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Introductory example
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 Let us compute two difficult numbers, add them, and display 
the result

 Sequential (aka, obsolete) version:
val x = computeToughNumber1()
val y = computeToughNumber2()
val z = x+y
println(z)

 Let us now compute x and y concurrently, in the hope that a 
modern computer (or network of computers) can parallelize the 
computations
 A bit of history ...



Java monitors
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private final TestMonitors self = this;

private boolean xDone = false;

private int xValue = 0;

private boolean yDone = false;

private int yValue = 0;

private boolean zDone = false;

private int zValue = 0;

private void run()

      throws InterruptedException {

  new ComputeX().start();

  new ComputeY().start();

  new ComputeZ().start();

  final int z;

  synchronized (this) {

    while (!zDone)

      wait();

    z = zValue;

  }

  System.out.println(z);

}

private class ComputeX extends Thread {

  public void run() {

    final int x = 1;

    synchronized (self) {

      xValue = x;

      xDone = true;

      self.notifyAll();

    }

  }

}

private class ComputeY extends Thread {

  public void run() {

    final int y = 2;

    synchronized (self) {

      yValue = y;

      yDone = true;

      self.notifyAll();

    }

  }

}

private class ComputeZ extends Thread {

  public void run() {

    try {

      final int x, y;

      synchronized (self) {

        while (!xDone || !yDone)

          wait();

        x = xValue;

        y = yValue;

      }

      final int z = x + y;

      synchronized (self) {

        zValue = z;

        zDone = true;

        self.notifyAll();

      }

    } catch (InterruptedException error) {

      // arg... what do I do now?

    }

  }

}



Java executors and futures
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private void run() throws Exception {

  ExecutorService executor =

    Executors.newFixedThreadPool(4);

  Future<Integer> xFuture =

    executor.submit(new ComputeX());

  Future<Integer> yFuture =

    executor.submit(new ComputeY());

  Future<Integer> zFuture =

    executor.submit(new ComputeZ(

      xFuture, yFuture));

  System.out.println(zFuture.get());

}

private class ComputeX

    implements Callable<Integer> {

  public Integer call() {

    return 1;

  }

}

private class ComputeY

    implements Callable<Integer> {

  public Integer call() {

    return 2;

  }

}

private class ComputeZ

    implements Callable<Integer> {

  private final Future<Integer> xFuture;

  private final Future<Integer> yFuture;

  public ComputeZ(Future<Integer> xFuture,

      Future<Integer> yFuture) {

    this.xFuture = xFuture;

    this.yFuture = yFuture;

  }

  public Integer call() throws Exception {

    return xFuture.get() + yFuture.get();

  }

}



Scala runners and futures
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val x = future(1)
val y = future(2)
val z = future(x() + y())

println(z())

 Much better!
 Two remaining issues

 Need to write x() instead of just x to read the value
 Blocking: this example uses 4 OS threads on its own, but they are 

blocking most of the time



Scala futures of SIP-14
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 Designed to solve the blocking issue
 However, the syntax gets trickier again
 Forces the programmer to think 

asynchronously

val xFut = future(1)
val yFut = future(2)

val zFut = for {
  x <- xFut
  y <- yFut
} yield {
  x + y
}

zFut onSuccess {
  println(_)
}

 Challenge: can we do better?



Ozma

© 2012 S. Doeraene.  All rights reserved.

7

 Easy as can be
 No need for x(): the type of x is Int, not Future[Int]

 The future behavior is inside the language (dataflow)
 Ozma threads are lightweight, i.e., they are not OS threads

 The blocking issue does not appear
 What appears to be blocking is actually posting to the dataflow 

variable a continuation with the remaining of the thread's job

val x = future(1)
val y = future(2)
val z = future(x+y)

println(z)



Overview of the talk
 Scala + Oz  Ozma⇒
 Declarative dataflow

 Lightweight threads and the wonders of single assignment val
 Three powerful principles

 Message passing and nondeterminism
 This is also very important, so let’s add it cleanly

 Implementation on the JVM
 Issues, solutions and work-arounds

 Conclusion
 The future of Ozma, distribution, and fault tolerance

© 2012 S. Doeraene.  All rights reserved.

