
1

Ozma: Extending Scala
with Oz Concurrency

Sébastien Doeraene
@sjrdoeraene
Peter Van Roy

Strange Loop 2012, St. Louis

Sep. 25, 2012

PLDC Research Group

(pldc.info.ucl.ac.be)

Université Catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium

Introductory example

© 2012 S. Doeraene. All rights reserved.

2

 Let us compute two difficult numbers, add them, and display
the result

 Sequential (aka, obsolete) version:
val x = computeToughNumber1()
val y = computeToughNumber2()
val z = x+y
println(z)

 Let us now compute x and y concurrently, in the hope that a
modern computer (or network of computers) can parallelize the
computations
 A bit of history ...

Java monitors

© 2012 S. Doeraene. All rights reserved.

3

private final TestMonitors self = this;

private boolean xDone = false;

private int xValue = 0;

private boolean yDone = false;

private int yValue = 0;

private boolean zDone = false;

private int zValue = 0;

private void run()

 throws InterruptedException {

 new ComputeX().start();

 new ComputeY().start();

 new ComputeZ().start();

 final int z;

 synchronized (this) {

 while (!zDone)

 wait();

 z = zValue;

 }

 System.out.println(z);

}

private class ComputeX extends Thread {

 public void run() {

 final int x = 1;

 synchronized (self) {

 xValue = x;

 xDone = true;

 self.notifyAll();

 }

 }

}

private class ComputeY extends Thread {

 public void run() {

 final int y = 2;

 synchronized (self) {

 yValue = y;

 yDone = true;

 self.notifyAll();

 }

 }

}

private class ComputeZ extends Thread {

 public void run() {

 try {

 final int x, y;

 synchronized (self) {

 while (!xDone || !yDone)

 wait();

 x = xValue;

 y = yValue;

 }

 final int z = x + y;

 synchronized (self) {

 zValue = z;

 zDone = true;

 self.notifyAll();

 }

 } catch (InterruptedException error) {

 // arg... what do I do now?

 }

 }

}

Java executors and futures

© 2012 S. Doeraene. All rights reserved.

4

private void run() throws Exception {

 ExecutorService executor =

 Executors.newFixedThreadPool(4);

 Future<Integer> xFuture =

 executor.submit(new ComputeX());

 Future<Integer> yFuture =

 executor.submit(new ComputeY());

 Future<Integer> zFuture =

 executor.submit(new ComputeZ(

 xFuture, yFuture));

 System.out.println(zFuture.get());

}

private class ComputeX

 implements Callable<Integer> {

 public Integer call() {

 return 1;

 }

}

private class ComputeY

 implements Callable<Integer> {

 public Integer call() {

 return 2;

 }

}

private class ComputeZ

 implements Callable<Integer> {

 private final Future<Integer> xFuture;

 private final Future<Integer> yFuture;

 public ComputeZ(Future<Integer> xFuture,

 Future<Integer> yFuture) {

 this.xFuture = xFuture;

 this.yFuture = yFuture;

 }

 public Integer call() throws Exception {

 return xFuture.get() + yFuture.get();

 }

}

Scala runners and futures

© 2012 S. Doeraene. All rights reserved.

5

val x = future(1)
val y = future(2)
val z = future(x() + y())

println(z())

 Much better!
 Two remaining issues

 Need to write x() instead of just x to read the value
 Blocking: this example uses 4 OS threads on its own, but they are

blocking most of the time

Scala futures of SIP-14

© 2012 S. Doeraene. All rights reserved.

6

 Designed to solve the blocking issue
 However, the syntax gets trickier again
 Forces the programmer to think

asynchronously

val xFut = future(1)
val yFut = future(2)

val zFut = for {
 x <- xFut
 y <- yFut
} yield {
 x + y
}

zFut onSuccess {
 println(_)
}

 Challenge: can we do better?

Ozma

© 2012 S. Doeraene. All rights reserved.

