
Wednesday, March 20, 2013

Introducing Pedestal

• Who: Relevance

• What: alpha release, open source libs

• Where: Clojure/West

• When: Now

• Why, How...

2

Wednesday, March 20, 2013

Goal

• Use clojure end-to-end to build rich
interactive collaborative Web applications
and services that scale

3

Wednesday, March 20, 2013

Archetype

App

App Service

Service Datomic
Storage
Service

Datomic
Transactor

4

Wednesday, March 20, 2013

Problems

• Services notifying apps

• Building complex UIs in browser

5

Wednesday, March 20, 2013

Service Plumbing

• Interceptor mechanism

• Long polling, server-sent events

• Routing, url generation

6

Wednesday, March 20, 2013

Ring Middlewares

• Chained fns bound to thread’s stack

A B C

7

Wednesday, March 20, 2013

• Maps of fns not bound to thread’s stack

A B C

enter

leave

enter

leave

enter

leave

Interceptors

8

Wednesday, March 20, 2013

A B C

enter

leave

enter

leave

enter

leave

pause

resume

• Can pause/resume across threads

• Supports bindings and error propagation

Pause/Resume

9

Wednesday, March 20, 2013

Ring Compatibility

• As compatible as possible

• Same request/response maps

• Core middlewares refactored and accepted

• Interceptor versions provided

• Easy to port existing code

10

Wednesday, March 20, 2013

Notifications

• Thread management enables long polling

• Park request as needed

• Also, server-sent-events

• Built on low-level streaming API

11

Wednesday, March 20, 2013

Routes and URLs

(defn hello-world [req]
 (ring/response (map inc [1 2 3]))

(defroutes routes
 [[[“/hello-world” {:get hello-world}]]])

(def url-for (routes/url-for-routes routes))

(url-for ::hello-world)
;;=> “/hello-world”

ring handler fn
native edn serialization

routes as data

make urls
from routes

12

Wednesday, March 20, 2013

Problems

• Services notifying apps

• Building complex UIs in browser

13

Wednesday, March 20, 2013

3 Simple Steps

• Event handler affects state

• Figure out what changed

• Update DOM

14

Wednesday, March 20, 2013

What to compare?

• JS: event, old OR new state, DOM

• CLJS: event, old AND new state, DOM

• Can remove DOM from equation!

15

Wednesday, March 20, 2013

Browser Process

ViewApp
Messages

Changes

DOM

App vs. View

• App: behavior

• View: presentation

16

Wednesday, March 20, 2013

App Model

• Encapsulate behavior and state

• Input: messages

• Output: app tree deltas

• Implemented as pure functions

• Fns wired up declaratively

17

Wednesday, March 20, 2013

Messages

{msg/topic :count-transform
 msg/type :inc
 :key :a}

• Map with topic and type

• Other keys as needed

• Used for input to app

• Used to control aspects
of engine

18

Wednesday, March 20, 2013

App Tree Deltas

[:node-create [:a :b :c] :map]
[:node-destroy [:a :b :c]]
[:value [:a :b :c] {:count 2}]
[:attr [:a :b :c] :active true]
[:transform-enable [:a :b :c] :send-info
 [{msg/topic :some-model
 msg/type :send-name
 (msg/param :name) {}}]]
[:transform-disable [:a :b :c] :send-info]

op path args

19

Wednesday, March 20, 2013

App Tree is Logical

• Consumer may or may not realize (portions
of) tree as real structure

:a

:e:d

:c:b

{:value 42
:attributes {:disabled true}
:transforms {:change [{:node :e}]}
20

Wednesday, March 20, 2013

Transform

• Fn that modifies state

• Message, state input

• Last output state kept

• Only changes flow

App

Transform

Input Queue

App Model Queue

State

21

Wednesday, March 20, 2013

App
Input Queue

App Model Queue

count-
transform

State

Transform

(defn count-transform [t-state message]
 (condp = (msg/type message)
 msg/init (:value message)
 :inc (inc (or t-state 0))
 t-state))

(put-message (:input-queue app)
 {msg/topic :count-transform msg/type :inc}

([:value [:io.pedestal.app/view-count-transform] 10 11])

22

Wednesday, March 20, 2013

Transform output

;; message input...
{msg/topic :count-transform msg/type :inc}

;; deltas output...
([:value [:io.pedestal.app/view-count-transform] 10 11])

;; message input...
{msg/topic :count-transform msg/type :inc}

;; deltas output...
([:value [:io.pedestal.app/view-count-transform] 11 12])

...