8



Scala + Oz  Ozma⇒
 Oz is a multiparadigm language that has been 

used for language experiments by a bunch of 
smart but eccentric language researchers since 
the early 1990s (see www.mozart-oz.org )
 Constraint programming, network-transparent 

distributed programming, declarative/procedural 
GUI programming, concurrent programming

 Textbook “Concepts, Techniques, and Models
of Computer Programming”, MIT Press, 2004

 Oz supports concurrent programming based on a 
declarative dataflow core with lightweight threads

 Ozma extends Scala with a new concurrency 
model based on the Oz dataflow ideas
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One third of the
book is about 
concurrency

⇒

http://www.mozart-oz.org/


Ozma implementation

 Ozma’s implementation combines a modified Scala compiler
and a modified Oz compiler, and targets the Oz VM (Mozart).
It was first released in June 2011.
 The Oz VM has efficient support for lightweight threads, dataflow

synchronization, by-need synchronization, and failed values

 Full source and binaries (with open-source license) available at:
 https://github.com/sjrd/ozma

 Full documentation available at:
 http://www.info.ucl.ac.be/~pvr/MemoireSebastienDoeraene.pdf

 Download the compiled binaries and try it out!
 Or compile it yourself with Scala ≥ 2.9.0, Mozart ≥ 1.4.0, and Ant ≥ 1.6
 It runs under Linux, Mac OS X, and maybe Windows

 All the Ozma examples in this talk are running code
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https://github.com/sjrd/ozma
http://www.info.ucl.ac.be/~pvr/MemoireSebastienDoeraene.pdf


Ozma extends Scala with a 
new concurrency model

 The heart of the model is declarative dataflow
 Further extended with laziness (still declarative) and ports (for nondeterminism)
 This allows adding nondeterminism exactly where needed and no more 
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waitNeeded
(by-need synch.)
byNeedFuture,

lazified lists

ports
(FIFO 

mailboxes)
newPortObject

declarative dataflow

lazy declarative dataflow

message passing

The heart of the
new model is
deterministic

In roman:
the new concepts

In italics:
useful abstractions

lightweight threads
dataflow values (val)
futures, streams (lists 

with dataflow tail)



Why deterministic concurrency?

 Determinism has strong limitations!
 Any concurrent execution always gives the same results
 Even a simple client/server can’t be written

 But determinism has big advantages too
 Race conditions are impossible by design
 With determinism as default, we can reduce the need for nondeterminism (in the 

client/server: it’s needed only at the point where the server accepts requests)
 Any functional program can be made concurrent without changing the result
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Client 1

Client 2

Server

This client/server can’t 
be written in a 

deterministic model!

It’s because the server 
accepts requests 

nondeterministically 
from the two clients



Deterministic concurrency:
the right default?
 Parallel programming has finally arrived

 Multicore processors: dual and quad today, a dozen tomorrow, a hundred
in a decade, most apps will do it

 Distributed computing: data-intensive with tens of nodes today (NoSQL, 
MapReduce), hundreds and thousands tomorrow, most apps will do it

 Something fundamental will have to change

 Sequential programming can’t be the default (it’s a centralized bottleneck)
 Libraries can only hide so much (interface complexity, distribution structure)

 Concurrency will have to get a lot easier

 Deterministic concurrency is functional programming!
 It can be extended cleanly to distributed computing

 Open network transparency (implemented in Oz since 1999)
 Modular fault tolerance (implemented in Oz since 2007)
 Large-scale distribution (on the way…)
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Such an old idea, why isn’t it 
used already?
 Deterministic concurrency has a long history that starts in 1974

 Gilles Kahn.  The semantics of a simple language for parallel programming.  In IFIP 
Congress, pp. 471-475, 1974.  Deterministic concurrency.

 Gilles Kahn and David B. MacQueen.  Coroutines and networks of parallel processes.  In 
IFIP Congress, pp. 993-998, 1977.  Lazy deterministic concurrency.

