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Long-Term Autonomy  
in Everyday 

Environments



Goal-Oriented Behaviour

Goal
We assume our robot has goals which 
are either provided by a user or 
generated by an internal system

Actions

Behaviours

Some system will provide a sequence 
of actions which achieve a given goal

Each action maps to an underlying 
behaviour which is the implementation 
of the action on the robot 



Planning gives us an ordering 
of actions to achieve a goal

Scheduling assigns time and resources to jobs

A job is a collection of actions with ordering 
constraints. Each action has a duration.

Real-world problems also 
need time and resources

The aim is to make an  
assignment of times to actions (a schedule)  

in order to achieve some criterion, e.g. makespan.



Jobs( {AddEngine1 ≺ AddWheels1 ≺ Inspect1},
      {AddEngine2 ≺ AddWheels2 ≺ Inspect2})

Action( AddEngine1, DURATION:30)

Action( AddEngine2, DURATION:60)

Action( AddWheels1, DURATION:30)

Action( AddWheels1, DURATION:15)

Action( Inspect, DURATION:10)



For each action assign  
earliest start time ES and latest start time LS

The critical path method: define the path through the action 
graph with longest duration
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For each action assign  
earliest start time ES and latest start time LS

The critical path method: define the path through the action 
graph with longest duration
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Use the critical path to define the overall length of the schedule, 
i.e.[ES, LS] for Start and Finish
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Use the critical path to define the overall length of the schedule, 
i.e.[ES, LS] for Start and Finish
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and for the actions on the critical path



Use the critical path to define the overall length of the schedule, 
i.e.[ES, LS] for Start and Finish
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Use these constraints to complete[ES, LS] 
for the remaining actions
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ES(B) = max A ≺ B ES(A) + Duration(A)

LS(A) = min B ≻ A LS(B) - Duration(A)
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start preceding B
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start preceding A
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slack = LS - ES
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ES(B) = max A ≺ B ES(A) + Duration(A)

LS(Finish) = ES(Finish)

ES(Start) = 0

LS(A) = min B ≻ A LS(B) - Duration(A)

Scheduling ordered tasks with no additional constraints is 
pretty easy: a conjunction of linear constraints

Solve with dynamic programming, integer programming 
etc.



Jobs( {AddEngine1 ≺ AddWheels1 ≺ Inspect1},
      {AddEngine2 ≺ AddWheels2 ≺ Inspect2})

Action( AddEngine1, DURATION:30)

Action( AddEngine2, DURATION:60)

Action( AddWheels1, DURATION:30)

Action( AddWheels1, DURATION:15)

Action( Inspect, DURATION:10)



Jobs( {AddEngine1 ≺ AddWheels1 ≺ Inspect1},
      {AddEngine2 ≺ AddWheels2 ≺ Inspect2})

Resources( EngineHoists(1), WheelStations(1), 
           Inspectors(2), LugNuts(500))

Action( AddEngine1, DURATION:30)

Action( AddEngine2, DURATION:60)

Action( AddWheels1, DURATION:30)

Action( AddWheels1, DURATION:15)

Action( Inspect, DURATION:10)



Jobs( {AddEngine1 ≺ AddWheels1 ≺ Inspect1},
      {AddEngine2 ≺ AddWheels2 ≺ Inspect2})

Resources( EngineHoists(1), WheelStations(1), 
           Inspectors(2), LugNuts(500))

Action( AddEngine1, DURATION:30, 
        USE: EngineHoists(1))

Action( AddEngine2, DURATION:60,
        USE: EngineHoists(1)))

Action( AddWheels1, DURATION:30,
  CONSUME: LugNuts(20), USE: WheelStations(1)))

Action( AddWheels1, DURATION:15,
  CONSUME: LugNuts(20), USE: WheelStations(1)))

Action( Inspect, DURATION:10,
        USE: Inspectors(1)))



ES(B) = max A ≺ B ES(A) + Duration(A)

LS(Finish) = ES(Finish)

ES(Start) = 0

LS(A) = min B ≻ A LS(B) - Duration(A)

Now we have to include disjunctions so we’re back to an 
NP-hard problem.



Scheduling for a mobile robot introduces both 
challenges and simplifications.

A task is a single, indivisible 
unit of behaviour to achieve a 

goal (often implicit)
Actions Goal



Task Scheduling for Mobile Robots Using Interval Algebra 
Mudrová and Hawes. In, ICRA ‘15. 

How to tell a robot what time to do something?

Considering up to 100 tasks

Not just order, but precise starting times (e.g. 14:02)
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∀i : min∑(ti − si)



Coltin et al.* Scheduling using mixed-integer programming

si ≤ ti ∧ (ti + di) ≤ ei

* e.g. Brian Coltin, Manuela Veloso, and Rodrigo Ventura. Dynamic User 
Task Scheduling for Mobile Robots. In Proceedings of the AAAI Workshop 
on Automated Action Planning for Autonomous Mobile Robots at AAAI. 
2011.

http://brian.coltin.org/pub/11aaaiw-brian.pdf


* e.g. Brian Coltin, Manuela Veloso, and Rodrigo Ventura. Dynamic User 
Task Scheduling for Mobile Robots. In Proceedings of the AAAI Workshop 
on Automated Action Planning for Autonomous Mobile Robots at AAAI. 
2011.

Coltin et al.* Scheduling using mixed-integer programming

si ≤ ti ∧ (ti + di) ≤ ei

∀i,j : tj + dj + time(pej,psi) ≤ ti
or

∀i,j : ti + di + time(pei,psj) ≤ tj

∀i : min∑(ti − si)

http://brian.coltin.org/pub/11aaaiw-brian.pdf




∀i,j : tj + dj + time(pej,psi) ≤ ti
or

∀i,j : ti + di + time(pei,psj) ≤ tj
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J. F. Allen. Maintaining knowledge about temporal intervals. 
Communications of the ACM, 26(11):832– 843, 1983.

