
http://strands-project.eu

Task scheduling and execution
for long-term autonomy

Nick Hawes, University of Birmingham

n.a.hawes@cs.bham.ac.uk
http://www.cs.bham.ac.uk/~nah
@hawesie

http://strands-project.eu
http://www.cs.bham.ac.uk/~nah

Long-Term Autonomy
in Everyday

Environments

Goal-Oriented Behaviour

Goal
We assume our robot has goals which
are either provided by a user or
generated by an internal system

Actions

Behaviours

Some system will provide a sequence
of actions which achieve a given goal

Each action maps to an underlying
behaviour which is the implementation
of the action on the robot

Planning gives us an ordering
of actions to achieve a goal

Scheduling assigns time and resources to jobs

A job is a collection of actions with ordering
constraints. Each action has a duration.

Real-world problems also
need time and resources

The aim is to make an
assignment of times to actions (a schedule)

in order to achieve some criterion, e.g. makespan.

Jobs({AddEngine1 ≺ AddWheels1 ≺ Inspect1},
 {AddEngine2 ≺ AddWheels2 ≺ Inspect2})

Action(AddEngine1, DURATION:30)

Action(AddEngine2, DURATION:60)

Action(AddWheels1, DURATION:30)

Action(AddWheels1, DURATION:15)

Action(Inspect, DURATION:10)

For each action assign
earliest start time ES and latest start time LS

The critical path method: define the path through the action
graph with longest duration

AddEngine1

30

AddWheels1

30

Start

AddEngine2

60

AddWheels2

15

Inspect2

10

Inspect1

10

Finish

For each action assign
earliest start time ES and latest start time LS

The critical path method: define the path through the action
graph with longest duration

AddEngine1

30

AddWheels1

30

Start

AddEngine2

60

AddWheels2

15

Inspect2

10

Inspect1

10

Finish

Use the critical path to define the overall length of the schedule,
i.e.[ES, LS] for Start and Finish

AddEngine1

30

AddWheels1

30

Start

AddEngine2

60

AddWheels2

15

Inspect2

10

Inspect1

10

Finish

Use the critical path to define the overall length of the schedule,
i.e.[ES, LS] for Start and Finish

AddEngine1

30

AddWheels1

30
[0,0]

Start

AddEngine2

60

AddWheels2

15

Inspect2

10

Inspect1

10
[85,85]

Finish

and for the actions on the critical path

Use the critical path to define the overall length of the schedule,
i.e.[ES, LS] for Start and Finish

AddEngine1

30

AddWheels1

30
[0,0]

Start

[0,0]

AddEngine2

60

[60,60]

AddWheels2

15

[75,75]

Inspect2

10

Inspect1

10
[85,85]

Finish

and for the actions on the critical path

Use these constraints to complete[ES, LS]
for the remaining actions

AddEngine1

30

AddWheels1

30
[0,0]

Start

0
[0,0]

AddEngine2

60

[60,60]

AddWheels2

15

[75,75]

Inspect2

10

Inspect1

10
[85,85]

Finish

0

ES(B) = max A ≺ B ES(A) + Duration(A)

LS(A) = min B ≻ A LS(B) - Duration(A)

AddEngine1

30

AddWheels1

30
[0,0]

Start

0
[0,0]

AddEngine2

60

[60,60]

AddWheels2

15

[75,75]

Inspect2

10

Inspect1

10
[85,85]

Finish

0

ES(B) = max A ≺ B ES(A) + Duration(A)

LS(A) = min B ≻ A LS(B) - Duration(A)

Action with latest earliest
start preceding B

Action with earliest latest
start preceding A

[0,15]

AddEngine1

30

[30,45]

AddWheels1

30
[0,0]

Start

0
[0,0]

AddEngine2

60

[60,60]

AddWheels2

15

[75,75]

Inspect2

10

[60,75]

Inspect1

10
[85,85]

Finish

0

ES(B) = max A ≺ B ES(A) + Duration(A)

LS(A) = min B ≻ A LS(B) - Duration(A)

Action with latest earliest
start preceding B

Action with earliest latest
start preceding A

slack = LS - ES

AddEngine2

AddWheels2

Ins 2

AddEngine1

AddWheels1

Ins 1

time

ES(B) = max A ≺ B ES(A) + Duration(A)

LS(Finish) = ES(Finish)

ES(Start) = 0

LS(A) = min B ≻ A LS(B) - Duration(A)

Scheduling ordered tasks with no additional constraints is
pretty easy: a conjunction of linear constraints

Solve with dynamic programming, integer programming
etc.

