Types vs Tests An Eplc Battle?

&’Jr ¥

Paul vaely &Amanda Laucher
*“W:?_‘-' ('
'—.'-' .' f”,;‘.

-

\
“ v "“.n.

—

Thursday, October 4, 2012 7 1

Logic is in the air!
“The resurgence of Datalog”™ — ELC
MiniKanren—Scheme
core.logic—Clojure

Thursday, October 4, 2012

Michael Focus
David Nolan
Dan Friedman

Assumptions

2 are lazy bastards!

Thursday, October 4, 2012 3

Assumptions

2 are lazy bastards!

Thursday, October 4, 2012 4

Assumptions

me languages are better suited for correct c

ad vs write

e are lazy bastards!

Thursday, October 4, 2012 5

Assumptions

e languages are better suited for correct cc

ad vs write

3 are lazy bastards!

Thursday, October 4, 2012 6

Assumptions

e languages are better suited for correct cc
ad vs write

2 are lazy bastards!

Thursday, October 4, 2012 7

en in doubt, create a type : Martin Fowler

Thursday, October 4, 2012 8

en in doubt, create a type : Martin Fowler

ake illegal states unrepresentable : Yaron

nsky

Thursday, October 4, 2012 9

ichael Feathers defines legacy code as code
thout automated tests

Thursday, October 4, 2012 10

ichael Feathers defines legacy code as code
ithout automated tests

5 years, we'll view compilation as the

2akest form of unit testing. : Stuart Halloway

Thursday, October 4, 2012 11

Quotes

Given a good test suite the return on
investment simply does not justify the use of
static typing : Jay Fields

Thursday, October 4, 2012

12

Stereotypes

s easier to refactor with tests than types
) tests = no trust
Sts take a long time to run & types to compilé

pperty based testing can replace unit testing
odular design only occurs only with TDD

on’t get errors that can be prevented by typ

Thursday, October 4, 2012 13

ereotypes

easier to refactor with tests than types
tests = no trust
ts take a long time to run & types to compils

perty based testing can replace unit testing
)dular design only occurs only with TDD

ONn’t get errors that can be prevented by type

Thursday, October 4, 2012 14

Stereotypes

5 easier to refactor with tests than types
) tests = no trust
sts take a long time to run & types to compi

pperty based testing can replace unit testing
odular design only occurs only with TDD

on’t get errors that can be prevented by typ

Thursday, October 4, 2012 15

Stereotypes

5 easier to refactor with tests than types

) tests = no trust

Sts take a long time to run & types to compilé

pperty based testing can replace unit testing
odular design only occurs only with TDD

on’t get errors that can be prevented by typ

Thursday, October 4, 2012 16

Stereotypes

5 easier to refactor with tests than types

) tests = no trust

Sts take a long time to run & types to compilé

pperty based testing can replace unit testing
odular design only occurs only with TDD

on’t get errors that can be prevented by typ

Thursday, October 4, 2012 17

Stereotypes

5 easier to refactor with tests than types
) tests = no trust
Sts take a long time to run & types to compilé

pperty based testing can replace unit testing
odular design only occurs only with TDD

on’t get errors that can be prevented by tyg

Thursday, October 4, 2012 18

tereotypes

)ry Tower vs hippies
% coverage
oed code is verbose

oes take too long

Thursday, October 4, 2012 19

tereotypes

ry Tower vs hippies
% coverage
oed code is verbose

oes take too long

Thursday, October 4, 2012 20

tereotypes

ry Tower vs hippies
% coverage
oed code is verbose

oes take too long

Thursday, October 4, 2012 21

tereotypes

ry Tower vs hippies
% coverage

oed code is verbose

oes take too long

sting is for QA

Thursday, October 4, 2012 22

tereotypes

ry Tower vs hippies
% coverage
oed code is verbose

oes take too long

Thursday, October 4, 2012 23

A walk on the wildside?

Thursday, October 4, 2012 24

=> 444444444

Thursday, October 4, 2012 25

We used different languages to do the same Kata

We stepped outside of our comfort zone to try a different approach (or multiple rewrites)
We didn’t pair

We chatted regularly about our outcome

Story 1

Each entry is 4 lines long
Each line has 27 characters

The first 3 lines of each entry contain an
account number written using pipes and
underscores, and the fourth line is blank.

Each account number should have 9 digits, all
of which should be in the range 0-9.