7

 Easy as can be
 No need for x(): the type of x is Int, not Future[Int]

 The future behavior is inside the language (dataflow)
 Ozma threads are lightweight, i.e., they are not OS threads

 The blocking issue does not appear
 What appears to be blocking is actually posting to the dataflow

variable a continuation with the remaining of the thread's job

val x = future(1)
val y = future(2)
val z = future(x+y)

println(z)

Overview of the talk
 Scala + Oz Ozma⇒
 Declarative dataflow

 Lightweight threads and the wonders of single assignment val
 Three powerful principles

 Message passing and nondeterminism
 This is also very important, so let’s add it cleanly

 Implementation on the JVM
 Issues, solutions and work-arounds

 Conclusion
 The future of Ozma, distribution, and fault tolerance

© 2012 S. Doeraene. All rights reserved.

8

Scala + Oz Ozma⇒
 Oz is a multiparadigm language that has been

used for language experiments by a bunch of
smart but eccentric language researchers since
the early 1990s (see www.mozart-oz.org)
 Constraint programming, network-transparent

distributed programming, declarative/procedural
GUI programming, concurrent programming

 Textbook “Concepts, Techniques, and Models
of Computer Programming”, MIT Press, 2004

 Oz supports concurrent programming based on a
declarative dataflow core with lightweight threads

 Ozma extends Scala with a new concurrency
model based on the Oz dataflow ideas

© 2012 S. Doeraene. All rights reserved.

9

One third of the
book is about
concurrency

⇒

http://www.mozart-oz.org/

Ozma implementation

 Ozma’s implementation combines a modified Scala compiler
and a modified Oz compiler, and targets the Oz VM (Mozart).
It was first released in June 2011.
 The Oz VM has efficient support for lightweight threads, dataflow

synchronization, by-need synchronization, and failed values

 Full source and binaries (with open-source license) available at:
 https://github.com/sjrd/ozma

 Full documentation available at:
 http://www.info.ucl.ac.be/~pvr/MemoireSebastienDoeraene.pdf

 Download the compiled binaries and try it out!
 Or compile it yourself with Scala ≥ 2.9.0, Mozart ≥ 1.4.0, and Ant ≥ 1.6
 It runs under Linux, Mac OS X, and maybe Windows

 All the Ozma examples in this talk are running code

© 2012 S. Doeraene. All rights reserved.

10

https://github.com/sjrd/ozma
http://www.info.ucl.ac.be/~pvr/MemoireSebastienDoeraene.pdf

Ozma extends Scala with a
new concurrency model

 The heart of the model is declarative dataflow
 Further extended with laziness (still declarative) and ports (for nondeterminism)
 This allows adding nondeterminism exactly where needed and no more

© 2012 S. Doeraene. All rights reserved.

11

waitNeeded
(by-need synch.)
byNeedFuture,

lazified lists

ports
(FIFO

mailboxes)
newPortObject

declarative dataflow

lazy declarative dataflow

message passing

The heart of the
new model is
deterministic

In roman:
the new concepts

In italics:
useful abstractions

lightweight threads
dataflow values (val)
futures, streams (lists

with dataflow tail)

Why deterministic concurrency?

 Determinism has strong limitations!
 Any concurrent execution always gives the same results
 Even a simple client/server can’t be written

 But determinism has big advantages too
 Race conditions are impossible by design
 With determinism as default, we can reduce the need for nondeterminism (in the

client/server: it’s needed only at the point where the server accepts requests)
 Any functional program can be made concurrent without changing the result

© 2012 S. Doeraene. All rights reserved.

12

Client 1

Client 2

Server

This client/server can’t
be written in a

deterministic model!