 Why was it forgotten for so long?
 Message passing and monitors arrived at about the same time:

 Carl Hewitt, Peter Bishop, and Richard Steiger.  A universal modular ACTOR formalism for artificial 
intelligence.  In 3rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 235-245, Aug. 
1973.

 Charles Antony Richard Hoare.  Monitors: An operating system structuring concept.  Communications 
of the ACM, 17(10):549-557, Oct. 1974.

 Actors and monitors handle nondeterminism, so they are better.  Right?

 Dataflow computing also has a long history that starts in 1974
 Jack B. Dennis. First version of a data flow procedure language.  Springer Lecture Notes in 

Computer Science, vol. 19, pp. 362-376, 1974.
 Dataflow remained a fringe subject since it was always focused on parallel programming, 

which only became mainstream with the arrival of multicore processors in mainstream 
computing (e.g., IBM POWER4, the first dual-core processor, in 2001).

© 2012 S. Doeraene.  All rights reserved.
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Declarative Dataflow
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Declarative dataflow

 All val values can do dataflow
 They are single assignment
 The addition operation waits 

until both x and y are bound
 This does both synchronization 

and communication

© 2012 S. Doeraene.  All rights reserved.
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val x: Int
val y: Int
val z: Int

thread { x = 1 }
thread { y = 2 }
thread { z = x+y }

println(z)

 Programs with declarative dataflow are always deterministic
 This program will always print 3, independent of the scheduler

x = 1

y = 2

z = x+y
Thread execution
(executes from left to right)

Dataflow synchronization



Using the thread statement
as an expression

 Exactly the same behavior as 
the previous example

 Using the thread statement in 
this way can often simplify the 
syntax of concurrent programs
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val x = thread(1)
val y = thread(2)
val z = thread(x+y)

println(z)

x = thread(1)

y = thread(2)

z = thread(x+y) println(z)

x

y

z

Each green box is
a concurrent agent

Each arrow is a 
shared dataflow value



Handling exceptions
in asynchronous computations

 What happens if the asynchronous computation (in thread) throws an 
exception?

 The only reasonable possibility is to raise the exception where x is needed
 Well-known behavior of futures

© 2012 S. Doeraene.  All rights reserved.
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try {
  val list: List[Int] = Nil
  val x = thread(list.head)  // list is empty!
  println(x)
} catch {
  case _: java.util.NoSuchElementException =>
    println(“The list was empty”)
}



Futures and failed values

 If the evaluation of value throws an exception, the exception is wrapped in 
a failed value using the Ozma primitive makeFailedValue

 Waiting for a failed value throws the wrapped exception
 A failed value has type Nothing, the bottom type of Scala
 Now we can write:

val x = future(list.head)
and the exception will be properly propagated to the current thread
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def future[A](value: => A): A = {  // value is by-name
  thread {
    try {
      value  // value is evaluated here
    } catch {
      case NonFatal(throwable) =>
        makeFailedValue(throwable)
    }
  }
}



Declarative dataflow 
extensions to Scala

 Lightweight threads: hundreds of thousands of threads can be
active simultaneously (like Erlang, by the way)

thread { println(“New lightweight thread”) }

 Dataflow values: every val can be a single-assignment variable.  
Operations that need the value will wait until it is available.

val x = thread(1)  // binds x in its own thread
println(x+10)      // the addition waits for x 
 

 By-need (lazy) execution: wait until value is needed

val x: Int
thread { waitNeeded(x); x = factorial(69) }
println(x)    // need to print causes calculation of x

© 2012 S. Doeraene.  All rights reserved.
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Streams: lists as dataflow 
communication channels

 A stream is a list with an unbound dataflow tail
 It can be extended indefinitely or terminated with Nil

 Any list function can read a stream (it’s exactly like reading a list)
 It will automatically wait when it finds an unbound tail

 Like the foreach operation in this example
 If put inside a thread, the list function becomes a concurrent agent

© 2012 S. Doeraene.  All rights reserved.
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val x: List[Int]
val ints = 1 :: 2 :: 3 :: 4 :: x  // unbound tail

thread { ints foreach println }   // a printing agent

val y: List[Int]
x = 5 :: 6 :: 7 :: y    // the agent will print these



The magic of declarative 
dataflow

 Both versions print the same final result 1, 4, 9, 16, …, 100
 So what’s the difference?  What does concurrency buy you?

