

Stratum v2 (WORK IN PROGRESS)
 BIP: ???
 Layer: Applications
 Title: Stratum mining protocol V2
 Author: Pavel Moravec <pavel@braiins.com>
 Jan Čapek <jan@braiins.com>
 Matt Corallo <bipstratum@bluematt.me>
 Comments-Summary: No comments yet.
 Comments-URI: https://github.com/:BIP-0310
 Status: Draft
 Type: Informational
 Created: 2019-??-??
 License: BSD-3-Clause
 CC0-1.0

Abstract
The current stratum protocol (v1) is used prevalently throughout the cryptocurrency mining
industry today, but it was never intended nor designed to be an industry standard.

This document proposes a new version of stratum protocol that addresses scaling and quality
issues of the previous version, focusing on more efficient data transfers (i.e. distribution of
mining jobs and result submissions) as well as increased security.

Additionally, the redesigned protocol includes support for transaction selection by the miners
themselves, as opposed to the current version of the protocol in which only the pool operators
can determine a new block’s transaction set.

There are some trade offs necessary to make the protocol scalable and relatively simple, which
will be addressed in the detailed discussions below.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119.

We keep the name “Stratum” so that people will recognize that this is an upgrade of the
widespread protocol version 1, with the hope that it will help gather support for the new
version more easily.

Motivation
Stratum protocol v1 is JSON-based and lacks cryptographic authentication, making it slower,
heavier, and less secure than it can be considering the alternatives available today. Given the

cryptocurrency mining industry’s continued maturation and growth, it’s necessary to address
v1’s deficiencies and move to a more efficient solution with a precise definition.

One of the primary motivations of the new protocol is to reduce the amount and respective size
of data transfers between miners, proxies, and pool operators to an absolute minimum. This
will enable stratum servers to use the saved bandwidth for higher submission rates, thus
yielding a reduced variance in hash rate (and in turn in miner payouts).

To increase efficiency further, we will enable a simplified mode for end mining devices which
completely eliminates the need for extranonce and Merkle path handling (i.e. any coinbase
modification on downstream machines). This mode, called header-only mining, makes
computations simpler for miners and work validation much lighter on the server side.
Furthermore, header-only mining reduces the cost of future changes to the Bitcoin protocol, as
mining firmware and protocols do not need to be upgraded in conjunction with full nodes.

In terms of security, another important improvement to make is hardening the protocol against
man-in-the-middle attacks by providing a way for mining devices to verify the integrity of the
assigned mining jobs and other commands.

Last but not the least, this protocol strives to allow downstream nodes to choose mining jobs
and efficiently communicate them to upstream nodes to reduce power currently held by
mining pools (block version selection, transaction selection). This should be possible without
harming public pool business models or otherwise leading to more centralization in another
area of the mining industry.

Design Goals
As there are numerous changes from the original Stratum v1 to v2, it may be helpful to briefly
review some high-level design goals before getting into more detailed technical specifications:

● Develop a binary protocol with a precise definition. Despite its simplicity, v1 was not a
precisely defined protocol and ended up with multiple slightly different dialects. We
don’t want any room for different interpretations of v2.

● Make Stratum v2 logically similar to v1 whenever possible so that it’s easier to
understand for people who are already familiar with the protocol. V1 is widely used not
only in bitcoin mining, but also for mining various altcoins.

● Remove as many issues caused by v1 as possible, based on substantial historical
experience with it.

○ Remove explicit mining subscriptions (mining.subscribe) altogether. It was
originally part of a more elaborate protocol and is no longer relevant.

○ Make extranonce subscription a native part of the protocol, not an extension.

○ Clean up difficulty controlling, which is really suboptimal v1.

○ Drop JSON.

○ Rework BIP310 from scratch.

● Allow different mining jobs on the same connection.

● Avoid introducing any additional risks to pool operators and miners since that would
make adoption of v2 very improbable.

● Support version rolling natively. Bitcoin block header contains a version field whose bits
(determined by BIP320) can be freely used to extend the hashing space for a miner. It
is already a common tech, we want to include it as a first class citizen in the new
protocol.

● Support header-only mining (not touching the coinbase transaction) in as many
situations as possible. Header-only mining should be easier and faster on mining
devices, while also decreasing network traffic.

● Dramatically reduce network traffic as well as client-side and server-side
computational intensity, while still being able to send and receive hashing results
rapidly for precise hash rate measurement (and therefore more precise mining reward
distribution).