It’s because the server
accepts requests

nondeterministically
from the two clients

Deterministic concurrency:
the right default?
 Parallel programming has finally arrived

 Multicore processors: dual and quad today, a dozen tomorrow, a hundred
in a decade, most apps will do it

 Distributed computing: data-intensive with tens of nodes today (NoSQL,
MapReduce), hundreds and thousands tomorrow, most apps will do it

 Something fundamental will have to change

 Sequential programming can’t be the default (it’s a centralized bottleneck)
 Libraries can only hide so much (interface complexity, distribution structure)

 Concurrency will have to get a lot easier

 Deterministic concurrency is functional programming!
 It can be extended cleanly to distributed computing

 Open network transparency (implemented in Oz since 1999)
 Modular fault tolerance (implemented in Oz since 2007)
 Large-scale distribution (on the way…)

© 2012 S. Doeraene. All rights reserved.

13

Such an old idea, why isn’t it
used already?
 Deterministic concurrency has a long history that starts in 1974

 Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP
Congress, pp. 471-475, 1974. Deterministic concurrency.

 Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress, pp. 993-998, 1977. Lazy deterministic concurrency.

 Why was it forgotten for so long?
 Message passing and monitors arrived at about the same time:

 Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for artificial
intelligence. In 3rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 235-245, Aug.
1973.

 Charles Antony Richard Hoare. Monitors: An operating system structuring concept. Communications
of the ACM, 17(10):549-557, Oct. 1974.

 Actors and monitors handle nondeterminism, so they are better. Right?

 Dataflow computing also has a long history that starts in 1974
 Jack B. Dennis. First version of a data flow procedure language. Springer Lecture Notes in

Computer Science, vol. 19, pp. 362-376, 1974.
 Dataflow remained a fringe subject since it was always focused on parallel programming,

which only became mainstream with the arrival of multicore processors in mainstream
computing (e.g., IBM POWER4, the first dual-core processor, in 2001).

© 2012 S. Doeraene. All rights reserved.

14

Declarative Dataflow

© 2012 S. Doeraene. All rights reserved.

15

Declarative dataflow

 All val values can do dataflow
 They are single assignment
 The addition operation waits

until both x and y are bound
 This does both synchronization

and communication

© 2012 S. Doeraene. All rights reserved.

16

val x: Int
val y: Int
val z: Int

thread { x = 1 }
thread { y = 2 }
thread { z = x+y }

println(z)

 Programs with declarative dataflow are always deterministic
 This program will always print 3, independent of the scheduler

x = 1

y = 2

z = x+y
Thread execution
(executes from left to right)

Dataflow synchronization

Using the thread statement
as an expression

 Exactly the same behavior as
the previous example

 Using the thread statement in
this way can often simplify the
syntax of concurrent programs

© 2012 S. Doeraene. All rights reserved.

17

val x = thread(1)
val y = thread(2)
val z = thread(x+y)

println(z)

x = thread(1)

y = thread(2)

z = thread(x+y) println(z)

x

y

z

Each green box is
a concurrent agent

Each arrow is a
shared dataflow value

Handling exceptions
in asynchronous computations

 What happens if the asynchronous computation (in thread) throws an
exception?

 The only reasonable possibility is to raise the exception where x is needed
 Well-known behavior of futures

© 2012 S. Doeraene. All rights reserved.

18

try {
 val list: List[Int] = Nil
 val x = thread(list.head) // list is empty!
 println(x)
} catch {
 case _: java.util.NoSuchElementException =>
 println(“The list was empty”)
}

Futures and failed values

 If the evaluation of value throws an exception, the exception is wrapped in
a failed value using the Ozma primitive makeFailedValue

 Waiting for a failed value throws the wrapped exception
 A failed value has type Nothing, the bottom type of Scala
 Now we can write:

val x = future(list.head)
and the exception will be properly propagated to the current thread

© 2012 S. Doeraene. All rights reserved.