 The sequential version: nothing is output for 10 seconds, and then the whole list
 The concurrent version: a new result is output every second
 Declarative dataflow turns batch programs into incremental programs

22

object Test {
  def main(args: Array[String]) {
    val range = gen(1, 10) // sequential version
    val result = range map (x => x*x)
    result foreach println

    val range2 = thread(gen(1, 10)) // concurrent version
    val result2 = thread(range map (x => x*x))
    result2 foreach println
  }
  def gen(from: Int, to: Int): List[Int] = {
    sleep(1000)
    if (from > to) Nil
    else from :: gen(from+1, to) // tail-recursive in Ozma
  }
} 
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Pipelines using streams

 A list function put in a thread becomes a concurrent agent
 List functions must be tail-recursive for this to work

 This is automatically true in Ozma (ensured by compiler transformation)

© 2012 S. Doeraene.  All rights reserved.
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def generateFrom(n: Int): List[Int] =
   n :: generateFrom(n+1)

val integers = thread(generateFrom(0))
val evens = thread(integers filter (_ % 2 == 0))
val tenFirst = thread(evens take 10)
tenFirst foreach println

generateFrom filter take 10
foreach 
println

integers evens tenFirst



Three powerful principles

 Any functional program can be made concurrent
without changing the result by adding calls to thread
 Threads can be added anywhere in the program
 Turns batch into incremental (removes roadblocks)

 Any list function can become a concurrent agent
by executing it in a thread
 Because list functions in Ozma are tail-recursive,

the agent has no memory leak (stack size and heap size are 
constant)

 Any computation, functional or not, can be made lazy
by adding calls to waitNeeded
 Syntactic sugar is provided with byNeedFuture and 

.lazified
© 2012 S. Doeraene.  All rights reserved.
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From map to concurrent map

 In concMap, all evaluations of f execute concurrently
 It is even possible to call concMap when f is not known 

(unbound).  This will create a list containing unbound values, like 
futures: they will be evaluated as soon as f is known (bound to a 
function).

© 2012 S. Doeraene.  All rights reserved.
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def concMap[A, B](list: List[A], f: A => B): List[B] = {
  if (list.isEmpty) Nil
  else thread(f(list.head)) :: concMap(list.tail, f)
}

def map[A, B](list: List[A], f: A => B): List[B] = {
  if (list.isEmpty) Nil
  else f(list.head) :: map(list.tail, f)
}



Map as a concurrent agent

 Wrapping the calls to gen, filter, and map within threads turns them 
into concurrent agents
 Note that foreach is also an agent, living in the main thread

 As new elements are added to the input stream, new computed elements 
will appear on the output stream

© 2012 S. Doeraene.  All rights reserved.
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def gen(from: Int): List[Int] = from :: gen(from+1)

def displayEvenSquares() {
  val integers = thread(gen(0))
  val evens = thread(integers filter (_ % 2 == 0))
  val evenSquares = thread(evens map (x => x*x))
  evenSquares foreach println
}

Concurrent agent



Message Passing
and Nondeterminism
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Managing nondeterminism 
with ports

 So far, all our programs have been deterministic

 Determinism is a good default, but for real programs
we need nondeterminism too!

 Let’s add nondeterminism in a nice way

 One way is to allow multiple producers (or clients) to add 
messages in a single stream (read by an agent, or server)

 A port is comparable to an unbounded FIFO mailbox

 Any thread can send a value to a port
 There is no receive operation; all messages appear in an 

associated stream
 The senders and the receivers of a port can themselves be 

deterministic computations; the only nondeterminism is the
order in which sent values appear on the port’s stream

© 2012 S. Doeraene.  All rights reserved.
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Introducing ports

 The values 1, 2, and 3 will be displayed in some order 
(nondeterminism)
 The actual order depends on the thread scheduler

 No memory leak: garbage collection will remove the parts 
of the stream already read