● Allow miners to (optionally) choose the transaction set they mine through work
negotiation on some independent communication channel. At the same time, allow
miners to choose how they utilize the available bits in the block header nVersion field,
including both those bits which are used for mining (e.g. version-rolling AsicBoost) by
BIP320​, and those bits used for ​BIP8​/​9​ signaling. This mechanism must not interfere
with the efficiency or security of the main mining protocol.

○ Use a separate communication channel for transaction selection so that it does
not have a performance impact on the main mining/share communication, as
well as can be run in three modes - disabled (i.e.pool does not yet support client
work selection, to provide an easier transition from Stratum v1), client-push (to
maximally utilize the client’s potential block-receive-latency differences from
the pool), and client-negotiated (for pools worried about the potential of clients
generating invalid block templates).

● Put complexity on the pool side rather than the miner side whenever possible. Keep the
protocol part to be implemented in embedded devices as small and easy as possible.
Mining devices tend to be difficult to update. Any mistake in a firmware can be very
costly. Either on miners side (non-functioning firmware) or pool side (necessity to
implement various workarounds and hacks to support misbehaving firmware).

● Allow for translation to and from the original protocol on a proxy level (e.g. different
downstream devices) without the necessity to reconnect.

● Reduce the stale ratio as much as possible through efficiency improvements.

● Support/allow for nTime rolling in hardware in a safe and controlled way.

● Simple support for vendor-specific extensions without polluting the protocol, or
complicating pool implementation.

https://github.com/bitcoin/bips/blob/master/bip-0320.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0008.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki

● Optional telemetry data, allowing for easy monitoring of farms, without sacrificing the
privacy of miners who wish to remain private.

● Allow aggregation of connections to upstream nodes with an option to aggregate or not
aggregate hash rate for target setting on those connections.

● Ensure protocol design allows for devices to implement their own swarm algorithms.
Mining devices can dynamically form small groups with an elected master that is
responsible for aggregating connections towards upstream endpoint(s), acting as a
local proxy. Aggregating connections and running multiple channels across a single TCP
connection yields a better ratio of actual payload vs TCP/IP header sizes, as the share
submission messages are in the range of 20 bytes. Still, to avoid overly complicating
the protocol, automated negotiation of swarm/proxy detection is left to future
extensions or vendor-specific messages.

Protocol Overview
There are technically four distinct (sub)protocols needed in order to fully use all of the features
proposed in this document:

1. Mining Protocol: The main protocol used for mining and the direct successor of Stratum
v1. A mining device uses it to communicate with its upstream node, pool, or a proxy. A
proxy uses it to communicate with a pool (or another proxy). This protocol needs to be
implemented in all scenarios. For cases in which a miner or pool doesn’t support
transaction selection, this is the only protocol used.

2. Job Negotiation Protocol: Used by a miner (a whole mining farm) to negotiate a block
template with a pool. Results of this negotiation can be re-used for all mining
connections to the pool to reduce computational intensity. In other words, a single
negotiation can be used by an entire mining farm or even multiple farms with hundreds
of thousands of devices, making it far more efficient. This is separate to allow pools to
terminate such connections on separate infrastructure from mining protocol
connections (i.e. share submissions). Further, such connections have very different
concerns from share submissions - work negotiation likely requires, at a minimum,
some spot-checking of work validity, as well as potentially substantial rate-limiting
(without the inherent rate-limiting of share difficulty).

3. Template Distribution Protocol: A similarly-framed protocol for getting information
about the next block out of Bitcoin Core. Designed to replace getblocktemplate with
something much more efficient and easy to implement for those implementing other
parts of Stratum v2.

4. Job Distribution Protocol - Simple protocol for passing newly-negotiated work to
interested nodes - either proxies or miners directly. This protocol is left to be specified
in a future document, as it is often unnecessary due to the Job Negotiation role being a
part of a larger Mining Protocol Proxy.

Meanwhile, there are five possible roles (types of software/hardware) for communicating with
these protocols.

A. Mining Device - The actual device computing the hashes. This can be further divided
into header-only mining devices and standard mining devices, though most devices will
likely support both modes.

B. Pool Service - Produces jobs (for those not negotiating jobs via the Job Negotiation
Protocol), validates shares, and ensures blocks found by clients are propagated through
the network (though clients which have full block templates MUST also propagate
blocks into the Bitcoin P2P network).

C. Mining Proxy - (optional) Sits in between Mining Device(s) and Pool Service, aggregating
connections for efficiency. May optionally provide additional monitoring, receive work
from a Job Negotiator and use custom work with a pool, or provide other services for a
farm.

D. Job Negotiator - (optional) Receives custom block templates from a Template Provider
and negotiates use of the template with the pool using the Job Negotiation Protocol.
Further distributes the jobs to Mining Proxy (or Proxies) using the Job Distribution
Protocol. This role will often be a built-in part of a Mining Proxy.