23

Wednesday, March 20, 2013

App
Input Queue

App Model Queue

count-
transform

State

More State

(defn count-transform [t-state message]
 (condp = (msg/type message)
 msg/init (:value message)
 :inc (update-in (or t-state {})
 (:key message)
 inc)
 t-state))

(put-message (:input-queue app)
 {msg/topic :count-transform msg/type :inc :key :a}

([:value [:io.pedestal.app/view-count-transform]
 {:a 10 :b 9} {:a 11 :b 9}])

24

Wednesday, March 20, 2013

Affecting Parts of State
;; put a message in...
{msg/topic :count-transform msg/type :inc :key :a}

;; get deltas out...
 ([:value [:io.pedestal.app/view-count-transform]
 {:a 10 :b 9} {:a 11 :b 9}])

;; put a message in...
{msg/topic :count-transform msg/type :inc :key :b}

;; get deltas out...
 ([:value [:io.pedestal.app/view-count-transform]
 {:a 11 :b 9} {:a 11 :b 10}])

...

25

Wednesday, March 20, 2013

App
Input Queue

App Model Queue

Transform

Combine Combine

Combine

• Fn that merges or splits
state(s)

• Transform and/or
combine state(s) input

• Engine keeps last output

• Only changes flow

26

Wednesday, March 20, 2013

App
Input Queue

App Model Queue

count-
transform

a-
combine

b-
combine

Combine

(defn a-combine [c-state t-name
 t-old-val t-new-val]
 (:a t-new-val))

(defn b-combine [c-state t-name
 t-old-val t-new-val]
 (:b t-new-val))

([:value [:a-combine] 10 11])

{msg/topic :count-transform msg/type :inc :key :a}

27

Wednesday, March 20, 2013

App
Input Queue

App Model Queue

count-
transform

a-
combine

b-
combine

Combine

(defn a-combine [c-state t-name
 t-old-val t-new-val]
 (:a t-new-val))

(defn b-combine [c-state t-name
 t-old-val t-new-val]
 (:b t-new-val))

([:value [:b-combine] 9 10])

{msg/topic :count-transform msg/type :inc :key :b}

28

Wednesday, March 20, 2013

App
Input Queue

App Model Queue

count-
transform

a-
combine

b-
combine

total-
combine

Combine

(defn a-combine [c-state t-name
 t-old-val t-new-val]
 (:a t-new-val))

(defn b-combine [c-state t-name
 t-old-val t-new-val]
 (:b t-new-val))

(defn total-combine [c-state inputs]
 (apply + (map :new (vals inputs))))

([:value [:b-combine] 10 11] [:value [:total-combine] 21 22])

{msg/topic :count-transform msg/type :inc :key :b}

29

Wednesday, March 20, 2013

App
Input Queue

App Model Queue

Transform

Combine Combine

Emit

Emit

• Fn that converts state(s)
to tree deltas

• Overrides default tree
mapping

30

Wednesday, March 20, 2013

App
Input Queue

App Model Queue

count-
transform

a-
combine

b-
combine

counter-
emit

Emit

(defn counter-emit
 ([inputs] [{:counter {:a {:value 0}
 :b {:value 0}}}])
 ([inputs changed-inputs]
 (concat []
 (when (changed-inputs :a-combine)
 [[:value [:counter :a]
 (-> inputs :a-view :new)]])
 (when (changed-inputs :b-combine)
 [[:value [:counter :b]
 (-> inputs :b-view :new)]]))))

([:value [:counter :b] 11 12])

{msg/topic :count-transform msg/type :inc :key :b}

31

Wednesday, March 20, 2013

• Effect fn

• transform or
combine state input

• msgs for services
output

• queued after flow

• Continue fn

• combine state input

• msgs for transforms
output

• sent during flow

Messages in a flow

32

Wednesday, March 20, 2013

Transform

Effect

Combine

Continue

EmitMessage
Source

Services

View

All the pieces...