© 2012 S. Doeraene.  All rights reserved.
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val (s, p) = newPort[Int]  // Create port p with stream s

thread { p.send(1) }
thread { p.send(2) }
thread { p.send(3) }

thread { s foreach println }  // Print elements of the
                              // port’s stream one by one



Merging two streams that are 
fed concurrently (broken)

 Does not work if the two streams do not grow exactly at 
the same pace

 Fundamental issue: we cannot know a priori from which 
stream the following value will come (nondeterminism)

 A port solves exactly this problem

© 2012 S. Doeraene.  All rights reserved.
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def mergeStreams[A](s1: List[A], s2: List[A]): List[A] = {
  (s1, s2) match {
    case (h1 :: t1, h2 :: t2) =>
      h1 :: h2 :: mergeStreams(t1, t2)
  }
}



Merging two streams that are 
fed concurrently (correct)

 Two declarative agents read the input streams, and 
forward messages into the port

 The port accepts elements from both inputs in a 
nondeterministic order (dependent on time and scheduler)

© 2012 S. Doeraene.  All rights reserved.
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def mergeStreams[A](s1: List[A], s2: List[A]): List[A] = {
  val (result, p) = newPort[A]
  thread { s1 foreach p.send }
  thread { s2 foreach p.send }
  result
}



Building nondeterministic 
agents with ports

 A port object is an actor.  It reads messages sequentially from the stream 
and uses the messages to update its internal state.

 The foldLeft operation updates the internal state as messages are 
received (note: si is a received message):

     (…(((init handler s0) handler s1) handler s2) … )

 The current value of the accumulator of foldLeft is the agent’s internal state
 Neat trick: foldLeft is a function used as a concurrency pattern

© 2012 S. Doeraene.  All rights reserved.
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def newPortObject[A, B](init: B)(
    handler: (B, A) => B) = {
  val (s, p) = Port.newPort[A]
  thread { s.foldLeft(init)(handler) }
  p
}

Initial state State updater



Agents playing ball

 Each player receives the ball 
and sends it to a randomly 
chosen other player

 Each player counts the 
number of balls received

 The port allows a player to 
receive from either of the 
others (nondeterminism)

© 2012 S. Doeraene.  All rights reserved.
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Player 1

Player 2

Player 3

object BallGame {
  type Ball = Unit
  val ball: Ball = ()
  type Player = Port[Ball]
  def main(args: Array[String]) {
    val player1: Player
    val player2: Player
    val player3: Player
    player1 = makePlayer(“Player 1”, Seq(player2, player3)) 
    player2 = makePlayer(“Player 2”, Seq(player3, player1))
    player3 = makePlayer(“Player 3”, Seq(player1, player2))
    player1.send(ball)
    while (true) sleep(1000)
  }
  def makePlayer(id: Any,
      others: Seq[Player]): Player = {
    Port.newPortObject(0) { (st: Int, b: Ball) =>
      println(“%s received the ball %d times”
        format (id, st+1))
      Random.rand(others).send(b)
      st+1
    }
  } 
} 



Ozma on the JVM
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Core requirements
 Every val must be dataflow-enabled

 Single-assignment
 Implicit synchronization
 Failed values

 Threads should be lightweight
 Programming techniques of Ozma encourage to spawn 

many threads
 Blocking should be avoided: waiting for an unbound value 

should post a continuation to the value's suspension list
 As far as we know, there is no way to emulate lightweight 

threads with the current JVM
 Ideas welcome!

© 2012 S. Doeraene.  All rights reserved.
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Implementing dataflow
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trait Dataflow[@specialized +A] {
  def ask: A
}

class DataflowVar[@specialized A] extends Dataflow[A] {
  private var value: A = _
  private var bound = false

  def this(v: A) {
    this()
    value = v
    bound = true
  }

  def tell(v: A): Unit = ???
  def ask: A = ???
}

 A Dataflow[T] looks like a 
blocking Future[T]

 A DataflowVar[T] looks like 
a Promise[T] (plus the 
corresponding Future[T])



Implementing dataflow
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  def tell(v: A) {
    synchronized {
      if (!bound) {
        value = v
        bound = true
        notifyAll()
      } else if (value == v) {
        // telling twice the same thing is OK
      } else {
        // failure (not declarative!)
        throw new FailureError(value, v)
      }
    }
  }