E. Template Provider - Generates custom block templates to be passed to the Job
Negotiator for eventual mining. This is usually just a Bitcoin Core full node (or possibly
some other node implementation).

The Mining Protocol is used for communication between a Mining Device and Pool Service,
Mining Device and Mining Proxy, Mining Proxy and Mining Proxy, or Mining Proxy and Pool
Service.

The Job Negotiation Protocol is used for communication between a Job Negotiator and Pool
Service.

The Template Distribution Protocol is used for communication between a Job Negotiator and
Template Provider.

The Job Distribution Protocol is used for communication between a Job Negotiator and a
Mining Proxy.

One type of software/hardware can fulfill more than one role (e.g. a Mining Proxy is often both
a Mining Proxy and a Job Negotiator and may occasionally further contain a Template Provider
in the form of a full node on the same device).

Each sub-protocol is based on the same technical principles and requires a connection
oriented transport layer, such as TCP. In specific use cases, it may make sense to operate the
protocol over a connectionless transport with FEC or local broadcast with retransmission.
However, that is outside of the scope of this document. The minimum requirement of the
transport layer is to guarantee ordered delivery of the protocol messages.

Data Types Mapping
Message definitions use common data types described here for convenience. Multibyte data
types are always serialized as little-endian.

Protocol Type Byte Length Description

BOOL 1 Boolean value. Encoded as an unsigned 1-bit integer,
True = 1, False = 0 with 7 additional padding bits in
the high positions.
x
Recipients MUST NOT interpret bits outside of the
least significant bit. Senders MAY set bits outside of
the least significant bit to any value without any
impact on meaning. This allows future use of other
bits as flag bits.

U8 1 Unsigned integer, 8-bit

U16 2 Unsigned integer, 16-bit, little-endian

U24 3 Unsigned integer, 24-bit, little-endian (commonly
deserialized as a 32-bit little-endian integer with a
trailing implicit most-significant 0-byte).

U32 4 Unsigned integer, 32-bit, little-endian

U256 32 Unsigned integer, 256-bit, little-endian. Often the
raw byte output of SHA-256 interpreted as an
unsigned integer.

STR0_255 1 + LENGTH 1-byte length L, unsigned integer 8-bits, followed by
a series of L bytes. Allowed range of length is 0 to
255. The string is not null-terminated.

B0_255 1 + LENGTH 1-byte length L, unsigned integer 8-bits, followed by
a sequence of L bytes. Allowed range of length is 0 to
255.

B0_64K 2 + LENGTH 2-byte length L, unsigned little-endian integer
16-bits, followed by a sequence of L bytes. Allowed
range of length is 0 to 65535.

B0_16M 3 + LENGTH 3-byte length L, encoded as a U24 above, followed by
a sequence of L bytes. Allowed range of length is 0 to
2^24-1.

BYTES LENGTH Arbitrary sequence of LENGTH bytes. See description
for how to calculate LENGTH.

PUBKEY 32 Ed25519 public key

SIGNATURE 64 Ed25519 signature

SEQ0_255[T] Fixed size T:
1 + LENGTH * size(T)
Variable length T:
1 + seq.map(|x| x.length).sum()

1-byte length L, unsigned integer 8-bits, followed by
a sequence of L elements of type T. Allowed range of
length is 0 to 255.

SEQ0_64K[T] Fixed size T:
2 + LENGTH * size(T)
Variable length T:
2 + seq.map(|x| x.length).sum()

2-byte length L, unsigned little-endian integer
16-bits, followed by a sequence of L elements of type
T. Allowed range of length is 0 to 65535.

Framing
The protocol is binary, with fixed message framing. Each message begins with the extension
type, message type, and message length (six bytes in total), followed by a variable length
message. The message framing is outlined below:

Field Name Data Type Description

extension_type U16 Unique identifier of the extension describing this protocol message.

Most significant bit (i.e.bit 15, 0-indexed, aka ​channel_msg​) indicates a
message which is specific to a channel, whereas if the most significant bit is
unset, the message is to be interpreted by the immediate receiving device.

Note that the channel_msg bit is ignored in the extension lookup, i.e.an
extension_type of 0x8ABC is for the same “extension” as 0x0ABC.

If the channel_msg bit is set, the first four bytes of the payload field is a U32
representing the channel_id this message is destined for (these bytes are
repeated in the message framing descriptions below).