19

def future[A](value: => A): A = { // value is by-name
 thread {
 try {
 value // value is evaluated here
 } catch {
 case NonFatal(throwable) =>
 makeFailedValue(throwable)
 }
 }
}

Declarative dataflow
extensions to Scala

 Lightweight threads: hundreds of thousands of threads can be
active simultaneously (like Erlang, by the way)

thread { println(“New lightweight thread”) }

 Dataflow values: every val can be a single-assignment variable.
Operations that need the value will wait until it is available.

val x = thread(1) // binds x in its own thread
println(x+10) // the addition waits for x

 By-need (lazy) execution: wait until value is needed

val x: Int
thread { waitNeeded(x); x = factorial(69) }
println(x) // need to print causes calculation of x

© 2012 S. Doeraene. All rights reserved.

20

Streams: lists as dataflow
communication channels

 A stream is a list with an unbound dataflow tail
 It can be extended indefinitely or terminated with Nil

 Any list function can read a stream (it’s exactly like reading a list)
 It will automatically wait when it finds an unbound tail

 Like the foreach operation in this example
 If put inside a thread, the list function becomes a concurrent agent

© 2012 S. Doeraene. All rights reserved.

21

val x: List[Int]
val ints = 1 :: 2 :: 3 :: 4 :: x // unbound tail

thread { ints foreach println } // a printing agent

val y: List[Int]
x = 5 :: 6 :: 7 :: y // the agent will print these

The magic of declarative
dataflow

 Both versions print the same final result 1, 4, 9, 16, …, 100
 So what’s the difference? What does concurrency buy you?

 The sequential version: nothing is output for 10 seconds, and then the whole list
 The concurrent version: a new result is output every second
 Declarative dataflow turns batch programs into incremental programs

22

object Test {
 def main(args: Array[String]) {
 val range = gen(1, 10) // sequential version
 val result = range map (x => x*x)
 result foreach println

 val range2 = thread(gen(1, 10)) // concurrent version
 val result2 = thread(range map (x => x*x))
 result2 foreach println
 }
 def gen(from: Int, to: Int): List[Int] = {
 sleep(1000)
 if (from > to) Nil
 else from :: gen(from+1, to) // tail-recursive in Ozma
 }
}

© 2012 S. Doeraene. All rights reserved.

Pipelines using streams

 A list function put in a thread becomes a concurrent agent
 List functions must be tail-recursive for this to work

 This is automatically true in Ozma (ensured by compiler transformation)

© 2012 S. Doeraene. All rights reserved.

23

def generateFrom(n: Int): List[Int] =
 n :: generateFrom(n+1)

val integers = thread(generateFrom(0))
val evens = thread(integers filter (_ % 2 == 0))
val tenFirst = thread(evens take 10)
tenFirst foreach println

generateFrom filter take 10
foreach
println

integers evens tenFirst

Three powerful principles

 Any functional program can be made concurrent
without changing the result by adding calls to thread
 Threads can be added anywhere in the program
 Turns batch into incremental (removes roadblocks)

 Any list function can become a concurrent agent
by executing it in a thread
 Because list functions in Ozma are tail-recursive,

the agent has no memory leak (stack size and heap size are
constant)

 Any computation, functional or not, can be made lazy
by adding calls to waitNeeded
 Syntactic sugar is provided with byNeedFuture and

.lazified
© 2012 S. Doeraene. All rights reserved.

24

From map to concurrent map

 In concMap, all evaluations of f execute concurrently
 It is even possible to call concMap when f is not known

(unbound). This will create a list containing unbound values, like
futures: they will be evaluated as soon as f is known (bound to a
function).

© 2012 S. Doeraene. All rights reserved.

25

def concMap[A, B](list: List[A], f: A => B): List[B] = {
 if (list.isEmpty) Nil
 else thread(f(list.head)) :: concMap(list.tail, f)
}

def map[A, B](list: List[A], f: A => B): List[B] = {
 if (list.isEmpty) Nil
 else f(list.head) :: map(list.tail, f)
}

Map as a concurrent agent

 Wrapping the calls to gen, filter, and map within threads turns them
into concurrent agents
 Note that foreach is also an agent, living in the main thread

 As new elements are added to the input stream, new computed elements
will appear on the output stream

© 2012 S. Doeraene. All rights reserved.