Implementing dataflow
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  def ask: A = {
    synchronized {
      while (!bound)
        wait()
      value
    }
  }

def thread(body: => Unit) {
  new Thread() {
    override def run() = body
  }.start()
}



Using DataflowVar[A]
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val x = new DataflowVar[Int]
val y = new DataflowVar[Int]
val z = new DataflowVar[Int]

thread { x.tell(1) }
thread { y.tell(2) }
thread { z.tell(x.ask + y.ask) }

println(z.ask)

 We lose transparency, of course
 Can be improved with implicit conversions of A to 

DataflowVar[A] and from Dataflow[A], but it is still limited

x.tell(1)

y.tell(2)

z.tell(x.ask + y.ask)



Implementing thread
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  def thread[@specialized A](
      body: => Dataflow[A]): Dataflow[A] = {
    val result = new DataflowVar[A]
    new Thread() {
      override def run() = result.tell(body.ask)
    }.start()
    result
  }



Implementing Port
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class Port[-A] private (
    stream: DataflowVar[DataflowList[A]] {
  private var tail: DataflowVar[DataflowList[A
                            @uncheckedVariance]] = stream

  def send(element: A) {
    val newTail = new DataflowVar[DataflowList[A]]
    val cons = element :: newTail
    synchronized {
      tail.tell(cons)
      tail = newTail
    }
  }
}  A DataflowList[A] is akin to a List[A], but its tail 

is itself a Dataflow[DataflowList[A]]



Implementing Port
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object Port {
  def newPort[A]: (Stream[A], Port[A]) = {
    val stream = new DataflowVar[DataflowList[A]]
    val port = new Port[A](stream)
    (stream, port)
  }
}

type Stream[+A] = Dataflow[DataflowList[A]]



Core requirements revisited
 Every val must be dataflow-enabled

 Every variable of type T should be a Dataflow[T]
 Every single-assignment val of type T should be a 

DataflowVar[T]
 Consequence: no need for DataflowList[A], since the 

tail of List[A] is implicitly a Dataflow[List[A]].
 Can be achieved by compiler transformations!

 Modify scalac to add these transformations

© 2012 S. Doeraene.  All rights reserved.
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scalac in a nutshell
 The Scala compiler consists of several transformation phases
 Front-end phases

 The parser builds an untyped AST from the source code
 namer, packageobjects and typer yield a typed AST

 Simplifying phases
 Various phases successively simplify the typed AST until only 

Java-like classes and constructs remain
 One particular phase is worth mentioning: erasure, which 

eliminates all the generic types

 Back-end phases
 icode turns the simplified typed AST into a portable stack-based 

bytecode called the I-code
 Several optimization phases
 genjvm turns the I-code into JVM bytecode and .class files

© 2012 S. Doeraene.  All rights reserved.
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Naive transformation

 Add a phase dataflow in the compiler between tailcalls and 
specialize (the latter being itself just before erasure).

 Do not touch subclasses of AnyVal, nor Dataflow[A] and 
DataflowVar[A] themselves.

 Retype all Scala-declared variables, fields, parameters and return 
values from their type T to Dataflow[T].

 Retype single-assignment val's of type T to DataflowVar[T], 
and initialize them with a new DataflowVar[T].

 Turn assignments to single-assignment val's into calls to tell().
 Prefix all method calls by .ask. Also add .ask in if's and while's.
 When calling a native method (e.g., Int.+), add .ask to all 

parameters, and wrap the result into a DataflowVar.
 And let subsequent phases of the compiler deal with all this.
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Erasure and its endless issues

 Basic fact: after erasure, all entities of type Dataflow[T] will be 
retyped as Dataflow.