33

Wednesday, March 20, 2013

...put together

App

combine

combinecombine combine

combine

trans-
form 1

emit

trans-
form 2 effect

emit emit

services

App Model Queue

Input Queue

continue

Output Queue

services

View

34

Wednesday, March 20, 2013

Focus

• Focus filters deltas

• by name

• by path

• Set by consumer

• defaults to all

• Helpful “navigtion”

35

App

App Model Queue

Emit

Focus

:a

:b :f :g

:c :d :e :h

:i :j

Emit

Wednesday, March 20, 2013

Benefits of data flow

• Write small pure fns

• No big comparator

• Let engine track state changes

• Only the necessary fns get called

• Projects all the way out to consumer

36

Wednesday, March 20, 2013

Making an App

App
Input Queue

App Model Queue

count-
transform

a-
combine

b-
combine

counter-
emit

(def counter-dataflow
 {:transform {:count-transform {:init {:a 0 :b 0}
 :fn transform-count}}
 :combine {:a-combine {:fn a-combine
 :inputs #{:count-transform}}
 :b-combine {:fn b-combine
 :inputs #{:count-transform}}}
 :emit {:counter-emit {:fn counter-emit
 :inputs #{:a-combine :b-combine}}}})

(def app (app/build counter-dataflow))

37

Wednesday, March 20, 2013

Consuming App Output

• App produces logical tree deltas

• Provide a fn to consume them

(defn console-renderer [out]
 (fn [deltas input-queue]
 (binding [*out* out]
 (doseq [d deltas] (println d)))))

(def app-model
 (render/consume-app-model app (console-renderer *out*)))
(app/begin app)

38

Wednesday, March 20, 2013

View Model

• Encapsulate presentation logic and state

• Input: deltas from logical app tree

• Output: messages

• Implemented as fn(s) that

• update UI

• handle events

39

Wednesday, March 20, 2013

Push Renderers

• Map tree deltas
to fns

• Maintain
structure for
portion(s) of
tree in focus

(def render-config
 [[:node-create []
 render-page]
 [:value [:counter :a]
 render-a-view]
 [:value [:counter :b]
 render-b-view]])

(def app-model
 (render/consume-app-model
 app
 (push/renderer
 render-config)))

op
path

fn

40

Wednesday, March 20, 2013

Simple render fns

(defn render-page
 [renderer [op path old-value new-value] input-queue]
 (dom/append! (dom/by-id "content") "<h1 id=\"a\">a</h1>")
 (dom/append! (dom/by-id "content") "<h1 id=\"b\">b</h1>"))

(defn render-a-view
 [renderer [op path old-value new-value] input-queue]
 (dom/set-text! (dom/by-id "a") (str "a: " new-value)))

(defn render-b-view
 [renderer [op path old-value new-value] input-queue]
 (dom/set-text! (dom/by-id "b") (str "b: " new-value)))

41

Wednesday, March 20, 2013

Result!

42

Wednesday, March 20, 2013

Problems

• Services notifying apps

• Building complex UIs in browser

43

Wednesday, March 20, 2013

App / View Benefits

• Clean separation of concerns

• Build, test app outside browser

• Generic data renderer can drive app before
UI is ready

• Record/playback changes to build, test,
debug rendering code

44

Wednesday, March 20, 2013

Getting Started

• Run chat sample, look at app and service
code

• lein new pedestal-service my-service

• lein new pedestal-app my-app

45

Wednesday, March 20, 2013

Thanks!

• http://pedestal.io

• http://thinkrelevance.com

46

Wednesday, March 20, 2013

http://pedestal.io
http://pedestal.io
http://thinkrelevance.com
http://thinkrelevance.com