26

def gen(from: Int): List[Int] = from :: gen(from+1)

def displayEvenSquares() {
 val integers = thread(gen(0))
 val evens = thread(integers filter (_ % 2 == 0))
 val evenSquares = thread(evens map (x => x*x))
 evenSquares foreach println
}

Concurrent agent

Message Passing
and Nondeterminism

© 2012 S. Doeraene. All rights reserved.

27

Managing nondeterminism
with ports

 So far, all our programs have been deterministic

 Determinism is a good default, but for real programs
we need nondeterminism too!

 Let’s add nondeterminism in a nice way

 One way is to allow multiple producers (or clients) to add
messages in a single stream (read by an agent, or server)

 A port is comparable to an unbounded FIFO mailbox

 Any thread can send a value to a port
 There is no receive operation; all messages appear in an

associated stream
 The senders and the receivers of a port can themselves be

deterministic computations; the only nondeterminism is the
order in which sent values appear on the port’s stream

© 2012 S. Doeraene. All rights reserved.

28

Introducing ports

 The values 1, 2, and 3 will be displayed in some order
(nondeterminism)
 The actual order depends on the thread scheduler

 No memory leak: garbage collection will remove the parts
of the stream already read

© 2012 S. Doeraene. All rights reserved.

29

val (s, p) = newPort[Int] // Create port p with stream s

thread { p.send(1) }
thread { p.send(2) }
thread { p.send(3) }

thread { s foreach println } // Print elements of the
 // port’s stream one by one

Merging two streams that are
fed concurrently (broken)

 Does not work if the two streams do not grow exactly at
the same pace

 Fundamental issue: we cannot know a priori from which
stream the following value will come (nondeterminism)

 A port solves exactly this problem

© 2012 S. Doeraene. All rights reserved.

30

def mergeStreams[A](s1: List[A], s2: List[A]): List[A] = {
 (s1, s2) match {
 case (h1 :: t1, h2 :: t2) =>
 h1 :: h2 :: mergeStreams(t1, t2)
 }
}

Merging two streams that are
fed concurrently (correct)

 Two declarative agents read the input streams, and
forward messages into the port

 The port accepts elements from both inputs in a
nondeterministic order (dependent on time and scheduler)

© 2012 S. Doeraene. All rights reserved.

31

def mergeStreams[A](s1: List[A], s2: List[A]): List[A] = {
 val (result, p) = newPort[A]
 thread { s1 foreach p.send }
 thread { s2 foreach p.send }
 result
}

Building nondeterministic
agents with ports

 A port object is an actor. It reads messages sequentially from the stream
and uses the messages to update its internal state.

 The foldLeft operation updates the internal state as messages are
received (note: si is a received message):

 (…(((init handler s0) handler s1) handler s2) …)

 The current value of the accumulator of foldLeft is the agent’s internal state
 Neat trick: foldLeft is a function used as a concurrency pattern

© 2012 S. Doeraene. All rights reserved.

32

def newPortObject[A, B](init: B)(
 handler: (B, A) => B) = {
 val (s, p) = Port.newPort[A]
 thread { s.foldLeft(init)(handler) }
 p
}

Initial state State updater

Agents playing ball

 Each player receives the ball
and sends it to a randomly
chosen other player

 Each player counts the
number of balls received

 The port allows a player to
receive from either of the
others (nondeterminism)

© 2012 S. Doeraene. All rights reserved.