Allen’s Interval Algebra

no constraint i precedes j j precedes i both

Reasoning about tasks’ time windows: si ei vs sj ej
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╳
i overlaps j
choose only possible order constraint
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Care Security

# Problems 606 358

Smallest Problem 1 1

Largest Problem 135 71

Mean Problem Size 28.88 (σ 26.28) 9.59 (σ 12.97)

# Problems >15 349 (58%) 106 (30%)
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Optimal and Dynamic Planning for  
Markov Decision Processes with Co-Safe LTL Specifications  

Lacerda, Parker and Hawes. In, IROS‘14. 





mean time from 
robot
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Worst 8 matches between straight-line and recorded times
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Why use an MDP?

cost = 54
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(F W2) ⋀ (F W3)  

eventually reach W2 and W3

¬W2 ⋀ ¬W3 true
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Cool tool: http://www.lsv.ens-cachan.fr/~gastin/ltl2ba
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B. Lacerda, D. Parker, and N. Hawes. Optimal and Dynamic Planning for Markov 
Decision Processes with Co-Safe LTL Specifications. In: IROS 2014.



B. Lacerda, D. Parker, and N. Hawes. Optimal and Dynamic Planning for Markov 
Decision Processes with Co-Safe LTL Specifications. In: IROS 2014.



B. Lacerda, D. Parker, and N. Hawes. Optimal and Dynamic Planning for Markov 
Decision Processes with Co-Safe LTL Specifications. In: IROS 2014.



Fig. 4. reconstructed signal for traversability and time along different time periods, top left figure is the action outcomes used for the model building, the
remaining three figures represent the predicted pe(t) state along different time frames, one month (top right), one week (bottom left) and one day (bottom
right). Weekly and monthly periodicities are presented starting from Monday, the day depicted in the bottom left figure is a Thursday.

policies that maximise overall expected success of the LTL
task.

In order to generate a policy at a given time t, we start
by creating an MDP model based on the topological map
T = hV,E,N,nav , PEi. This Navigation MDP at time t

is defined as a tuple Mt = hS, s, A, �i, where: (i) S =
V [ {sf} is a finite set of states, corresponding to the
topological nodes, plus a dump state sf , which is reached
after a navigation action failure; (ii) s 2 S is the initial
state, corresponding to the current position of the robot in
the environment; (iii) A = E is a finite set of actions,
corresponding to the edges in the topological map; (iv)
� : S ⇥A⇥ S ! [0, 1] is a probabilistic transition function,
where

P
s02S �(s, a, s0) 2 {0, 1} for all s 2 S, a 2 A. For

vi, vj 2 S, if there is an edge e = (vi, vj) in the topological
map, we define �(vi, e, vj) = pe(t), �(vi, e, sf ) = 1� pe(t)
and �(vi, e, v) = 0 for all v 2 S \ {vj , sf}.

In [20], it is shown how, given a co-safe LTL formula
' and a cost function defined over state-action pairs of the
MDP (in our case, such function would be the expected time
to navigate between two nodes in the environment), one can
create policies that minimize the accumulated cost to gener-
ate a trace of the system that satisfies '. Broadly speaking,
LTL allows for the specification of goals that are not simply
reaching a given target node in the environment, but can
be temporally extended goals that require, for example, a
set of nodes to be visited in a given order, or to visit a
given node while avoiding a set of forbidden nodes. The co-
safe fragment of LTL contains all the formulas that can be
satisfied by a finite trace of the system. An example of such
a task is a mail delivery robot that needs to distribute mail to
different rooms in a building, and minimise the time spent
in delivery so it can be available to do other tasks as soon
as possible.

We adapted the approach in [20], and use the PRISM

model checker [21] to generate a policy that maximizes
the probability of satisfying a co-safe LTL formula, i.e., we
generate the policy that fulfils the task while minimizing the
probability of occurrence of a continuous navigation failure.

The fact that we can specify tasks that involve visiting
more than one node in the topological map allows us to
analyse the different choices taken by the robot at different
times. More specifically, for the navigation MDPs obtained
from the topological map depicted in Fig. 2, we analyse the
policies obtained for formula (F v1_F v14), i.e., “visit either
node v1 or node v14”. This task allows the policy to choose
which node to try to visit first, taking into account the current
position of the robot, and the traversability probabilities for
the edges in the topological map. Furthermore, it is a type
of task that is common for mobile robots. For example, a
data gathering robot might want to unload its data, and in
nodes v1 and v14 there are data unloading stations it can use.
Thus, to increase the robustness of the system, we want the
robot to choose the station it can navigate to with the lowest
probability of failure.

In Table III, we show the probabilities of being able
to execute the task, starting on v5, without any navigation
failures, for different times of day. As expected, it is possible
to see that during the times where it is more probable
for people to be present in the office, the probability of
fulfilling the task without navigation failures is higher. This
is because the robot asks for human intervention when he has
problems navigating, and the presence of people to help it
increases the probability of fulfilling the navigation task (we
do not consider these interactions with humans as failures).
Furthermore, we also analyse the optimal action for v5 at
different times of day. This illustrates the choice the robot
makes on which area of the environment to visit when at
v5. We depict the choice of visiting v14 in light gray, and
the choice of visiting v1 in dark gray. This choice is heavily

J. Pulido Fentanes, B. Lacerda, T. Krajník, N. Hawes, and M. Hanheide. 
Now or later? predicting and maximising success of navigation actions 
from long-term experience. In ICRA, 2015.
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