Jobs({AddEngine1 ≺ AddWheels1 ≺ Inspect1},
 {AddEngine2 ≺ AddWheels2 ≺ Inspect2})

Action(AddEngine1, DURATION:30)

Action(AddEngine2, DURATION:60)

Action(AddWheels1, DURATION:30)

Action(AddWheels1, DURATION:15)

Action(Inspect, DURATION:10)

Jobs({AddEngine1 ≺ AddWheels1 ≺ Inspect1},
 {AddEngine2 ≺ AddWheels2 ≺ Inspect2})

Resources(EngineHoists(1), WheelStations(1),
 Inspectors(2), LugNuts(500))

Action(AddEngine1, DURATION:30)

Action(AddEngine2, DURATION:60)

Action(AddWheels1, DURATION:30)

Action(AddWheels1, DURATION:15)

Action(Inspect, DURATION:10)

Jobs({AddEngine1 ≺ AddWheels1 ≺ Inspect1},
 {AddEngine2 ≺ AddWheels2 ≺ Inspect2})

Resources(EngineHoists(1), WheelStations(1),
 Inspectors(2), LugNuts(500))

Action(AddEngine1, DURATION:30,
 USE: EngineHoists(1))

Action(AddEngine2, DURATION:60,
 USE: EngineHoists(1)))

Action(AddWheels1, DURATION:30,
 CONSUME: LugNuts(20), USE: WheelStations(1)))

Action(AddWheels1, DURATION:15,
 CONSUME: LugNuts(20), USE: WheelStations(1)))

Action(Inspect, DURATION:10,
 USE: Inspectors(1)))

ES(B) = max A ≺ B ES(A) + Duration(A)

LS(Finish) = ES(Finish)

ES(Start) = 0

LS(A) = min B ≻ A LS(B) - Duration(A)

Now we have to include disjunctions so we’re back to an
NP-hard problem.

Scheduling for a mobile robot introduces both
challenges and simplifications.

A task is a single, indivisible
unit of behaviour to achieve a

goal (often implicit)
Actions Goal

Task Scheduling for Mobile Robots Using Interval Algebra
Mudrová and Hawes. In, ICRA ‘15.

How to tell a robot what time to do something?

Considering up to 100 tasks

Not just order, but precise starting times (e.g. 14:02)

si ei

Task

action

taski

di

ti
psi pei

taski

taskj

taski

taskj

taski

taskj

∀i : min∑(ti − si)

Coltin et al.* Scheduling using mixed-integer programming

si ≤ ti ∧ (ti + di) ≤ ei

* e.g. Brian Coltin, Manuela Veloso, and Rodrigo Ventura. Dynamic User
Task Scheduling for Mobile Robots. In Proceedings of the AAAI Workshop
on Automated Action Planning for Autonomous Mobile Robots at AAAI.
2011.

http://brian.coltin.org/pub/11aaaiw-brian.pdf

* e.g. Brian Coltin, Manuela Veloso, and Rodrigo Ventura. Dynamic User
Task Scheduling for Mobile Robots. In Proceedings of the AAAI Workshop
on Automated Action Planning for Autonomous Mobile Robots at AAAI.
2011.

Coltin et al.* Scheduling using mixed-integer programming

si ≤ ti ∧ (ti + di) ≤ ei

∀i,j : tj + dj + time(pej,psi) ≤ ti
or

∀i,j : ti + di + time(pei,psj) ≤ tj

∀i : min∑(ti − si)

http://brian.coltin.org/pub/11aaaiw-brian.pdf

∀i,j : tj + dj + time(pej,psi) ≤ ti
or

∀i,j : ti + di + time(pei,psj) ≤ tj

i before j

i meets j

j before i

j meets i

i overlaps j

i starts j

j finishes i

j starts i

j overlaps i

i finishes j

i during j

j during i

i equals j

J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832– 843, 1983.

Allen’s Interval Algebra

no constraint i precedes j j precedes i both

Reasoning about tasks’ time windows: si ei vs sj ej

i before j

i equals j
pick first one seen

╳
i overlaps j
choose only possible order constraint

i overlaps j
choose order to satisfy ∀i : min∑(ti − si)

i
j

i
j
i
j

i
j
i
j

i
j

i
j

no order constraint

Care Security

Problems 606 358

Smallest Problem 1 1

Largest Problem 135 71

Mean Problem Size 28.88 (σ 26.28) 9.59 (σ 12.97)

Problems >15 349 (58%) 106 (30%)

si ei

Task

action

taski

di

ti
psi pei

Task

taski

taskj

Optimal and Dynamic Planning for  
Markov Decision Processes with Co-Safe LTL Specifications

Lacerda, Parker and Hawes. In, IROS‘14.

mean time from
robot

straight line time

Best 8 matches between straight-line and recorded times

mean time from
robot

straight line time

Worst 8 matches between straight-line and recorded times

W1 W2

W3

0.9

action goto W2 from W1

0.1

Why use an MDP?

cost = 54

W1 W3

W2 W3

W3 W3

Goal is to be in
state W3

Policy:

W1

W2

W3

3 3

5

W1 W3

W2 W3

W3 W3

(F W2)

eventually reach W2

(F W2) ⋀ (F W3)

eventually reach W2 and W3

W1

W2

W3

3 3

5

Policy:

(F W2) ⋀ (F W3)

eventually reach W2 and W3

¬W2 ⋀ ¬W3 true

init W3

W2 W3

W2

W2 ⋀ W3

¬W2

¬W3

Cool tool: http://www.lsv.ens-cachan.fr/~gastin/ltl2ba

W1

W2

W3

3 3

5

¬W2 ⋀ ¬W3 true

init W3

W2 W3

W2

¬W2

¬W3

W2W1

W2W1

W3W1

W1W1

╳

W1

W2

W3

W1

W2

W3

W1

W2

W3

W1

W2

W3

B. Lacerda, D. Parker, and N. Hawes. Optimal and Dynamic Planning for Markov
Decision Processes with Co-Safe LTL Specifications. In: IROS 2014.