33

Player 1

Player 2

Player 3

object BallGame {
 type Ball = Unit
 val ball: Ball = ()
 type Player = Port[Ball]
 def main(args: Array[String]) {
 val player1: Player
 val player2: Player
 val player3: Player
 player1 = makePlayer(“Player 1”, Seq(player2, player3))
 player2 = makePlayer(“Player 2”, Seq(player3, player1))
 player3 = makePlayer(“Player 3”, Seq(player1, player2))
 player1.send(ball)
 while (true) sleep(1000)
 }
 def makePlayer(id: Any,
 others: Seq[Player]): Player = {
 Port.newPortObject(0) { (st: Int, b: Ball) =>
 println(“%s received the ball %d times”
 format (id, st+1))
 Random.rand(others).send(b)
 st+1
 }
 }
}

Ozma on the JVM

© 2012 S. Doeraene. All rights reserved.

34

Core requirements
 Every val must be dataflow-enabled

 Single-assignment
 Implicit synchronization
 Failed values

 Threads should be lightweight
 Programming techniques of Ozma encourage to spawn

many threads
 Blocking should be avoided: waiting for an unbound value

should post a continuation to the value's suspension list
 As far as we know, there is no way to emulate lightweight

threads with the current JVM
 Ideas welcome!

© 2012 S. Doeraene. All rights reserved.

35

Implementing dataflow

© 2012 S. Doeraene. All rights reserved.

36

trait Dataflow[@specialized +A] {
 def ask: A
}

class DataflowVar[@specialized A] extends Dataflow[A] {
 private var value: A = _
 private var bound = false

 def this(v: A) {
 this()
 value = v
 bound = true
 }

 def tell(v: A): Unit = ???
 def ask: A = ???
}

 A Dataflow[T] looks like a
blocking Future[T]

 A DataflowVar[T] looks like
a Promise[T] (plus the
corresponding Future[T])

Implementing dataflow

© 2012 S. Doeraene. All rights reserved.

37

 def tell(v: A) {
 synchronized {
 if (!bound) {
 value = v
 bound = true
 notifyAll()
 } else if (value == v) {
 // telling twice the same thing is OK
 } else {
 // failure (not declarative!)
 throw new FailureError(value, v)
 }
 }
 }

Implementing dataflow

© 2012 S. Doeraene. All rights reserved.

38

 def ask: A = {
 synchronized {
 while (!bound)
 wait()
 value
 }
 }

def thread(body: => Unit) {
 new Thread() {
 override def run() = body
 }.start()
}

Using DataflowVar[A]

© 2012 S. Doeraene. All rights reserved.

39

val x = new DataflowVar[Int]
val y = new DataflowVar[Int]
val z = new DataflowVar[Int]

thread { x.tell(1) }
thread { y.tell(2) }
thread { z.tell(x.ask + y.ask) }

println(z.ask)

 We lose transparency, of course
 Can be improved with implicit conversions of A to

DataflowVar[A] and from Dataflow[A], but it is still limited

x.tell(1)

y.tell(2)

z.tell(x.ask + y.ask)

Implementing thread

© 2012 S. Doeraene. All rights reserved.

40

 def thread[@specialized A](
 body: => Dataflow[A]): Dataflow[A] = {
 val result = new DataflowVar[A]
 new Thread() {
 override def run() = result.tell(body.ask)
 }.start()
 result
 }

Implementing Port

© 2012 S. Doeraene. All rights reserved.

41

class Port[-A] private (
 stream: DataflowVar[DataflowList[A]] {
 private var tail: DataflowVar[DataflowList[A
 @uncheckedVariance]] = stream

 def send(element: A) {
 val newTail = new DataflowVar[DataflowList[A]]
 val cons = element :: newTail
 synchronized {
 tail.tell(cons)
 tail = newTail
 }
 }
}  A DataflowList[A] is akin to a List[A], but its tail

is itself a Dataflow[DataflowList[A]]

Implementing Port

© 2012 S. Doeraene. All rights reserved.