Note that for the Job Negotiation and Template Distribution Protocols the
channel_msg bit is always unset.

msg_type U8 Unique identifier of the message within the extension_type namespace.

msg_length U24 Length of the protocol message, not including this header.

payload BYTES Message-specific payload of length msg_length. If the MSB in
extension_type (the channel_msg bit) is set the first four bytes are defined as
a U32 “channel_id”, though this definition is repeated in the message
definitions below and these 4 bytes are included in msg_length.

Protocol Security
Stratum V2 employs a type of encryption scheme called AEAD (authenticated encryption with
associated data) to address the security aspects of all communication that occurs between

clients and servers. This provides both confidentiality and integrity for the ciphertexts (i.e.
encrypted data) being transferred, as well as providing integrity for associated data which is
not encrypted. Prior to opening any Stratum V2 channels for mining, clients MUST first initiate
the cryptographic session state that is used to encrypt all messages sent between themselves
and servers. Thus, the cryptographic session state is independent of V2 messaging
conventions.

At the same time, this specification proposes optional use of a particular handshake protocol
based on the ​Noise Protocol framework​. The client and server establish secure
communication using Diffie-Hellman (DH) key agreement, as described in greater detail in the
Authenticated Key Agreement Handshake section below.

Using the handshake protocol to establish secured communication is ​optional​ on the local
network (e.g. local mining devices talking to a local mining proxy). However, it is ​mandatory​ for
remote access to the upstream nodes, whether they be pool mining services, job negotiating
services or template distributors.

Motivation for Authenticated Encryption with Associated Data
Data transferred by the mining protocol MUST not provide adversary information that they can
use to estimate the performance of any particular miner. Any intelligence about submitted
shares can be directly converted to estimations of a miner’s earnings and can be associated
with a particular username. This is unacceptable privacy leakage that needs to be addressed.

Motivation for Using the Noise Protocol Framework
The reasons why Noise Protocol Framework has been chosen are listed below:

● The Framework pushes to use new, modern cryptography.
● The Framework provides a formalism to describe the handshake protocol that can be

verified.
● There is no legacy overhead.
● It is difficult to get wrong.
● Noise Explorer provides code generators for popular programming languages (e.g. Go,

Rust).
● We can specify no flexibility (i.e. fewer degrees of freedom), helping ensure

standardization of the supported ciphersuite(s).
● A custom certificate scheme is now possible (no need to use x509 certificates).

Authenticated Key Agreement Handshake
The handshake chosen for the authenticated key exchange is ​Noise_NX​ as it provides
authentication of the server side and doesn’t require authentication of the initiator (client).
Server authentication is achieved implicitly via a series of Elliptic-Curve Diffie-Hellman (ECDH)
operations followed by a MAC check.

The authenticated key agreement (​Noise_NX​) is performed in two distinct steps (acts). The
protocol allows for secure authentication. ​During each act of the handshake the following
occurs: some (possibly encrypted) keying material is sent to the other party; an ECDH is

https://noiseprotocol.org/noise.html

performed, based on exactly which act is being executed, with the result mixed into the current
set of encryption keys (​ck​ the chaining key and ​k​ ​the encryption key); and an AEAD payload
with a zero-length cipher text is sent. As this payload has no length, only a MAC is sent across.
The mixing of ECDH outputs into a hash digest forms an incremental DoubleDH handshake.

Using the language of the Noise Protocol, ​e​ and ​s​ (both public keys with ​e​ being the ​ephemeral
key​ and ​s​ being the ​static key​) indicate possibly encrypted keying material, and ​es​, ​ee​, and ​se
each indicate an ECDH operation between two keys. The handshake is laid out as follows:

 Noise_NX(s, rs):

 -> e

 <- e, ee, s, es, SIGNATURE_NOISE_MESSAGE

The second handshake message is followed by a SIGNATURE_NOISE_MESSAGE. Using this
additional message allows us to authenticate the stratum server to the downstream node. The
certificate implements a simple 2 level public key infrastructure.

The main idea is that each stratum server is equipped with a certificate (that confirms its
identity by ​providing signature of​ its “​static public key​” aka “​s​”). The certificate has
time limited validity and is signed by the central pool authority​.

Signature Noise Message
This message uses the same serialization format as other stratum messages. It contains
serialized:

● Server Certificate header (version, valid_from and not_not_valid_after fields)
● ED25519 signature that can be verified by the Pool Authority Public key

Field Name Data Type Description

version U16 Version of the certificate format

valid_from U32 Validity​ ​start time (unix timestamp)

not_valid_after U32 Signature is invalid after this point in time (unix timestamp)

signature SIGNATURE Ed25519 Signature

the client can reconstruct the full Certificate from its “​s​” and this header and authenticate the
server.

