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Logic is in the air!
“The resurgence of Datalog”™ — ELC
MiniKanren—Scheme
core.logic—Clojure
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Assumptions

2 are lazy bastards!
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en in doubt, create a type : Martin Fowler
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en in doubt, create a type : Martin Fowler

ake illegal states unrepresentable : Yaron

nsky
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ichael Feathers defines legacy code as code
thout automated tests
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ichael Feathers defines legacy code as code
ithout automated tests

5 years, we'll view compilation as the

2akest form of unit testing. : Stuart Halloway

Thursday, October 4, 2012 11



Quotes

Given a good test suite the return on
investment simply does not justify the use of
static typing : Jay Fields
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Stereotypes

s easier to refactor with tests than types
) tests = no trust
Sts take a long time to run & types to compilé

pperty based testing can replace unit testing
odular design only occurs only with TDD

on’t get errors that can be prevented by typ
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tereotypes

)ry Tower vs hippies
% coverage
oed code is verbose
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tereotypes
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A walk on the wildside?
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=> 444444444
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We used different languages to do the same Kata

We stepped outside of our comfort zone to try a different approach (or multiple rewrites)
We didn’t pair

We chatted regularly about our outcome



Story 1

Each entry is 4 lines long
Each line has 27 characters

The first 3 lines of each entry contain an
account number written using pipes and
underscores, and the fourth line is blank.

Each account number should have 9 digits, all
of which should be in the range 0-9.

A normal file contains around 500 entries.
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Story 2

e accountnumber: 3458 82 865
e position names: d9 d8 d7 d6 d5 d4 d3 d2 d1

e checksum calculation:
e (d1+2*d2+3*d3 +..49*d9) mod 11 =0
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Story 3

* The file has one account number per row

 |f some characters are illegible, they are
replaced by a ?.

* |n the case of a wrong checksum, or illegible
number, this is noted in a second column
indicating status.

457508000
664371495 ERR
861107736 ILL
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Amanda takes a stab
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Amanda’s Approach

* F#

e Signatures first

* Types

 REPL play for algorithms

e Tests for validation
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Interesting Code

type Digit = Zero | One | Two | Three
with member x.toInt = match x with
Zero -> 0O

One -> 1

Two -> 2
Three -> 3

let stringToDigit = function
|
| |
| |" -> Some Zero

| " -> Some One

| " -> Some Two

_|
_|™ -> Some Three
| _ -> None
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Interesting Code

type AccountType =
|[valid of Account
| Invalid

and Account = {d9 : int; d8 : int; d7 : int; d6 :

with
member x.validate =
if int x.d9 + 2 * int x.d8 + 3 *
int x.d7 + 4 * int x.dé6 % 11 = 0
then Valid x
else Invalid

int}
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Ypes

type LegalChar =
|Underscore
|Pipe

|Space
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Deleted types as well. Sometimes the types get removed with new use cases(story 4)



Lessons learned

pes save me from having to even think about
rtain categories of tests

sts help me out when | get stuck but | mostly run
em in the REPL and delete

dde is structured differently with REPL

ost modern languages don’t have a strong enough
pe system to make illegal states un-representable

S easy to get lost in a space where you never delive
st verify when types can’t prove
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Lessons learned

Most modern languages don’t have a strong enough
type system to make illegal states un-representable
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Paul’s turn
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The evill
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Paul’s approach

e Scala

e Tests without types

* Property-based testing
* Types

e Delete some tests
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Interesting code

def makelLegit: String = {
val result = nextInt(9000000) + 1000000

val guess = checksum(result.toString + "00")
val goal = (guess / 11 + 1) * 11

val diff = goal - guess

val quotient = diff / 2

val remainder = diff % 2

val answer = (result * 100) + (quotient * 10) + remainder
answer.toString

}
def legit: Gen[String] = Gen(_ => Some(makelLegit))

"ALl legitimate OCR scans" should {
“evaluate to their unique value" in {
forAll(legit) { (v: String) => evaluate(digitsToScan(v)) must == v }
}
}
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Interesting code—h/t Travis Brown

import shapeless._
import Nat._
import HList.

