
Stratis DevEx:
Revamp Stratis Smart
Contract Tooling and
Developer Experience

Prepared For:
Stratis Decentralized Accelerator

InterFlux Decentralized Governance Board

Prepared By:
Allister Beharry

Date:

Nov 18, 2022

mailto:allister.beharry@gmail.com

EXECUTIVE SUMMARY
The global pandemic has accelerated enterprise adoption of blockchain technology as

the need for decentralized resilient global tracking of transactions, payments,

shipments, records, digital assets, and the flow of goods and information, has become

more apparent to organizations. Blockchain spending is expected to increase from $6.6

billion in 2021 to $19 billion by 2024 in diverse industries like financial services,

supply chain management, and healthcare.

A key differentiator and strategic advantage of Stratis over other enterprise blockchain

platforms like ConsenSys Quorum and Hyperledger Fabric is the strength of the

tooling and eco-system and community around .NET and C#. Microsoft has invested

decades and billions of dollars into making .NET one of most developer-friendly and

adopted enterprise technology platforms worldwide. The switch to open-source has

increased the scope and pace of .NET technology adoption: .NET Core ranked as the

#1 most-loved framework by developers on the 2021 Stack Overflow Developer

Survey while .NET languages like C# and Visual Basic consistently rank in the top ten

of language popularity indexes like the TIOBE index. By contrast, the Solidity

language for Ethereum and Quorum smart contract development does not rank in the

top 50 languages on the index. By using .NET Core both as the development and

runtime platform for smart contracts and C# as the primary smart contract

development language, Stratis is uniquely positioned to address several existing

barriers to enterprise blockchain adoption.

Blockchain technology is complex and enterprises desiring to adopt it must contend

both with the complexity and paradigm shift of decentralized digital ledger

technology, as well as the need for developers to learn entirely new languages like

Solidity and new environments like Remix IDE or Truffle. Lack of knowledge and a

talent shortage of blockchain developers are two of the most significant barriers to

https://www.blockdata.tech/blog/general/the-state-of-enterprise-blockchain-in-2021
https://www.idc.com/getdoc.jsp?containerId=prUS47617821
https://www.hfsresearch.com/research/whos-winning-the-battle-of-enterprise-blockchain-platforms/
https://www.hfsresearch.com/research/whos-winning-the-battle-of-enterprise-blockchain-platforms/
https://insights.stackoverflow.com/survey/2021#section-most-loved-dreaded-and-wanted-other-frameworks-and-libraries
https://www.tiobe.com/tiobe-index/csharp/
https://www.tiobe.com/tiobe-index/visual-basic/
https://www.tiobe.com/tiobe-index/
https://remix-project.org/
https://trufflesuite.com/
https://www.forbes.com/sites/forbestechcouncil/2021/11/22/introducing-blockchain-six-limitations-for-enterprises-to-remember/?sh=2c75cdf5313f
https://www.finextra.com/blogposting/21337/what-is-holding-back-blockchain-adoption-and-what-should-be-done

enterprise adoption of blockchain technology, as is problematic integration with

existing systems.

Security is another critical issue for most enterprises seeking to adopt blockchain

technology and is directly tied to the unfamilarity by enterprise developers with

current blockchain and smart contract languages and tools. According to blockchain

security firm SlowMist the first half of 2022 saw 187 blockchain security incidents and

damages totaling nearly $2 billion with a more than half of those incidents due to

“design defects and smart contract vulnerabilities”, in contrast to other types of attacks

like phishing or private key exposure.

It is far easier for developers to write secure smart contract code using languages and

tools they are familiar with rather than using an unfamiliar toolset. Microsoft has

invested a great deal into making a world class developer experience for .NET with the

freely available Visual Studio IDE. Visual Studio contains several extension points that

allow it to be tailored for specialized development tasks and workloads like smart

contract development. There are also a great deal of community-built tools for .NET

development including libraries for .NET static analysis and formal verification which

are two common techniques for improving smart contract security.