B. Lacerda, D. Parker, and N. Hawes. Optimal and Dynamic Planning for Markov
Decision Processes with Co-Safe LTL Specifications. In: IROS 2014.

B. Lacerda, D. Parker, and N. Hawes. Optimal and Dynamic Planning for Markov
Decision Processes with Co-Safe LTL Specifications. In: IROS 2014.

Fig. 4. reconstructed signal for traversability and time along different time periods, top left figure is the action outcomes used for the model building, the
remaining three figures represent the predicted pe(t) state along different time frames, one month (top right), one week (bottom left) and one day (bottom
right). Weekly and monthly periodicities are presented starting from Monday, the day depicted in the bottom left figure is a Thursday.

policies that maximise overall expected success of the LTL
task.

In order to generate a policy at a given time t, we start
by creating an MDP model based on the topological map
T = hV,E,N,nav , PEi. This Navigation MDP at time t

is defined as a tuple Mt = hS, s, A, �i, where: (i) S =
V [{sf} is a finite set of states, corresponding to the
topological nodes, plus a dump state sf , which is reached
after a navigation action failure; (ii) s 2 S is the initial
state, corresponding to the current position of the robot in
the environment; (iii) A = E is a finite set of actions,
corresponding to the edges in the topological map; (iv)
� : S ⇥A⇥ S ! [0, 1] is a probabilistic transition function,
where

P
s02S �(s, a, s0) 2 {0, 1} for all s 2 S, a 2 A. For

vi, vj 2 S, if there is an edge e = (vi, vj) in the topological
map, we define �(vi, e, vj) = pe(t), �(vi, e, sf) = 1� pe(t)
and �(vi, e, v) = 0 for all v 2 S \ {vj , sf}.

In [20], it is shown how, given a co-safe LTL formula
' and a cost function defined over state-action pairs of the
MDP (in our case, such function would be the expected time
to navigate between two nodes in the environment), one can
create policies that minimize the accumulated cost to gener-
ate a trace of the system that satisfies '. Broadly speaking,
LTL allows for the specification of goals that are not simply
reaching a given target node in the environment, but can
be temporally extended goals that require, for example, a
set of nodes to be visited in a given order, or to visit a
given node while avoiding a set of forbidden nodes. The co-
safe fragment of LTL contains all the formulas that can be
satisfied by a finite trace of the system. An example of such
a task is a mail delivery robot that needs to distribute mail to
different rooms in a building, and minimise the time spent
in delivery so it can be available to do other tasks as soon
as possible.

We adapted the approach in [20], and use the PRISM

model checker [21] to generate a policy that maximizes
the probability of satisfying a co-safe LTL formula, i.e., we
generate the policy that fulfils the task while minimizing the
probability of occurrence of a continuous navigation failure.

The fact that we can specify tasks that involve visiting
more than one node in the topological map allows us to
analyse the different choices taken by the robot at different
times. More specifically, for the navigation MDPs obtained
from the topological map depicted in Fig. 2, we analyse the
policies obtained for formula (F v1_F v14), i.e., “visit either
node v1 or node v14”. This task allows the policy to choose
which node to try to visit first, taking into account the current
position of the robot, and the traversability probabilities for
the edges in the topological map. Furthermore, it is a type
of task that is common for mobile robots. For example, a
data gathering robot might want to unload its data, and in
nodes v1 and v14 there are data unloading stations it can use.
Thus, to increase the robustness of the system, we want the
robot to choose the station it can navigate to with the lowest
probability of failure.

In Table III, we show the probabilities of being able
to execute the task, starting on v5, without any navigation
failures, for different times of day. As expected, it is possible
to see that during the times where it is more probable
for people to be present in the office, the probability of
fulfilling the task without navigation failures is higher. This
is because the robot asks for human intervention when he has
problems navigating, and the presence of people to help it
increases the probability of fulfilling the navigation task (we
do not consider these interactions with humans as failures).
Furthermore, we also analyse the optimal action for v5 at
different times of day. This illustrates the choice the robot
makes on which area of the environment to visit when at
v5. We depict the choice of visiting v14 in light gray, and
the choice of visiting v1 in dark gray. This choice is heavily

J. Pulido Fentanes, B. Lacerda, T. Krajník, N. Hawes, and M. Hanheide.
Now or later? predicting and maximising success of navigation actions
from long-term experience. In ICRA, 2015.

Task framework

Routine

Task ExecutorExecutive

Control

Optimal Nav

lon
g-

ter
m ta

sk

sp
ec

ific
ati

on

task order and timings

navigation

durations

navigation

execution

Scheduler

