
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 131

Project Lambda in Java SE 8
Daniel Smith
Java Language Designer

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 132

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

The Java Programming Language

• Around 9,000,000 developers worldwide

• 17 years old

• 4 major revisions (1996, 2000, 2005, 2013...)

• [Insert staggering number] of companies very heavily invested

• Formally standardized and evolved via community

3

- The scope of the Java language is a huge opportunity for the forces of good to move the state of programming forward.
- But there’s also a very strong commitment to legacy support, and a disincentive to messing things up.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Evolving a Major Language

• Adapting to change

• Righting what’s wrong

• Maintaining compatibility

• Preserving the core

4

Two ideas in this talk: 1) what we’re doing in Java 8, along with 2) a meta discussion of how we arrived here
- “Change”: we haven’t discovered the perfect language yet, and when we do, conditions will change anyway
- “Wrong”: the spec has warts, and they’re not good for user experience or implementation consistency
- “Compatibility”: unusually low tolerance for change between versions
- “Core”: can’t alienate the base in a quest for something better

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 135

Project Lambda:
Function Values in Java

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Object subclass: Widget [
 draw: canvas [...]
 click [...]
]

gui add:(Widget new).

(define f
 (lambda (x) (* x x)))

(map nums f)

Code as Data

6

- Both functional and object-oriented languages rely fundamentally on the “code as data” concept. (Here, passing a function to
‘map’ and an object to ‘gui’.)
- Compare and contrast...
- They have a lot in common, and each can be easily viewed from the other’s perspective.
- But the approaches are different: functions are small, classes are big.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Runnable {
 void run();
}

Thread hello = new Thread(new Runnable() {
 public void run() {
 System.out.println(“Hello, world!”);
 }
});

Status Quo in Java 2

7

- Does Java already have functions?
- We’ve had Runnable since Java 1, and anonymous classes since Java 2. These combine to make it easy to pass a function to the
Thread constructor.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Predicate<T> {
 boolean accept(T arg);
}

lines.removeAll(new Predicate<String>() {
 public boolean accept(String line) {
 return line.startsWith(“#”);
 }
});

Status Quo in Java 5

8

- Java 5 added generics, which make it easier to define interfaces representing general-purpose functions.
- But there is no standard Predicate interface, probably because you can’t convince people to write code like this. Too little content
in the boilerplate.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Predicate<T> {
 boolean accept(T arg);
}

lines.removeAll(line -> line.startsWith(“#”));

What We Wish It Looked Like

9

Problems with anonymous classes:
- Lots of boilerplate
- Everything is explicit
- Multiple lines
- Less obvious: puts stress on heap (class loading, object creation) and disk (lots of class files)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Why Functions in Java? Better Libraries

10

•Lots of applications...

• Our priorities:
• Collections
• Concurrency

public class ForkBlur extends RecursiveAction {
 private int[] mSource;
 private int mStart;
 private int mLength;
 private int[] mDestination;

 public ForkBlur(int[] src, int start, int length, int[] dst) {
 mSource = src;
 mStart = start;
 mLength = length;
 mDestination = dst;
 }

 // Average pixels from source, write results into destination.
 protected void computeDirectly() {
 for (int index = mStart; index < mStart + mLength; index++) {
 mDestination[index] = blur(index, mSource);
 }
 }

 protected static int sThreshold = 10000;

 protected void compute() {
 if (mLength < sThreshold) {
 computeDirectly();
 return;
 }

 int split = mLength / 2;

 invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
 new ForkBlur(mSource, mStart + split, mLength - split, mDestination));
 }

}

- Functional programmers know all sorts of situations where lightweight functions come in handy.
- As a start, we want our collections library to be more convenient/declarative and parallelizable.
- Example: fork-join is powerful, but a naive user is faced with tons of boilerplate just to express a simple parallel computation; we
can’t really do much better without lightweight functions.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1311

Java 8 Language Concepts & Features

 Lambda expressions
 Functional interfaces
 Target typing
 Method references
 Default methods

- Five major new language features & concepts that will facilitate powerful new Java programming patterns.
- Taking the best high-impact ideas we’ve seen or invented and fitting them into the Java language.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Lambda Expressions

12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

widget -> {
 if (flag) widget.poke();
 else widget.prod();
}

(int x, int y) -> {
 assert x < y;
 return x*y;
}

x -> x+1

(s,i) -> s.substring(0,i)

(Integer i) -> list.add(i)

() -> System.out.print(“x”)

cond -> cond ? 23 : 57

Lambda Expressions

13

- 0, 1, or multiple parameters
- Parameter types can be inferred or explicit
- Bodies can be expressions or blocks
- Block bodies are like methods -- local return
- Minimal delimiters