By integrating all the current tools and processes for smart contract development and

security auditing into Visual Studio and supporting smart contract security techniques

like formal verification, Stratis can leverage the investment and commitment Microsoft

has made to tooling and developer experience and increase adoption of the Stratis

smart contract and blockchain platform by enterprises and industries.

https://slowmist.medium.com/overview-of-blockchain-security-2022-mid-year-report-15078f52b072
https://visualstudio.microsoft.com/vs/features/extend/

PROJECT OVERVIEW
This project seeks to revamp the existing Stratis smart contract tooling and developer

experience by integrating existing tools and libraries for smart contract validation, static

analysis, and security auditing, into Visual Studio. Currently the toolset for smart contract

development is split between Visual Studio for C# development, a command line tool for

contract validation and compilation to bytecode, and the Cirrus Core wallet or a REST API

HTTP client for deployment and calling smart contract methods. The immediate goal is to

provide a familiar, frictionless, integrated interface and toolset for smart contract

development, deployment, and security auditing that will allow .NET developers and

teams to reuse their existing knowledge as much as possible to develop secure smart

contracts. The long-term project objective is to remove some common barriers to

blockchain adoption and foster interest in the Stratis platform by enterprises and

developers who already have an investment in .NET and Visual Studio knowledge and

expertise.

The core development tasks are to integrate the existing Silver library for smart contract

static analysis and formal verification into Visual Studio Roslyn analyzers and a Visual

Studio extension. Silver will be retargeted as a general purpose library for .NET static

analysis and formal verification and will provide the core functions for the new Stratis

analyzers and extensions . The Stratis smart contract static analysis libraries and tools will

live under the Stratis.CodeAnalysis namespace and complement the existing

Stratis.SmartContract libraries . The Stratis Visual Studio analyzers and extension

will aim to bring parity between the Stratis C# developer experience and the Solidity

developer experience in IDEs like Remix or Visual Studio Code:

https://github.com/allisterb/Silver
https://learn.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/extensibility/?view=vs-2022

Figure 1. Solidity language static analysis in Remix IDE

Figure 2. Solidity smart contract deployment in Remix IDE

The Stratis Visual Studio analyzers and extension will implement the following features:

C# Source Code Validation

All validation rules for smart contract CIL code present in the Stratis command-line

validator tool will be ported to Roslyn C# syntax rules and made available to developers

inside Visual Studio, providing immediate feedback on validation errors as developers code

and removing the need to run a separate command-line tool.

Figure 3. Using the Silver Roslyn Analyzer validator inside Visual Studio

C# Source Code Exploration
The Stratis Visual Studio extension will implement for C# smart contract development
many of the features of what the ConsenSys Visual Solidity Developer VS Code extension
does for Solidity development. One of these is source exploration: a visual way to
interactively explore smart contract code using properties extracted from static analysis.
Source exploration in the Stratis VS extension will be implemented using Silver.

Figure 4. Consensys Visual Solidity Developer source exploration interactive call graph

https://github.com/ConsenSys/vscode-solidity-auditor

Figure 5. Silver call graph in Visual Studio

Figure 6. Consensys Visual Solidity Developer source exploration inheritance diagram

Figure 7. Silver inheritance diagram

C# Method Disassembly and Gas Cost
Gas in Stratis smart contracts is metered according to the type and number of .NET CIL
instructions executed by the smart contract runtime. Silver can disassemble each method
in a .NET assembly, count the number of instructions and measure the gas cost of a smart
contract method.

Figure 8. Silver disassembly of a C# smart contract method

The smart contract disassembler and gas cost will be integrated into the Stratis Visual
Studio extension as a custom tool window allowing developers to be able to immediately
see the CIL instructions executed for each smart contract method and the resulting
calculated gas cost.

https://academy.stratisplatform.com/Architecture%20Reference/SmartContracts/appendix-gas-prices.html
https://learn.microsoft.com/en-us/visualstudio/extensibility/extending-and-customizing-tool-windows?view=vs-2022

Smart Contract Deploy and Run
The Solidity Remix IDE has the ability to deploy Solidity smart contracts to a particular
environment or chain and execute the contract there with specified parameters, optionally
recording the results.

Figure 9. Remix IDE Deploy and Run

Using the extension Solidity developers can specify the HTTP endpoint address of an
Ethereum node API to deploy using that API.

This feature will allow developers to use the REST API of a Stratis FullNode to deploy and
interact with Stratis smart contracts inside Visual Studio. The developer will have a GUI
interface to the full set of operations available from the REST API such as creating and
calling smart contracts.

https://remix-ide.readthedocs.io/en/latest/run.html#

Stratis Network Explorer
The Truffle Visual Studio Code extension allows developers to connect to different
Ethereum networks and deploy contracts:

Figure 10. Truffle VS Code Blockchain Networks Explorer

Figure 11. Truffle VS Code Blockchain Networks Explorer

https://trufflesuite.com/blog/build-on-web3-with-truffle-vs-code-extension/

Figure 12. Truffle VS Code Deploy Contracts

The Ganache service allows individual developer machines to run local instances of
Ethereum blockchains for development and testing and can be controlled from the Truffle
IDE..