A normal file contains around 500 entries.

Thursday, October 4, 2012

OCRChar

value

S nho

26

Story 2

e accountnumber: 3458 82 865
e position names: d9 d8 d7 d6 d5 d4 d3 d2 d1

e checksum calculation:
e (d1+2*d2+3*d3 +..49*d9) mod 11 =0

Thursday, October 4, 2012

Story 3

* The file has one account number per row

 |f some characters are illegible, they are
replaced by a ?.

* |n the case of a wrong checksum, or illegible
number, this is noted in a second column
indicating status.

457508000
664371495 ERR
861107736 ILL

Thursday, October 4, 2012 28

Amanda takes a stab

Thursday, October 4, 2012

29

30

Thursday, October 4, 2012

Amanda’s Approach

* F#

e Signatures first

* Types

 REPL play for algorithms

e Tests for validation

Thursday, October 4, 2012

31

Interesting Code

type Digit = Zero | One | Two | Three
with member x.toInt = match x with
Zero -> 0O

One -> 1

Two -> 2
Three -> 3

let stringToDigit = function
|
| |
| |" -> Some Zero

| " -> Some One

| " -> Some Two

_|
_|™ -> Some Three
| _ -> None

Thursday, October 4, 2012

32

Interesting Code

type AccountType =
|[valid of Account
| Invalid

and Account = {d9 : int; d8 : int; d7 : int; d6 :

with
member x.validate =
if int x.d9 + 2 * int x.d8 + 3 *
int x.d7 + 4 * int x.dé6 % 11 = 0
then Valid x
else Invalid

int}

Thursday, October 4, 2012

33

Ypes

type LegalChar =
|Underscore
|Pipe

|Space

Thursday, October 4, 2012 34
Deleted types as well. Sometimes the types get removed with new use cases(story 4)

Lessons learned

pes save me from having to even think about
rtain categories of tests

sts help me out when | get stuck but | mostly run
em in the REPL and delete

dde is structured differently with REPL

ost modern languages don’t have a strong enough
pe system to make illegal states un-representable

S easy to get lost in a space where you never delive
st verify when types can’t prove

Thursday, October 4, 2012 35

Lessons learned

pes save me from having to even think about
rtain categories of tests

3sts help me out when | get stuck but | mostly run
em in the REPL and delete

ode is structured differently with REPL

ost modern languages don’t have a strong enough
pe system to make illegal states un-representable

S easy to get lost in a space where you never delive
st verify when types can’t prove

Thursday, October 4, 2012

36

Lessons learned

pes save me from having to even think about
rtain categories of tests

sts help me out when | get stuck but | mostly run
em in the REPL and delete

)de is structured differently with REPL

ost modern languages don’t have a strong enough
oe system to make illegal states un-representable

S easy to get lost in a space where you never delive
st verify when types can’t prove

Thursday, October 4, 2012 37

Lessons learned

Most modern languages don’t have a strong enough
type system to make illegal states un-representable

Thursday, October 4, 2012

Lessons learned

pes save me from having to even think about
rtain categories of tests

sts help me out when | get stuck but | mostly run
em in the REPL and delete

)de is structured differently with REPL

ost modern languages don’t have a strong enough
pe system to make illegal states un-representable

s easy to get lost in a space where you never deli
st verify when types can’t prove

Thursday, October 4, 2012

39

Lessons learned

pes save me from having to even think about
rtain categories of tests

sts help me out when | get stuck but | mostly run
em in the REPL and delete

de is structured differently with REPL

ost modern languages don’t have a strong enough
oe system to make illegal states un-representable

S easy to get lost in a space where you never delive
st verify when types can’t prove

Thursday, October 4, 2012 40

Paul’s turn

Thursday, October 4, 2012

41

The evill

Thursday, October 4, 2012

42

Paul’s approach

e Scala

e Tests without types

* Property-based testing
* Types

e Delete some tests

Thursday, October 4, 2012

43

Interesting code

def makelLegit: String = {
val result = nextInt(9000000) + 1000000

val guess = checksum(result.toString + "00")
val goal = (guess / 11 + 1) * 11

val diff = goal - guess

val quotient = diff / 2

val remainder = diff % 2

val answer = (result * 100) + (quotient * 10) + remainder
answer.toString

}
def legit: Gen[String] = Gen(_ => Some(makelLegit))

"ALl legitimate OCR scans" should {
“evaluate to their unique value" in {
forAll(legit) { (v: String) => evaluate(digitsToScan(v)) must == v }
}
}

Thursday, October 4, 2012

Interesting code—h/t Travis Brown

import shapeless._
import Nat._
import HList.

