Computing Like the Brain

StrangeLoop 2012

Jeff Hawkins

1) Discover operating principles of neocortex

2) Build systems based on these principles

Talk Agenda

- The brain as a predictive modeling system
 - Sparse Distributed Representations
 - Sequence memory
 - Online learning
- Grok, a predictive modeling product
- Future of machine intelligence

The neocortex is a predictive modeling system

The neocortex is a predictive modeling system

The neocortex is a predictive modeling memory system

Dense Representations

- Few bits (8 to 128)
- All combinations of 1's and 0's
- Example: 8 bit ASCII 01101101 = m
- Individual bits have no inherent meaning
- Representation is assigned by programmer

Sparse Distributed Representations (SDRs)

- Many bits (thousands)
- Few 1's mostly 0's
- Example: 2,000 bits, 2% active
- Each bit has semantic meaning
- Meaning of each bit is learned, not assigned

SDR Properties

1) Similarity:

shared bits = semantic similarity

Sequence Memory

How does this structure learn sequences?

Each cell is one bit in our Sparse Distributed Representation

Cells form connections to subsample of previously active cells. Predicts its own future activity.

Multiple Predictions Can Occur at Once

With one cell per column, 1st order memory We need a high order memory

High order sequences are enabled with multiple cells per column.

Variable Order Sequence Memory

40 active columns, 10 cells per column

= 10^{40} ways to represent the same input in different contexts

Variable Order Sequence Memory

Requirements for Online learning

- Train on every new input
- If pattern does not repeat, forget it
- If pattern repeats, reinforce it

Connection strength/weight is binary Connection permanence is a scalar Training changes permanence If permanence > threshold then connected

Memory Requirements For Minimum Viable Implementation

300M connections

- Connection index
- Connection permanence

Connections are sparse No single points of failure

Predictive Analytics Today

Challenges

Data prep Model obsolescence People

Tomorrow

Key criteria

Automated model creation Continuous learning Temporal and spatial models

Grok: A Engine for Acting on Data Streams

User

Create data stream

Define problem

- what to predict
- how often
- how far in advance

Grok

Creates models

Learns continuously

Finds spatial/temporal patterns

- Outputs
 - predictions
 - with probabilities

Customer areas

Energy pricing Energy demand Product forecasting Ad network return Machine efficiency Anomaly detection Server loads

Grok Architecture Today

Cloud based running on Amazon AWS

Application: Energy Demand/Response

Factory Energy Profile

Customer need

Predictions and Actuals

Energy Usage - Actual vs Predicted

Predictions and Actuals II

Energy Usage - Actual vs Predicted

Managing Server Capacity

Incoming server demand, Actual vs. Predicted

Datasets E

Experiment

Datasets E

Experiment

Datasets Exp

Experiment

Predictive Maintenance

Grok used to detect anomalies in gear bearing temperature

Can detect anomalies based on temporal characteristics

Can be used to proactively optimize maintenance schedules

Gear bearing temperature & Grok Anomaly Score

Future of Machine Intelligence

More Theory

Embodiment

Hardware

Applications

- Hierarchy
- Sensory-Motor Integration
- Attention
- Today: Cloud-based service
- Embedded
- Distributed: Billions of sensors, models, hierarchically connected
- Speed, cost, power
 1) Memory

 natural fault tolerance

 2) Interconnects
 - sparsity and hierarchy
 - sub-sampling
- Today: Prediction/anomaly detection
- Classics: vision, language, speech?
- The big wins....

For More Information

- www.Numenta.com (white paper)

- On Intelligence
- Speak to me

Joe Hayashi Matt Taylor

- jhawkins@numenta.com

Thank You