42

object Port {
 def newPort[A]: (Stream[A], Port[A]) = {
 val stream = new DataflowVar[DataflowList[A]]
 val port = new Port[A](stream)
 (stream, port)
 }
}

type Stream[+A] = Dataflow[DataflowList[A]]

Core requirements revisited
 Every val must be dataflow-enabled

 Every variable of type T should be a Dataflow[T]
 Every single-assignment val of type T should be a

DataflowVar[T]
 Consequence: no need for DataflowList[A], since the

tail of List[A] is implicitly a Dataflow[List[A]].
 Can be achieved by compiler transformations!

 Modify scalac to add these transformations

© 2012 S. Doeraene. All rights reserved.

43

scalac in a nutshell
 The Scala compiler consists of several transformation phases
 Front-end phases

 The parser builds an untyped AST from the source code
 namer, packageobjects and typer yield a typed AST

 Simplifying phases
 Various phases successively simplify the typed AST until only

Java-like classes and constructs remain
 One particular phase is worth mentioning: erasure, which

eliminates all the generic types

 Back-end phases
 icode turns the simplified typed AST into a portable stack-based

bytecode called the I-code
 Several optimization phases
 genjvm turns the I-code into JVM bytecode and .class files

© 2012 S. Doeraene. All rights reserved.

44

Naive transformation

 Add a phase dataflow in the compiler between tailcalls and
specialize (the latter being itself just before erasure).

 Do not touch subclasses of AnyVal, nor Dataflow[A] and
DataflowVar[A] themselves.

 Retype all Scala-declared variables, fields, parameters and return
values from their type T to Dataflow[T].

 Retype single-assignment val's of type T to DataflowVar[T],
and initialize them with a new DataflowVar[T].

 Turn assignments to single-assignment val's into calls to tell().
 Prefix all method calls by .ask. Also add .ask in if's and while's.
 When calling a native method (e.g., Int.+), add .ask to all

parameters, and wrap the result into a DataflowVar.
 And let subsequent phases of the compiler deal with all this.

© 2012 S. Doeraene. All rights reserved.

45

Erasure and its endless issues

 Basic fact: after erasure, all entities of type Dataflow[T] will be
retyped as Dataflow.

 Type tests with isInstanceOf and asInstanceOf are broken.
 Pattern matching is therefore also broken.
 Overloads with the same number of arguments, but different types of

parameters, erase to the same signature and clash:
 foo(x: Int) -> foo(x: Dataflow[Int]) -> foo(x: Dataflow)
 foo(x: Bar) -> foo(x: Dataflow[Bar]) -> foo(x: Dataflow)

© 2012 S. Doeraene. All rights reserved.

46

Working after erasure
 We do not want to mess with the types before erasure

 Let us do it after ... actually the later the better (could be just
before icode)

 Retype all variables, fields, parameters and return values of
reference types to Dataflow, of type Int to DataflowInt, etc.
(manual specialization)
 Overload clashes due to the return value are supposed to be only

bridge methods, which can be removed in this case
 We still get overload clashes with parameter types!

 Retype single assignment val's in a similar way to DataflowVar
 No overloading clash here: they are all local variables

 Actually we can forget the Dataflow abstraction, and use only
DataflowVar. Variance checks are behind us anyway.

© 2012 S. Doeraene. All rights reserved.

47

Dealing with overloads
 We still have the following clash:

 foo(x: String) -> foo(x: Dataflow)
 foo(x: List) -> foo(x: Dataflow)

 Three possible workarounds
 foo(x: String) -> foo(x: Dataflow, x': String)

 Double the number of parameters just for the sake of avoiding
overloading clashes

 foo(x: String) -> foo(x: DataflowString)
 Have a specialized DataflowT class for every class T in the

system
 foo(x: String) -> foo$java.lang.String(x: Dataflow)

 Rename the method to get rid of overloading
 Probably the best choice

© 2012 S. Doeraene. All rights reserved.

48

Interop with Java classes
 We have no power over Java-defined classes

 We cannot change their internals to support dataflow
 When calling a Java method from Ozma code

 Add .ask to parameters and wrap the result in a DataflowVar
 Java classes are considered “native”

 To support calls to Ozma methods from Java code
 Instead of renaming and retyping methods, duplicate them
 Keep the original method, and make it call the dataflow-enabled

version with the appropriate wrappings and unwrappings in
DataflowVar's.