// Evidence that the sum of (each item in L multiplied by (its distance from
// the end of the list plus one) modulo eleven) is S.
trait HasChecksum[L <: HList, S <: Nat]

implicit object hnilHasChecksum extends HasChecksum[HNil, 0]

implicit def hlistHasChecksum]
H <: Nat, T <: HList, S <: Nat,
TL <: Nat, TS <: Nat,
HL <: Nat, HS <: Nat
1 (implicit
tl: LengthAux|[T, TL],
ts: HasChecksum[T, TS],
hl: ProdAux[H, Succ[TL], HLI],
hs: SumAux[HL, TS, HS],
sm: ModAux[HS, 11, S]
) = new HasChecksum[H :: T, S1 {}

// Check that the list has nine elements and a checksum of zero.
def isValid[L <: HList](l: L)(implicit

len: LengthAux[L, _9],

hcs: HasChecksum[L, 0]

) {}

// Now the following valid sequence (an example from the kata) compiles:
isValid(_3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 :: HNil)
isValid(_1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: HNil)

// But these invalid sequences don't:

// isValid(_3 :: _1 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 :: HNil)
// isValid(_3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: HNil)

Thursday, October 4, 2012

45

Interesting code—h/t Travis Brown

trait HasChecksum[L <: HList, S <: Nat]

implicit object hnilHasChecksum extends HasChecksum[HNil, 0]

implicit def hlistHasChecksum|
H <: Nat, T <: HList, S <: Nat,
TL <: Nat, TS <: Nat,
HL <: Nat, HS <: Nat
] (implicit
tl: LengthAux|[T, TL],
ts: HasChecksum[T, TS],
hl: ProdAux[H, Succ[TL], HL],
hs: SumAux[HL, TS, HS],
sm: ModAux[HS, 11, S]
) = new HasChecksum[H :: T, S1 {}
def isValid[L <: HList](l: L)(implicit

len: LengthAux[L, _9],
hcs: HasChecksum[L, _0]

) {}

// Now the following valid sequence (an example from the kata) compiles:
isValid(_3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 :: HNil)
isValid(_1 :: _2 :: _3 :: 4 :: 5 :: 6 :: _7 :: 8 :: _9 :: HNil)

// But these invalid sequences don't:

// isValid(_3 :: _1 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 :: HNil)
// isValid(3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: HNil)

Thursday, October 4, 2012

46

Interesting code—h/t Travis Brown

trait HasChecksum[L <: HList, S <: Nat]
implicit object hnilHasChecksum extends HasChecksum[HNil, _0]

implicit def hlistHasChecksum[
H <: Nat, T <: HList, S <: Nat,
TL <: Nat, TS <: Nat,
HL <: Nat, HS <: Nat
1 (implicit
tl: LengthAux[T, TL],
ts: HasChecksum[T, TSI,
hl: ProdAux[H, Succ[TL], HLI],
hs: SumAux[HL, TS, HS],
sm: ModAux[HS, _11, S]
) = new HasChecksum[H :: T, S] {}

def isValid[L <: HList](l: L)(implicit
len: LengthAux[L, _9],
hcs: HasChecksum[L, _0]

) {}

// Now the following valid sequence (an example from the kata)
compiles:

isValid(3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 ::
HNil)

isValid(1 :: 2 :: 3 :: 4 :: 5:: 6 :: 7 :: 8 :: 9 ::
HNil)

// But these invalid sequences don't:

// isValid(3 :: 1 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 ::
HNil)

// isValid(3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: HNil)

Thursday, October 4, 2012

47

Tim Sweeney, CEO, Epic Games

Program Fixpoint quicksort (1 : list t) {measure length 1} :

{1' : list t | sort le 1' /\ permutation 1 1’}

“True dependent types would be preferable to the
solution that has evolved in both Haskell and C++,
where the type level is Turing-complete yet remains a
separate and bizarre computational realm where you
can't directly reason about numbers and strings but
need to reconstruct them from inductive data types at
terrible cost in complexity.”

