negative. As soon as this
event is triggered, the data is sent out to the Global Buffer,
cutting out the computation earlier, and thus, saving energy and
time. We implement the exact mode explained in SNAPEA.

5) To estimate energy consumption, we have included in the
Output Module a new table with the energy model of SNA-
PEA based on the published energy numbers provided in the
SNAPEA paper.

Methodology and Configuration parameters. Similar to the
SNAPEA work [6], for this use case we model 64 multipliers and
adders, and 64 elements/cycle GB read/write bandwidth. We have
configured two different versions of our SNAPEA implementation:
the Baseline, which models the SNAPEA architecture but that ex-
cludes the negative detection logic, and therefore, runs the entire
execution; and the full SNAPEA architecture (we call it SNAPEA-
like) which adds this logic, cutting out the computation earlier
whenever possible. We have configured and run these two versions
of the accelerator with the aforementioned parameters and we have
executed the four purely CNN models of those listed in Table I (i.e.,
Alexnet, Squeezenet, VGG16, and Resnets-50) with a set of 20 input
images extracted from ILSVRC-2012 validation dataset. For each
input image, we have compared the output of the last DNN layer (e.g.,
the score digits of a fully-connected layer) reported by PyTorch when
running only on a CPU, with the one obtained for the executions
with STONNE simulating the two SNAPEA implementations to
corroborate that they perfectly match.

Results. Figure 6a plots the speedups achieved by the SNAPEA-
like architecture against the baseline for the considered four CNN
models. STONNE shows that SNAPEA can bring average speedups
of 35%, closely approaching the 30% originally reported in [6].
On the other hand, Figure 6b shows the energy consumed when
running the benchmarks on the two architectures. The results are
normalized to the baseline. Similarly, these numbers demonstrate
that the speedups mentioned previously translate into significant
energy savings (21% on average). These results can be explained by
observing Figures 6c and 6d, which show the number of operations
and memory accesses performed during the execution of the CNN
models on both the SNAPEA-like architecture and the baseline. In
particular, we can observe that on average the technique exploited by
SNAPEA is able to reduce the number of computations and memory
accesses by 30% and 16%, respectively, being Squeezenet (S) the
CNN model with the highest reductions (30% in operations and 22%
in memory accesses) which correlates with the highest improvements
in energy consumption. As it can be appreciated, these results closely
follow the trend reported in [6], confirming that SNAPEA is a
promising optimization to be applied to CNN accelerators. Obviously,
we found timing and energy differences between the original paper
and the results obtained with STONNE. These differences mainly
stem from slight variances in the methodologies used in each case:
older CNN models are used in [6], potential differences in the weights
of the CNN models are possible (the SNAPEA paper does not
specify how the weights of the CNN models have been obtained), and
presumably, different images are used as inputs in both cases. More
importantly, however, is that we see the same order of magnitude in
the gains that SNAPEA is able to achieve, demonstrating STONNE’s
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Fig. 5: Number of cycles (a) and energy consumption (we use an sqrt log y-axis) in µj (b) reported by STONNE after running the inference
procedure of the DNN models listed in Table I on MAERI, SIGMA and TPU. Area estimations in µm2 (c) for MAERI, SIGMA and TPU.
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Fig. 6: Speedups (a) and normalized energy (b) of SNAPEA against the baseline after running four CNN models. Number of computed
operations (c) and performed memory accesses (d) during the execution of the four CNN models for SNAPEA and the baseline.

ability to quickly and faithfully quantify the benefits of applying data-
dependent optimizations to DNN accelerators.

C. Front-End Extension for Filter Scheduling in Sparse Accelerators

Through the third use case, we demonstrate that precise, full-model
evaluation is required to expose the particular values used during
inference. This is needed for some optimization techniques such as
filter scheduling in flexible sparse DNN accelerators that we present
here. The modifications now focus on the front-end of the simulator.