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

void cut(List<String> l,
 int len) {

 l.updateAll(s ->
 s.substring(0, len));

}

Variable Capture

14

• Lambdas can refer to variables
declared outside the body

• These variables can be final or
“effectively final”

• Works for anonymous classes,
too

- Lambdas can refer to variables declared outside the body
- Example: declarations and uses of variables are bold
- This is one big reason you would want a local construct (rather than declaring a method)
- Anonymous classes have always required captured variables to be ‘final’
- Captured vars still have to be fixed, but don’t have to be declared final

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Meaning of Names in Lambdas

15

• Anonymous classes introduce a new “level” of scope
• ‘this’ means the inner class instance
• ‘ClassName.this’ is used to get to the enclosing class instance
• Inherited names can shadow outer-scope names

• Lambdas reside in the same “level” as the enclosing context
• this refers to the enclosing class
• No new names are inherited
• Like local variables, parameter names can’t shadow other locals

- Anonymous classes have a heavyweight resolution strategy
- Lambdas have a lightweight resolution strategy

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Functional Interfaces

16

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

String -> int

(String, int, boolean) -> List<? extends Integer>

(String, Number) -> Class<?> throws IOException

Function Types in Java?

17

- What is the type of a lambda expression? We need function types...
- But this isn’t going to work!
- Imagine these types in a method signature or as a collection type argument

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Function Types in Java: Functional Interfaces

18

Maybe we don’t need something new.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Common Existing Functional Interfaces

• java.lang.Runnable

• java.util.concurrent.Callable<V>

• java.security.PrivilegedAction<T>

• java.util.Comparator<T>

• java.io.FileFilter

• java.nio.file.PathMatcher

• java.lang.reflect.InvocationHandler

• java.beans.PropertyChangeListener

• java.awt.event.ActionListener

• javax.swing.event.ChangeListener

19

- Already defined
- Already used extensively in APIs

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Attributes of Functional Interfaces

• Parameter types

• Return type

• Method type arguments

• Thrown exceptions

• An expressive, reifiable type name (possibly generic)

• An informal contract

20

- An interface declaration takes up just enough space to give a name and a description to a function type
- Nominal typing is fundamental in Java

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Shiny New Functional Interfaces*

• java.util.functions.Predicate<T>

• java.util.functions.Factory<T>

• java.util.functions.Block<T>

• java.util.functions.Mapper<T, R>

• java.util.functions.BinaryOperator<T>

21

* Names and concepts in libraries are still tentative

We define some functional interfaces fitting basic shapes in our libraries, for both our own use and reuse by others.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

/** Creates an empty set. */
public interface SetFactory {
 <T> Set<T> create();
}

/** Performs a blocking, interruptible action. */
public interface BlockingTask<T> {
 <T> T run() throws InterruptedException;
}

Declare Your Own

22

- The standard API can’t cover everything, and it doesn’t need to.
- Notice the informal contracts.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Target Typing

23

Bridging the gap between lambda expressions and functional interfaces...

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

// Runnable: void run()
Runnable r =
 () -> System.out.println(“hi”);

// Predicate<String>: boolean test(String arg)
Predicate<String> pred =
 s -> s.length() < 100;

Assigning a Lambda to a Variable

24

- A lambda can be assigned to a variable of a functional interface type.
- Bold highlights the target type and the matching expression.
- The type of the lambda expression IS the target type -- it’s an implicit part of the expression.
- Implicit parameter types are inferred from the target type.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Object o =
 () -> System.out.println(“hi”);

// Predicate<String>: boolean test(String arg)
Predicate<String> pred =
 () -> System.out.println(“hi”);

Target Typing Errors

25

- Lambdas are meaningless without a functional interface target type.
- Parameters and return have to match the target type.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

long[][] arr =
 { { 1, 2, 3 }, { 4, 5, 6 } };

List<? extends Number> nums =
 Collections.emptyList();

Set<Map<String, Object>> maps =
 new HashSet<>();

Target Typing in Java 7

26

- The idea of interpreting an expression based on context is NOT new.
- But it hasn’t been formalized very well before.
- And we’re stepping it up to a new level.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

class Thread {
 public Thread(Runnable r) { ... }
}

// Runnable: void run()
new Thread(() -> System.out.println(“hi”));

Target Typing for Invocations

27

A method can ALSO provide a target type (combining information from a declaration and a use).

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Stream<T> {
 Stream<T> filter(Predicate<T> pred);
}

Stream<String> strings = ...;

// Predicate<T>: boolean test(T arg)
strings.filter(s -> s.length() < 100);

Target Typing for Invocations

28

The target type in a method might depend on generic instantiation (combining information from a declaration, a parameterized type,
and a use).