Thursday, October 4, 2012

48

Lessons learned

Even for such a small problem, spelling out unit tests
made me want to gouge out my eyeballs with a rusty
spoon.

Thursday, October 4, 2012

Lessons learned

When developing property-based tests, every forAll
made me think “could/should that be a type?

Thursday, October 4, 2012

Lessons learned

en for such a small problem, spelling out unit tests
ade me want to gouge out my eyeballs with a rusty

hen developing property-based tests, every forAll
ade me think “could/should that be a type?”

Or some use-cases, having examples of correct
put/output gave no real guidance whatsoever.

ast code is still code, with its own correctness,
aintenance, etc. burden.

Thursday, October 4, 2012 51

Lessons learned

en for such a small problem, spelling out unit tests
ade me want to gouge out my eyeballs with a rust

hen developing property-based tests, every forAll
ade me think “could/should that be a type?”

)r some use-cases, having examples of correct inpu
tput gave no real guidance whatsoever.

st code is still code, with its own correctness,
aintenance, etc. burden.

Thursday, October 4, 2012 52

Our discussion throughout

all codebase = little value for type system

pes scale better than tests

pes have little value when talking with non technic
d users

e hardest part is understanding the requirements
e rarely have the luxury of sample input/output

sts can be good for forming ideas but then can be
|eted

Thursday, October 4, 2012 53

Our discussion throughout

all codebase = little value for type system

pes scale better than tests
pes have little value when talking with non technic

d users
e hardest part is understanding the requirements

e rarely have the luxury of sample input/output

sts can be good for forming ideas but then can be
leted

Thursday, October 4, 2012

54

Our discussion throughout

all codebase = little value for type system
pes scale better than tests

pes have little value when talking with non
chnical end users

e hardest part is understanding the requirements
e rarely have the luxury of sample input/output

sts can be good for forming ideas but then can be
2|eted

Thursday, October 4, 2012 55

Our discussion throughout

all codebase = little value for type system

pes scale better than tests

pes have little value when talking with non technic
d users

e hardest part is understanding the requirements
e rarely have the luxury of sample input/output

sts can be good for forming ideas but then can be
|eted

Thursday, October 4, 2012 56

Our discussion throughout

all codebase = little value for type system

pes scale better than tests

pes have little value when talking with non technic
d users

e hardest part is understanding the requirements
e rarely have the luxury of sample input/output

sts can be good for forming ideas but then can be
|eted

Thursday, October 4, 2012 57

Our discussion throughout

all codebase = little value for type system

pes scale better than tests

pes have little value when talking with non technic
d users

e hardest part is understanding the requirements
e rarely have the luxury of sample input/output

sts can be good for forming ideas but then can be
2|eted

Thursday, October 4, 2012 58

kes the rest of the code ugly...

Thursday, October 4, 2012 59

onsidered making it a type of it's own, but it
akes the rest of the code ugly...

Context matters. One reason | like the notion of
"code smell" is indeed that code is a language,
and things either read well or they don't, and if
they don't, it's telling us something.

If you're going to use types to make distinctions
between states you end up with types with only
one inhabitant, that's OK

Thursday, October 4, 2012 60

English is a piss-poor specification
language, but there's got to be a better way
than slavishly enumerating input/output
examples, which isn't realistic in any
scenario of any combinatorial complexity,
either. Where that puts me is very firmly in
a 'property-based test, then translate to
types as reasonable”

Thursday, October 4, 2012

61

| want a type for gender

Thursday, October 4, 2012

62

| want a test for pregnancy

63

Thursday, October 4, 2012

63

Final Thoughts

Thursday, October 4, 2012 64

Tests = There exists

Types = For all

Thursday, October 4, 2012 65

Thursday, October 4, 2012

66

Spectrum

Thursday, October 4, 2012 67

Considerations

* Do we need to think about codebase scale?
* How long will this code be in production?

* Business value of the code

* Documentation

* You don't have to be a type system genius to get
some major value

* There are an abundance of languages to suit both
needs

* LOGIC!

Thursday, October 4, 2012

68

Find us for follow-up debate

Paul Snively Amanda Laucher

@psnively @pandamonial

psnively@me.com pcprogrammer@gmail.com

Thursday, October 4, 2012

69

rolling

prime -> prime -> int
Aaron and Daniel

String -> [String] -> [[String]] -> [String] -> String
Michael

Thursday, October 4, 2012 70