Motivation and idea: When we consider the large amount of
sparsity in the filters of contemporary trained DNN models (from
60% to 90%, as shown in Table I), the amount of computation
involving a certain filter can be largely reduced by only mapping
the non-zero weights onto the accelerator’s processing elements.
In addition to this well-known optimization, in this use case, we
demonstrate for the first time that the way in which the filters of a
sparse DNN model are scheduled onto a DNN inference accelerator
might have significant impact on performance. A prior work [47]
examined this idea, but with a focus on GPUs. Here, we prove that
this reordering has also significant impact on DNN accelerators. To
do so, we use STONNE to simulate a flexible and sparse 256-MS
SIGMA-like architecture [9].

First, to analyze scheduling opportunities of variable size filters
onto the SIGMA’s MN fabric, we pay attention to the diversity of
filter sizes for the seven DNN models under study when sparsity
is exploited. Particularly, Figure 7a shows the average number of
entire filters that could be mapped simultaneously onto a 256-MS
flexible architecture for every single DNN layer depending on each

DNN model. As can observed, between 4 and 8 filters can be
entirely mapped simultaneously in most cases. The only exceptions
are Alexnet and BERT, that features larger filter dimensions by design
(e.g., up to 4.3× larger filters compared to Mobilenets-V1, which
comes next in terms of filter size). Moreover, we have further looked
into the size of the filters required to compute each of the DNN
layers, finding out huge variability between them. As an illustrative
example, Figure 7b shows the size (y-axis) for every mapped filter
onto the 256-MS architecture for the first layer of each DNN model5

(x-axis).
Next, we show that the large filter size variability found in contem-

porary DNN models can be exploited to optimize the DNN inference
procedure. In particular, we observe that the specific order in which
the filters are scheduled to be mapped onto the DNN accelerator can
impact the overall compute utilization, and in consequence, overall
performance. Figure 8 illustrates this optimization opportunity for an
example 8-MS SIGMA-like architecture. At the top of the figure, we
consider an example layer composed of a 1× 5 vector of inputs and
four 1×5 sparse filters (F0 and F2 have an effective size of 4, while
it is 2 in the case of F1 and F3) utilized to compute four dot products
(producing the outputs from O0 to O3). We show how changing
the order of the filters (which could be done either statically by
the compiler or dynamically by the accelerator’s memory controller)
yields a variable number of cycles to complete the computation of
the four dot products in the example.

Figure 8a shows that computing this layer completely ignoring

5The maximum mapping size is 256 because of the 256-MS SIGMA architecture.
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simultaneously in a 256-MS flexible sparse architecture. (b) Filter
sizes for the first layer of the DNN models.
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Fig. 8: An example filter scheduling heuristic to optimize four dot
products in a SIGMA-like accelerator architecture.

the opportunities of scheduling the filters can lead to an unbalanced
scenario, requiring a total of 4 cycles. On the other hand, Figure 8b
illustrates how faster layer processing can be achieved if the com-
putation of the four filters is scheduled differently. For instance,
we can consider a simple scheduling heuristic to achieve perfect
load-balancing in this example for computing the dot products. In
particular, we can rearrange the filters to be mapped at every iteration
depending on filter size following a Largest Filter First policy as
follows (more details next). In the first iteration, F0 and F2 with
4 non-zero values can be mapped together, thus taking 2 cycles to
compute their two outputs. Then, in the next iteration, the 2-size
filters (F1 and F3) can also be mapped together, but in this case the
computation of their associated outputs would be completed in just 1
cycle. Therefore, after applying this simple reordering of the filters,
we can balance the computation of the outputs and make better use
of the accelerator resources, which in the end results in fewer clock
cycles required (25% less in this simple example).

This observation opens up a new avenue to optimize the inference
procedure of sparse DNN models in flexible sparse DNN accelerators.
In particular, the exploration of novel scheduling strategies for the
sparse filters to better balance the mapping of the dot products onto
the DNN accelerator, so that compute unit utilization is maximized
and processing time reduced. We focus on exploring static scheduling
heuristics, where the sparse memory controller issues the filters for
execution in the same order that is determined by a certain static
scheduling strategy directly applied layer by layer to each of the
DNN models. To guarantee the correctness of the executions, a final
reordering step is carried out after the last fully-connected layer of
each DNN model.