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

<T> int m(Predicate<T> p);
int m(FileFilter f);
<S,T> int m(Mapper<S,T> m);

m(x -> x == null);

A Recipe for Disaster
(Or: A Recipe for Awesome)

29

• Target typing

• Overload resolution

• Type argument inference

- When we get a target type from a set of overloaded, generic methods, crazy stuff happens.
- Sometimes, it’s just ambiguous, but sometimes we can (and should) do much better.
- This is probably where we’ve spent the majority of our language design time.
- Bonus: new and improved inference features.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Object o =
 (Runnable) () -> System.out.println(“hi”);

Runnable r =
 condition() ? null : () -> System.gc();

Mapper<String, Runnable> m =
 s -> () -> System.out.println(s);

Other Target Typing Contexts

30

- A cast can provide an explicit target type.
- Conditional expression pass down target types.
- Lambdas can be nested.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Method References

31

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

(x, y, z) -> Arrays.asList(x, y, z)

(str, i) -> str.substring(i)

() -> Thread.currentThread().dumpStack()

(s) -> new File(s)

Boilerplate Lambdas

32

- Sometimes, the function you want is just a method that’s already defined somewhere.
- There’s still some boilerplate involved in this usage.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

(x, y, z) -> Arrays.asList(x, y, z)
Arrays::asList
(str, i) -> str.substring(i)
String::substring
() -> Thread.currentThread().dumpStack()
Thread.currentThread()::dumpStack
(s) -> new File(s)
File::new

Method (and Constructor) References

33

- Static method reference
- Instance method reference
- Bound method reference
- Constructor reference

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Resolving a Method Reference

34

• Target type provides argument types

• Named method is searched for using those argument types
• Searching for an instance method, the first parameter is the receiver

• Return type must be compatible with target return

Since methods can be overloaded, the method being referenced depends on the target type.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Mapper<Byte, Set<Byte>> m1 = Collections::singleton;

// SetFactory: <T> Set<T> create()
SetFactory f2 = Collections::emptySet;

Mapper<Queue<Float>, Float> m2 = Queue::peek;

Factory<Set<String>> f3 = HashSet::new;

Method References & Generics

35

- Type arguments are inferred, just like invocations.
- But methods can be referred to generically, too, given an appropriate target type.
- The class name part of the reference doesn’t need type arguments.
- Similarly with constructor references: class type arguments can be inferred.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Default Methods

36

We’ve got all these great new features, now we need to get people to use them...

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

New abstract methods: Bad

interface Widget {
 double weight();
 double volume();

 double density();
}

New concrete methods: Good

abstract class Widget {
 abstract double weight();
 abstract double volume();

 double density() {
 return weight()/volume();
 }
}

Evolving APIs

37

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

class Widgets {

 static double density(Widget w) {
 return w.weight()/w.volume();
 }

}

Workaround: Garbage Classes

38

• Not really a class

• Non-idiomatic invocation syntax

• Non-virtual

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Widget {
 double weight();
 double volume();

 default double density() {
 return weight()/volume();
 }
}

Default Methods: Code in Interfaces

39

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Multiple Inheritance?

40

class C:
concrete m()

interface I:
default m()

class D

interface I:
default m()

interface J:
abstract m()

interface K

interface J:
default m() interface K

class C

interface I:
default m()

- Multiple inheritance of _behavior_, but not _state_.
- Resolve in the “obvious” way whenever possible, but avoid surprises
- Intuitions: class beats interface; overrider beats overridden

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

interface Enumeration<E> extends Iterator<E> {
 boolean hasMoreElements();
 E nextElement();

 default boolean hasNext() { return hasMoreElements(); }
 default E next() { return getNext(); }
 default void remove() { throw new UnsupportedOperationException(); }

 default void forEachParallel(Block<T> b) { ... }
}

Evolving the Java Standard API

41

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Summary

42

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Goals for Project Lambda

43

• Make dramatic & necessary enhancements to the programming model

• Smooth some rough edges in the language

• Preserve compatibility

• Maintain the essence of the Java language

- Enhancements: lambda expressions, target typing, default methods
- Rough edges: variable capture, type inference
- Essence: functional interfaces, default methods

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13

Learning More

•OpenJDK: openjdk.java.net/projects/lambda

•JSR 335: www.jcp.org/en/jsr/detail?id=335

• Me: daniel.smith@oracle.com

• Download it and try it out!

44

Now is a great time to get feedback from real-world usage.

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
mailto:daniel.smith@oracle.com
mailto:daniel.smith@oracle.com