// Evidence that the sum of (each item in L multiplied by (its distance from
// the end of the list plus one) modulo eleven) is S.
trait HasChecksum[L <: HList, S <: Nat]

implicit object hnilHasChecksum extends HasChecksum[HNil, 0]

implicit def hlistHasChecksum]
H <: Nat, T <: HList, S <: Nat,
TL <: Nat, TS <: Nat,
HL <: Nat, HS <: Nat
1 (implicit
tl: LengthAux|[T, TL],
ts: HasChecksum[T, TS],
hl: ProdAux[H, Succ[TL], HLI],
hs: SumAux[HL, TS, HS],
sm: ModAux[HS, 11, S]
) = new HasChecksum[H :: T, S1 {}

// Check that the list has nine elements and a checksum of zero.
def isValid[L <: HList](l: L)(implicit

len: LengthAux[L, _9],

hcs: HasChecksum[L, 0]

) {}

// Now the following valid sequence (an example from the kata) compiles:
isValid(_3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 :: HNil)
isValid(_1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: HNil)

// But these invalid sequences don't:

// isValid(_3 :: _1 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 :: HNil)
// isValid(_3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: HNil)

Thursday, October 4, 2012

45




Interesting code—h/t Travis Brown

trait HasChecksum[L <: HList, S <: Nat]

implicit object hnilHasChecksum extends HasChecksum[HNil, 0]

implicit def hlistHasChecksum|
H <: Nat, T <: HList, S <: Nat,
TL <: Nat, TS <: Nat,
HL <: Nat, HS <: Nat
] (implicit
tl: LengthAux|[T, TL],
ts: HasChecksum[T, TS],
hl: ProdAux[H, Succ[TL], HL],
hs: SumAux[HL, TS, HS],
sm: ModAux[HS, 11, S]
) = new HasChecksum[H :: T, S1 {}
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len: LengthAux[L, _9],
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) {}

// Now the following valid sequence (an example from the kata) compiles:
isValid(_3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 :: HNil)
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Interesting code—h/t Travis Brown

trait HasChecksum[L <: HList, S <: Nat]
implicit object hnilHasChecksum extends HasChecksum[HNil, _0]

implicit def hlistHasChecksum[
H <: Nat, T <: HList, S <: Nat,
TL <: Nat, TS <: Nat,
HL <: Nat, HS <: Nat
1 (implicit
tl: LengthAux[T, TL],
ts: HasChecksum[T, TSI,
hl: ProdAux[H, Succ[TL], HLI],
hs: SumAux[HL, TS, HS],
sm: ModAux[HS, _11, S]
) = new HasChecksum[H :: T, S] {}

def isValid[L <: HList](l: L)(implicit
len: LengthAux[L, _9],
hcs: HasChecksum[L, _0]

) {}

// Now the following valid sequence (an example from the kata)
compiles:

isValid( 3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 ::
HNil)

isValid( 1 :: 2 :: 3 :: 4 :: 5:: 6 :: 7 :: 8 :: 9 ::
HNil)

// But these invalid sequences don't:

// isValid( 3 :: 1 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 ::
HNil)

// isValid( 3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: HNil)

Thursday, October 4, 2012

47




Tim Sweeney, CEO, Epic Games

Program Fixpoint quicksort (1 : list t) {measure length 1} :

{1' : list t | sort le 1' /\ permutation 1 1’}

“True dependent types would be preferable to the
solution that has evolved in both Haskell and C++,
where the type level is Turing-complete yet remains a
separate and bizarre computational realm where you
can't directly reason about numbers and strings but
need to reconstruct them from inductive data types at
terrible cost in complexity.”
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Lessons learned

Even for such a small problem, spelling out unit tests
made me want to gouge out my eyeballs with a rusty
spoon.
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Our discussion throughout

all codebase = little value for type system

pes scale better than tests

pes have little value when talking with non technic
d users

e hardest part is understanding the requirements
e rarely have the luxury of sample input/output

sts can be good for forming ideas but then can be
|eted
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kes the rest of the code ugly...
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onsidered making it a type of it's own, but it
akes the rest of the code ugly...

Context matters. One reason | like the notion of
"code smell" is indeed that code is a language,
and things either read well or they don't, and if
they don't, it's telling us something.

If you're going to use types to make distinctions
between states you end up with types with only
one inhabitant, that's OK
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English is a piss-poor specification
language, but there's got to be a better way
than slavishly enumerating input/output
examples, which isn't realistic in any
scenario of any combinatorial complexity,
either. Where that puts me is very firmly in
a 'property-based test, then translate to
types as reasonable”
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| want a type for gender
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| want a test for pregnancy
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Final Thoughts
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Tests = There exists

Types = For all
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Spectrum
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Considerations

* Do we need to think about codebase scale?
* How long will this code be in production?

* Business value of the code

* Documentation

* You don't have to be a type system genius to get
some major value

* There are an abundance of languages to suit both
needs

* LOGIC!
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Find us for follow-up debate

Paul Snively Amanda Laucher

@psnively @pandamonial

psnively@me.com pcprogrammer@gmail.com
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rolling

prime -> prime -> int
Aaron and Daniel

String -> [String] -> [[String]] -> [String] -> String
Michael
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