Implementation. Implementing new scheduling approaches in

STONNE just requires modifications in the front-end (i.e., Input
Module) of the simulator. To do so, we have incorporated a prior-
simulation function that reorders the filters based on its size and on
the scheduling technique.

Methodology and Configuration parameters. We model and
simulate a single Flexible Dot Product Engine (Flex-DPE) in a
SIGMA-like flexible architecture that supports sparse and irregular
matrix formats based on weights and/or activation sparsity. The on-
chip network choices are shown in Table IV. We have run the
seven DNN models whose sparsity levels are shown in Table I. We
model these system parameters: 256 multipliers and adders and 128
elements/cycle Global Buffer (GB) read/write bandwidth.

In this work, we consider a simple static heuristic: Largest Filter
First (LFF). In LFF, the filters are reordered so that the sparse
controller always selects the largest available filter (i.e., of those not
yet used for computation) that can be mapped onto the Multiplier
Network (256 MSs in this case). To cover the rest of the available
MSs, the scheduler selects as many available filters as possible in
descending size order. For the sake of completeness, we also present
the results obtained for a Random (RDM) ordering.

Results. We compare the results for LFF and RDM against those
obtained when running the sparse filters in their natural order (i.e.,
without performing any kind of reordering). We call this approach
the No Scheduling (NS) ordering. As observed in Figure 9a, using
the random scheduling strategy does not yield any performance im-
provement as the MS utilization does not increase at all. Alternatively,
LFF is capable of both balancing the processing of the clusters during
most of the execution and selecting a smaller filter when another one
does not fit. This leads to increased MS utilization (2.5% on average),
which translates into performance advantages ranging between 11%
for the most sensitive DNN models (Squeezenet, VGG-16, Resnets-
50 and ssd-Mobilenets) and 1% in models such as BERT, whose large
filter sizes and low sparsity ratio (60%) often prevent multiple clusters
from being processed simultaneously (see Figure 7a). On average, we
observe a performance gain of 7% across the seven DNN models.

Figure 9b plots a breakdown of the total amount of energy
consumed in each case, distinguishing between the main components
of the architecture: Global Buffer, Multiplier Network, Distribution
Network and Reduction Network. As we can see, energy reductions
are not very significant, ranging between 1% and 6% (4% on
average). The energy consumption in this case is mainly dominated
by the number of operations carried out during the execution, which
is the same regardless of how the filters are rearranged. In this case,
most of the observed energy gains come from both the reduction of
static energy due to the decrease in execution time, and the reduction
in the number of messages to be sent through the DN (i.e., running
more clusters simultaneously increases the ability to exploit the DN’s
multicast package delivery).
Another important observation that we would like to make is that
we have found out a huge difference in terms of layers sensitivity
when it comes to LFF. In particular, there are some layers that
experience a large impact in terms of energy and performance when
LFF is applied, but this benefit is subsequently hidden by other low-
sensitive layers. As an illustrative example, Figure 9c shows the
performance and energy gains for 14 representative layers (in terms
of LFF sensitivity) of Resnets-50. The results are normalized to the
obtained for the non-scheduled execution. Here, we can see how the
layers can be divided into three different groups according to their
sensitivity to the LFF scheduling heuristic. The first five layers show
no benefit at all as LFF is not capable to leverage the MSs better
(gains of 0.01% on MS utilization), so they fall into the low-sensitive

210

Authorized licensed use limited to: Universidad Politecnica de Cartagena. Downloaded on April 04,2024 at 11:08:55 UTC from IEEE Xplore.  Restrictions apply. 



c) Normalized runtime / MS Util.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
m

ra
li
z
e
d

 R
u

n
ti

m
e
 /

 M
S

 U
ti

l.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

N
S

LF
F

NS
LFF
MS Util.

b)Normalized Energy

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
z
e
d

 E
n

e
rg

y

A M S R V S-M B

N
S

LF
F

R
D

M N
S

LF
F

R
D

M N
S

LF
F

R
D

M N
S

LF
F

R
D

M N
S

LF
F

R
D

M N
S

LF
F

R
D

M N
S

LF
F

R
D

M

RN

DN

MN
GB

mponent

a) Normalized Runtime/ MS Utilization

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
z
e
d

 R
u

n
ti

m
e
 /

 M
S

 U
ti

l.

