
LLVM and Clojure
Runtime Native Code Generation in a Lisp

@timbaldridge
http://github.com/halgari/mjolnir

Why are you doing this?
● I enjoy micro-optimizations

Why are you doing this?
● I enjoy micro-optimizations
● I enjoy writing compilers

Why are you doing this?
● I enjoy micro-optimizations
● I enjoy writing compilers
● There are some modern optimizations not

available to programs running on the JVM

Why are you doing this?
● I enjoy micro-optimizations
● I enjoy writing compilers
● There are some modern optimizations not

available to programs running on the JVM
● Because I can!

Native code is Complex
● ISAs differ radically
● Processors differ between generations

○ Different sets of registers
○ Different instructions
○ Different methods of encoding instructions

● We live in a multi-ISA world
○ x86 is used in Desktops/Laptops
○ ARM is used in tablets, phones
○ PTX, AMD IL on GPUs

Native code is Complex
● Can we abstract all this complexity?
● Can native code generation be made

easier?

Enter: LLVM
● LLVM (Low Level Virtual Machine)
● Abstracts away machine code generation.
● Started in 2000 at University of Illinois
● Several companies hire developers to

improve LLVM
● Compilers have been written for: Ada, C,

C++, C#, D, Fortran, Objective-C, Haskell,
Ruby and many others using LLVM.

What does LLVM look like?

Can we do better?
● LLVM's interface is in C++
● Static Single Assignment (SSA)

○ A virtual machine with an infinite number of registers
○ Each register is assigned once
○ Uses blocks for flow control

■ Single entry/exit point for blocks
■ A block can be entered from multiple points and

can exit to multiple points
○ Simple, but not easy.

Can we do better?
● Building blocks requires the use of mutable

"builder" objects.
● But I want S-Exprs, not statements.
● I want to write in Clojure, not C++
● I want to make writing a compiler easy.

○ or at least easier

Can we do better?
● How do we "slay" the "dragons" of LLVM?

Can we do better?
● How do we "slay" the "dragons" of LLVM?
● With a big magical hammer!

Introducing Mjolnir
● Mjolnir is a library that makes generating

code with LLVM and Clojure easier.
● It not only wraps, it extends LLVM to allow

for new abstractions and easier construction
of code.

● The power of LLVM with the comfort of a
dynamic immutable lisp.

Layers of Mjolnir
● LLVM (C++ API)

Layers of Mjolnir
● LLVM-C (C API)
● LLVM (C++ API)

Layers of Mjolnir
● llvmc.clj (JNA Interface)
● LLVM-C (C API)
● LLVM (C++ API)

Layers of Mjolnir
● Mjolnir Expressions (Clojure Records)
● llvmc.clj (JNA Interface)
● LLVM-C (C API)
● LLVM (C++ API)

Layers of Mjolnir
● Constructors (Macros + Functions)
● Mjolnir Expressions (Clojure Records)
● llvmc.clj (JNA Interface)
● LLVM-C (C API)
● LLVM (C++ API)

Layers of Mjolnir
● Constructors (macros + functions)
● Mjolnir Expressions (Clojure records)
● Mjolnir SSA (transforms via datalog)
● llvmc.clj (JNA Interface)
● LLVM-C (C API)
● LLVM (C++ API)

Expressions
(ns example

 (:require [mjolnir.types :refer :all]

 [mjolnir.expressions :refer :all]))

(def I64 (->IntType 64))

(def IncFuncType (->FunctionType [I64] I64))

(def fnc (->Fn "inc" IncFuncType ["x"]

 (->IAdd (->Argument 0)

 (->Const I64 1)))

(def module (->Module "Test" [fnc]))

(build module)

Constructors
(ns example

(:require [mjolnir.types :refer :all]

 [mjolnir.constructors-init :as cinit])

(:alias c mjolnir.constructors))

(c/defn fib [Int64 x -> Int64]

 (c/if (c/< x 2)

 x

 (c/+ (fib (c/- x 1))

 (fib (c/- x 2)))))

Demo Time!
● Let's build a compiler (or two).

Native BF Compiler
● Has 30k "slots"
● 8 Instructions

< Decrements Index Pointer

> Increments Index Pointer

+ Increments value at IP

- Decrements value at IP

. Prints value at IP

, Reads in a char at IP

[Start loop

] End loop

Hello World in BF
++++++++++
[>+++++++>++++++++++>+++>+<<<<-]>++.
>+.+++++++..+++.>++.<<+++++++++++++++.
>.+++.------.--------.>+.>.