 Type tests with isInstanceOf and asInstanceOf are broken.
 Pattern matching is therefore also broken.
 Overloads with the same number of arguments, but different types of 

parameters, erase to the same signature and clash:
 foo(x: Int) -> foo(x: Dataflow[Int]) -> foo(x: Dataflow)
 foo(x: Bar) -> foo(x: Dataflow[Bar]) -> foo(x: Dataflow)
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Working after erasure
 We do not want to mess with the types before erasure

 Let us do it after ... actually the later the better (could be just 
before icode)

 Retype all variables, fields, parameters and return values of 
reference types to Dataflow, of type Int to DataflowInt, etc. 
(manual specialization)
 Overload clashes due to the return value are supposed to be only 

bridge methods, which can be removed in this case
 We still get overload clashes with parameter types!

 Retype single assignment val's in a similar way to DataflowVar
 No overloading clash here: they are all local variables

 Actually we can forget the Dataflow abstraction, and use only 
DataflowVar. Variance checks are behind us anyway.
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Dealing with overloads
 We still have the following clash:

 foo(x: String) -> foo(x: Dataflow)
 foo(x: List) -> foo(x: Dataflow)

 Three possible workarounds
 foo(x: String) -> foo(x: Dataflow, x': String)

 Double the number of parameters just for the sake of avoiding 
overloading clashes

 foo(x: String) -> foo(x: DataflowString)
 Have a specialized DataflowT class for every class T in the 

system
 foo(x: String) -> foo$java.lang.String(x: Dataflow)

 Rename the method to get rid of overloading
 Probably the best choice
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Interop with Java classes
 We have no power over Java-defined classes

 We cannot change their internals to support dataflow
 When calling a Java method from Ozma code

 Add .ask to parameters and wrap the result in a DataflowVar
 Java classes are considered “native”

 To support calls to Ozma methods from Java code
 Instead of renaming and retyping methods, duplicate them
 Keep the original method, and make it call the dataflow-enabled 

version with the appropriate wrappings and unwrappings in 
DataflowVar's.

 Interfaces must be duplicated: the original version and the version 
with dataflow-enabled methods
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Ozma on the JVM: is it viable?
 It seems possible to implement Ozma on the JVM

 Possible, but with an incredible overhead
 Wrapping of all values in DataflowVar's

 Calls to methods of DataflowVar will likely be inlined by the JVM, 
but it is a small consolation

 Double the number of methods of every class, to support 
interoperability with Java classes
 This includes basic overriding of Java-defined methods

 Threads are not lightweight: we kept the JVM threads
 The main benefit of Ozma is lost, compared to the existing 

blocking futures of Scala
 => possible, but probably not practical
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Conclusion
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Ozma and its model
 Ozma makes concurrent programming simpler

 The heart of a concurrent program is deterministic.
Nondeterminism is added just where it’s needed.

 Correctness is easy: the deterministic part is purely functional
and the nondeterministic part uses message passing

 The implementation uses the Oz virtual machine (Mozart)

 It’s a complete implementation of Scala on a new VM that’s not 
the JVM nor .NET, so you can see it as a new implementation of 
Scala

 It’s not interoperable with Java, though.  The Mozart VM was 
used because of its support for fine-grain threads, dataflow, and 
failed values.

 The upcoming release of Mozart 2 should interoperate a little 
better with Java.

© 2012 S. Doeraene.  All rights reserved.

52



Ozma on the JVM
 Ozma could be implemented on JVM

 But with so many restrictions that it would probably not be worth it

 It is still interesting, though
 Scripting languages like Python are rather slow, and yet used
 These languages often already have lightweight threads
 The concepts of Oz and Ozma could be implemented for scripting 

languages without so much downsides

 Clarke's second law
 “The only way of discovering the limits of the possible is to venture 

a little way past them into the impossible.”
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Generalizing dataflow for
distribution and fault tolerance
 Language support for distributed programming in Oz

 Network transparency: a program executed over several nodes 
gives the same result as if it were executed on a single node, 
provided network delays are ignored and no failure occurs
 Exact same source code is run independent of distribution structure

 Network awareness: a program can predict and control its physical 
distribution and network behavior 

 Fully implemented in Oz (Mozart 1.4.0)

 Modular fault tolerance in Oz using fault streams

 Exceptions and RMI: synchronous, not modular, requires changing 
code at each possible distribution point

 Fault streams on language entities: asynchronous, modular, just 
add new code with no changes to existing code 
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Thank you!
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