A M S R V S-M B
N

S
LF

F
R

D
M N
S

LF
F

R
D

M N
S

LF
F

R
D

M N
S

LF
F

R
D

M N
S

LF
F

R
D

M N
S

LF
F

R
D

M N
S

LF
F

R
D

M

NS
LFF
RDM
MS Util.

Fig. 9: (a) Normalized runtime for the LFF static scheduling strategy with respect to a non-scheduled execution. (b) Normalized energy
for the LFF static scheduling strategy with respect to a non-scheduled execution. (c) Normalized runtime and energy for the LFF static
scheduling strategy with respect to a non-scheduled execution for 14 layers of Resnets-50.

layer category. Contrarily, for the next five, significant improvements
(up to 36% and 16% performance and energy gains, respectively, in
layer L6) are observed, and would therefore be those that make up the
high-sensitive layer category. These significant gains are explained
by increased MS utilization, which ranges from 9% to 13% (11%
on average). Finally, the medium-sensitive layer category would be
comprised of the last five layers, for which MS utilization benefits
varying from 8% to 4% (5% on average) are obtained, leading to
lower performance advantages between 17% and 8% (energy benefits
range between 5% and 1% in this case).

The obtained results point out that more intelligent heuristics ca-
pable of adapting the filter scheduling strategy to the specific features
of each layer could bring large benefits in terms of performance and
energy savings when running sparse DNN models. This observation
paves the way for the development of much more sophisticated
strategies aimed to improve the energy efficiency of next-generation
DNN accelerators.

VII. CONCLUSIONS

We demonstrate that as the complexity of the microarchitecture
of DNN accelerators grows, the analytical models typically used
to estimate their performance and energy figures are not able to
capture many important subtleties that simulation at cycle level does.
STONNE aims to fill this gap, paving the way towards rapid and
accurate prototyping of next-generation DNN accelerator architec-
tures. Through three use cases, we demonstrate the huge potential of
STONNE to assist the research community in the pursuit of better
DNN accelerator architectures.
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A. Artifact Appendix
A.1 Abstract
In this work we present STONNE (Simulation TOol of Neural
Network Engines), a cycle-level microarchitectural simulation
framework that can plug into any high-level DNN framework as
an accelerator device and perform full-model evaluation (i.e. we
are able to simulate real, complete, unmodified DNN models) of
state-of-the-art rigid and flexible DNN accelerators, both with and
without sparsity support. As a proof of concept, we use STONNE in
three use cases: i) a direct comparison of three dominant inference
accelerators using real DNN models; ii) back-end extensions and
iii) front-end extensions of the simulator to showcase the capabil-
ity of STONNE to rapidly and precisely evaluate data-dependent
optimizations. In order to make the tool available for reproducing
the experiments for i) and iii), in this artifact we include the first
version of the simulator. For ii) we include a different version con-
tained separately in the repository. For the three cases we include
the data sets required to generate the charts and the script to carry
out the experiments.

A.2 Artifact check-list (meta-information)
• Program: STONNE.
• Compilation: STONNE can be easily compiled using g++ 11 or

superior.
• Output: data outputs are included in dataset raw.tar.gz.
• Experiments: The kernels and DNNs used during this paper might

be reproduced using the Pytorch interface of STONNE and its
STONNE user interface (just configure the simulator to run the
dimensions indicated in the paper).

• How much disk space required (approximately)?: 200MB.
• How much time is needed to prepare workflow (approximately)?: 2

hours.
• How much time is needed to complete experiments (approxi-

mately)?: 5 days (depends on the number of nodes you have to
parallize the executions).