 Interfaces must be duplicated: the original version and the version
with dataflow-enabled methods

© 2012 S. Doeraene. All rights reserved.

49

Ozma on the JVM: is it viable?
 It seems possible to implement Ozma on the JVM

 Possible, but with an incredible overhead
 Wrapping of all values in DataflowVar's

 Calls to methods of DataflowVar will likely be inlined by the JVM,
but it is a small consolation

 Double the number of methods of every class, to support
interoperability with Java classes
 This includes basic overriding of Java-defined methods

 Threads are not lightweight: we kept the JVM threads
 The main benefit of Ozma is lost, compared to the existing

blocking futures of Scala
 => possible, but probably not practical

© 2012 S. Doeraene. All rights reserved.

50

Conclusion

© 2012 S. Doeraene. All rights reserved.

51

Ozma and its model
 Ozma makes concurrent programming simpler

 The heart of a concurrent program is deterministic.
Nondeterminism is added just where it’s needed.

 Correctness is easy: the deterministic part is purely functional
and the nondeterministic part uses message passing

 The implementation uses the Oz virtual machine (Mozart)

 It’s a complete implementation of Scala on a new VM that’s not
the JVM nor .NET, so you can see it as a new implementation of
Scala

 It’s not interoperable with Java, though. The Mozart VM was
used because of its support for fine-grain threads, dataflow, and
failed values.

 The upcoming release of Mozart 2 should interoperate a little
better with Java.

© 2012 S. Doeraene. All rights reserved.

52

Ozma on the JVM
 Ozma could be implemented on JVM

 But with so many restrictions that it would probably not be worth it

 It is still interesting, though
 Scripting languages like Python are rather slow, and yet used
 These languages often already have lightweight threads
 The concepts of Oz and Ozma could be implemented for scripting

languages without so much downsides

 Clarke's second law
 “The only way of discovering the limits of the possible is to venture

a little way past them into the impossible.”

© 2012 S. Doeraene. All rights reserved.

53

Generalizing dataflow for
distribution and fault tolerance
 Language support for distributed programming in Oz

 Network transparency: a program executed over several nodes
gives the same result as if it were executed on a single node,
provided network delays are ignored and no failure occurs
 Exact same source code is run independent of distribution structure

 Network awareness: a program can predict and control its physical
distribution and network behavior

 Fully implemented in Oz (Mozart 1.4.0)

 Modular fault tolerance in Oz using fault streams

 Exceptions and RMI: synchronous, not modular, requires changing
code at each possible distribution point

 Fault streams on language entities: asynchronous, modular, just
add new code with no changes to existing code

© 2012 S. Doeraene. All rights reserved.

54

Thank you!

© 2012 S. Doeraene. All rights reserved.

55

	Ozma: Extending Scala with Oz Concurrency
	Scala in a nutshell
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Scala + Oz ⇒ Ozma
	Ozma implementation
	Ozma extends Scala with a new concurrency model
	Why deterministic concurrency?
	Deterministic concurrency: the right default?
	Such an old idea, why isn’t it used already?
	Declarative Dataflow
	Declarative dataflow
	Using the thread statement as an expression
	Diapo 18
	Diapo 19
	Declarative dataflow extensions to Scala
	Streams: lists as dataflow communication channels
	The magic of declarative dataflow
	Pipelines using streams
	Three powerful principles
	From map to concurrent map
	Map as a concurrent agent
	Message Passing and Nondeterminism
	Managing nondeterminism with ports
	Introducing ports
	Diapo 30
	Diapo 31
	Building nondeterministic agents with ports
	Agents playing ball
	The Past is Prologue
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Generalizing dataflow for distribution and fault tolerance
	Thanks for your attention!