The Stratis Network Explorer feature would provide an explorer-style view similar to the
existing Visual Studio Server Explorer and Cloud Explorer views that would allow
developers to connect to the REST APIs of different running Stratis nodes and perform
smart contract and account operations like getting the byte code of a smart contract or
inspecting smart contract data stored persistently, as well as admin operations like
starting, stopping, and restarting the node or specifying the blockchain network to join.

C# Static Analysis and Visual Linting
Roslyn analyzers are used to enforce C# coding guidelines in particular domains iike
security via syntactic, semantic, and other kinds of static analysis. This feature implements
visual linting for C# smart contracts using Roslyn analyzers to enforce smart contract
coding guidelines and to give advice on secure usage of smart contract features and
patterns via static analysis of C# code. Guidelines can be given for things like
recommended constructor initialization patterns, gas-efficient code, or proper access
patterns for persistent storage, and which are visible in the code editor or issue pane.

Figure 13. Remix IDE flagging potential Solidity security iisue

Figure 14. Configuring Remix IDE Solidity static analysis

C# Formal Verification
Formal verification is a type of static analysis where programs are proven to have certain
properties according to a formal specification. There has been a great deal of interest into
formal verification of Ethereum smart contracts as a way to assess the correctness and
increase the reliability of smart contracts which are high-value typically immutable
applications where simple errors in design can lean to disastrous financial and reputational
losses.

Silver has the ability to formally verify Stratis C# smart contracts using annotations and
specifications embedded as comments. This feature will integrate the formal verification
capabilities of Silver into a Visual Studio Roslyn analyzer which will allow developers to
formally verify their smart contract code with immediate visual feedback on which
properties of their code can’t be proved by the verifier.

Figure 15. Silver formal verification output

https://en.wikipedia.org/wiki/Formal_verification
https://ethereum.org/en/developers/docs/smart-contracts/formal-verification/
https://hackernoon.com/how-to-perform-formal-verification-in-stratis-c-smart-contracts

Review GitHub PR smart contract
Smart contracts must first be reviewed before they can be deployed to the Cirrus
sidechain, usually by the developer submitting a pull request to the Cirrus smart contracts
repo. This feature will allow smart contracts to be reviewed directly from Visual Studio. An
“Import PR” command and dialog will be added which will fetch the content of a GitHub
PR and open the smart contract source code as C# files inside Visual Studio if available, or
analyze the attached smart contract bytecode. This feature will rely on what is already
implemented in Silver.

Figure 16. Reviewing GitHub PR in Silver

https://github.com/stratisproject/CirrusSmartContracts/pull/84
https://github.com/stratisproject/CirrusSmartContracts

TECHNICAL OBSTACLES
The major technical obstacle to faced is the complexity of Visual Studio extension
development. Extension development is still a bit of a dark art with a lot of hidden
knowledge required on the best ways to accomplish certain things and maintain stability in
the Visual Studio environment that isn’t fully covered by the official docs. Microsoft has
recognized the situation and begun work on a new extensibility model. Although the new
model is the future of Visual Studio extension development, the Stratis extension will
continue to use the old model as all the existing knowledge in the wild on extension
development relates to the old model.

https://learn.microsoft.com/en-us/visualstudio/extensibility/starting-to-develop-visual-studio-extensions?view=vs-2022
https://devblogs.microsoft.com/visualstudio/the-future-of-visual-studio-extensibility-is-here/#write-securer-more-reliable-extensions-with-the-new-out-of-proc-extensibility-model
https://github.com/microsoft/VSExtensibility

INDUSTRY AND MARKET ANALYSIS
One of the most distinctive differences of the Stratis platform is the use of the .NET Core
CLR as the smart contract VM instead of a bespoke VM like Ethereum’s EVM. Stratis smart
contract libraries are just regular .NET assembles and smart contract bytecode is just CIL
code. C# smart contracts are compiled using the regular Roslyn C# compiler and all the
tools and methods for compiling, debugging, testing, and transporting .NET code can be
used for smart contract development and deployment. In this way Stratis leverages the full
C# .NET toolchain for smart contract development together with advanced tools like
Roslyn analyzers in a way other blockchain platforms that support C# like NEO can’t with
their custom smart contract VMs and compiler.