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT License.
• Archived (provide DOI)?: 10.5281/zenodo.5516222

A.3 Description
This artifact contains the tools and data sets required to generate the charts
provided in the paper.

A.3.1 How to access
The entire artifact can be found by means of the next DOI: 10.5281/zen-
odo.5516222. Here, we can clearly distinguish between several compressed
(and not compressed) files:

• analytical model.tar.gz: Contains the analytical model used to compare
against the cycle-level simulator STONNE (see Figure 1).

• benchmarks pytorch.tar.gz: Contains the benchmarks to generate the
results of the three use cases (Section VI).

• dataset raw.tar.gz: Contains the raw data generated after running the
simulations.
Figures.tar.gz: Contains the raw figures presented in the manuscript.
IISWC.ipynb: This jupyter notebook file contains the scripts used to
generate the figures from the raw data.
stonne original.tar.gz: STONNE simulator modeling MAERI, TPU and
SIGMA able to reproduce the experiments of sections VI.A and VI.C.
stonne snapea.tar.gz: Adds Snapea functionality to reproduce the ex-
periments of section VI.B.

A.4 Dependencies
STONNE does not require any dependence. However, running the bench-
marks with Pytorch requires some previous packages:

• Torchvision https://github.com/pytorch/vision

• transformers https://github.com/huggingface/transformers

• numpy.

• Cmake.

Please, make sure all the dependencies are solved before running any
benchmark. Besides, make sure the installation of the dependencies does
not remove the current version of pytorch to install another one. In order
to avoid so, it is highly recommended to install both the torchvision and
transformers packages from sources. Here, we present an example of how
to install torchvision package from source:

$ g i t c l o n e h t t p s : / / g i t h u b . com / p y t o r c h / v i s i o n
$ cd v i s i o n
$ py thon s e t u p . py i n s t a l l

Please, follow the official instructions for each dependency if something
occurs.

A.5 Installation
The installation of STONNE explained below is applicable for both files
stonne original.tar.gz and stonne snapea.tar.gz.

The STONNE User Interface facilitates the execution of STONNE.
Through this mode, the user is presented with a prompt to load any layer
and tile parameters onto a selected instance of the simulator, and runs it
with random tensors. To reproduce the experiments shown in Figure 1 and
Section V it is necessary to use this interface. The instalation of STONNE
is very simple:

$ t a r − xzv f s t o n n e o r i g i n a l . t a r . gz
$ cd s t o n n e / s t o n n e
$ make

These commands will generate a binary file ’stonne/stonne’. This binary
file can be executed to run layers and gemms with any dimensions and any
hardware configuration. All the tensors are filled using random numbers.

On the other hand, to reproduce the experiments shown in the use cases,
it is necessary to execute the real benchmarks. To do so, the STONNE
Pytorch frontend interface must be installed.

The pytorch-frontend is located in the folder ’pytorch-frontend’ and this
basically contains the Pytorch official code Version 1.7 with some extra
files to create the simulation operations and link them with the ’stonne/src’
code. The current version of the frontend is so well-organized that running
a pytorch DNN model on STONNE is straightforward.

Installing Pytorch-frontend will make the same effort as installing the
original Pytorch framework. First, you will need Python 3.6 or later and a
C++14 compiler. Also, it is highly recommended to install Anaconda envi-
ronment. Once you have Anaconda installed (https://www.anaconda.
com/products/individual) you can proceed to the installation. Next,
we summarize the installation process on Linux (Please refer to the original
Pytorch documentation to learn how to install it in other operating system):

$ cd p y t o r c h − f r o n t e n d /
$ py thon s e t u p . py i n s t a l l

Next, run the next commands, which will install the pytorch stonne
package that will be used for the connection with STONNE.

$ cd s t o n n e c o n n e c t i o n /
$ py thon s e t u p . py i n s t a l l

A.6 Notes
STONNE simulator and an extended explanation of the tool may be found
on https://github.com/stonne-simulator/stonne.
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