.NET has been around for more than two decades and the ability of Stratis to use the full
C# .NET toolchain and to benefit from the considerable of research that has gone into
strengthening C# and .NET code security through techniques like static analysis should
give it a major advantage over other blockchain platforms.

In spite of this unique advantage, the Stratis platform is currently not ranked as a top
enterprise blockchain platform.

Figure 8. From “HFS Top 10 Enterprise Blockchain Services 2020” HFS Research. April 2020.

Stratis isn’t even listed in Gartner’s list of 53 blockchain platform products whereas NEO is.

https://neo.org/
https://assets.ey.com/content/dam/ey-sites/ey-com/en_gl/topics/advisory/hfs-top-10-enterprise-blockchain-services-2020-excerpt-for-ey.pdf
https://www.gartner.com/reviews/market/blockchain-platforms

Microsoft launched an Ethereum-based blockchain-as-a-service on Azure in 2015 but
stopped offering it in September 2021. It now recommends customers adopt ConsenSys
Quorum Blockchain Service. Stratis is currently the only blockchain platform built
end-to-end using .NET.

Given the popularity of .NET in enterprises and the sheer number of C# developers
(rivalled only by Java in the enterprise) and the accelerating pace of blockchain adoption by
industries there is a huge growth opportunity for Stratis in this area.

The long-term goal of this project is to make Stratis appealing to .NET enterprise
developers over other blockchain platforms by providing for smart contract development
the language and tooling support they are accustomed to for enterprise development.

https://www.zdnet.com/finance/blockchain/microsoft-is-shutting-down-its-azure-blockchain-service/

TEAM BIO

Allister is a developer with more than twenty years experience specializing in open-source
development on .NET. He’s worked for a leading regional gold-certified Microsoft solution
provider where he completed the MCSD and MCDBA certification. His most recent
experience was as a contract developer for OSS Index where he was the main developer
for the DevAudit security auding tool and the Audit.Net Visual Studio extension until OSS
Index was acquired by Sonatype.

Allister is the developer of Silver - a static analysis and formal verification tool for Stratis
smart contracts.

Allister has participated in several online hackathons and technical writing contests
including the Stratis Build Hackathon and CodeProject’s AI for Good and recently the Kyiv
Tech Summit hackathon.

https://github.com/sonatype-nexus-community/DevAudit
https://marketplace.visualstudio.com/items?itemName=VorSecurity.AuditNet
https://www.codeproject.com/Competitions/1083/Cloud-AI-Challenge-with-SAP-HANA-and-Amazon-SageMa.aspx
https://devpost.com/software/citizen5
https://devpost.com/software/citizen5

BUDGET AND TIMELINE
The requested amount is $72 000 to cover development costs for 1 developer for 12
months of .NET and Visual Studio development

Milestone Tasks Artifact Est.
Date

1 C# Source Code Validation Visual Studio Roslyn
Analyzer

01/23

1.1 Port CIL format validation rules to
Roslyn syntax rules

1.2 Port CIL determinism validation rules
to Roslyn syntax rules

2 C# Source Code Exploration Visual Studio Extension 03/23

2.1 Call graph exploration tool window

2.2 Control-flow graph exploration tool
window

2.3 Class + struct diagram tool window

3 C# Disassembly + Gas Cost Visual Studio Extension 04/23

3.1 CIL Disassembly + gas cost tool
window

4 Smart Contract Deploy and Run Visual Studio Extension 05/23

4.1 .NET interface to node REST API

4.2 Deploy and Run tool window

5 Stratis Network Explorer Visual Studio Extension 06/23

5.1 Network Explorer tool window

5.2 Bookmark/organize nodes by folder

5.3 Nickname/organize account address

5.4 Decompile smart contract bytecode

6 Review GitHub PR smart contract Visual Studio Extension 07/23

6.1 Integrate Silver GitHub PR fetch

7 C# Formal Verification Visual Studio Roslyn
Analyzer

09/23

7.1 Integrate Silver formal verification

8 C# Static Analysis and Visual Linting Visual Studio Extension 11/23

8.1 Static analysis options configuration

	Executive Summary