Certificate format
Stratum server certificates have the following layout. The signature is constructed over the
fields marked for signing after serialization using Stratum protocol binary serialization format.

Field Name Data Type Description Signed
Field

version U16 Version of the certificate format YES

valid_from U32 Validity​ ​start time (unix timestamp) YES

not_valid_after U32 Signature is invalid after this point in time (unix timestamp) YES

public_key PUBKEY static public key of the client YES

authority_public_key PUBKEY public key used for verification of the signature NO

signature SIGNATURE Ed25519 Signature NO

URL scheme and Pool Authority Key
Downstream nodes that want to use the above outlined security scheme need to have
configured the ​Pool Authority Key​ of the pool that they intend to connect to. The key can be
embedded into the mining URL as part of the path. E.g.:

stratum2+tcp://thepool.com/u95GEReVMjK6k5YqiSFNqqTnKU4ypU2Wm8awa6tmbmDmk1bWt

The “​u95GEReVMjK6k5YqiSFNqqTnKU4ypU2Wm8awa6tmbmDmk1bWt​” is the public key
in ​base58-check​ encoding. It is provided by the target pool and communicated to its users via
a trusted channel. At least, it can be published on the pool's public website.

Reconnecting Downstream Nodes
An upstream stratum node may occasionally request reconnection of its downstream peers to
a different host (e.g. due to maintenance reasons, etc.). This request is per upstream
connection and affects all open channels towards the upstream stratum node.

After receiving a request to reconnect, the downstream node MUST run the handshake
protocol with the new node as long as its previous connection was also running through a
secure cryptographic session state.

https://en.bitcoin.it/wiki/Base58Check_encoding

Protocol Extensions
Protocol extensions may be defined by using a non-0 extension_type field in the message
header (not including the channel_msg bit). The value used MUST either be in the range
0x4000 - 0x7fff (inclusive, i.e. have the second-to-most-significant-bit set) denoting an
“experimental” extension and not be present in production equipment, or have been allocated
for the purpose at http://stratumprotocol.org. While extensions SHOULD have BIPs written
describing their full functionality, extension_type allocations MAY also be requested for
vendor-specific proprietary extensions to be used in production hardware. This is done by
sending an email with a brief description of the intended use case to the Bitcoin Protocol
Development List and extensions@stratumprotocol.org. (Note that these contacts may change
in the future, please check the latest version of this BIP prior to sending such a request.)

Extensions are left largely undefined in this BIP, however, there are some basic requirements
that all extensions must comply with/be aware of.

For unknown extension_type’s, the channel_msg bit in the extension_type field determines
which device the message is intended to be processed on: if set, the channel endpoint
(i.e. either an end mining device, or a pool server) is the final recipient of the message, whereas
if unset, the final recipient is the endpoint of the connection on which the message is sent.
Note that in cases where channels are aggregated across multiple devices, the proxy which is
aggregating multiple devices into one channel forms the channel’s “endpoint” and processes
channel messages. Thus, any proxy devices which receive a message with the channel_msg bit
set and an unknown extension_type value MUST forward that message to the
downstream/upstream device which corresponds with the channel_id specified in the first four
bytes of the message payload. Any channel_id mapping/conversion required for other channel
messages MUST be done on the channel_id in the first four bytes of the message payload, but
the message MUST NOT be otherwise modified. If a device is aware of the semantics of a given
extension type, it MUST process messages for that extension in accordance with the
specification for that extension.

Messages with an unknown extension_type which are to be processed locally (as defined
above) MUST be discarded and ignored.

Extensions MUST require version negotiation with the recipient of the message to check that
the extension is supported before sending non-version-negotiation messages for it. This
prevents the needlessly wasted bandwidth and potentially serious performance degradation of
extension messages when the recipient does not support them.

See ChannelEndpointChanged message in Common Protocol Messages for details about how
extensions interact with dynamic channel reconfiguration in proxies.

Error Codes
The protocol uses string error codes. The list of error codes can differ between
implementations, and thus implementations MUST NOT take any automated action(s) on the
basis of an error code. Implementations/pools SHOULD provide documentation on the

meaning of error codes and error codes SHOULD use printable ASCII where possible.
Furthermore, error codes MUST NOT include control characters.

To make interoperability simpler, the following error codes are provided which
implementations SHOULD consider using for the given scenarios. Individual error codes are
also specified along with their respective error messages.

● ‘unknown-user’
● ‘too-low-difficulty’
● ‘stale-share’
● ‘unsupported-feature-flags’
● ‘unsupported-protocol’
● ‘protocol-version-mismatch’

Common Protocol Messages
The following protocol messages are common across all of the protocols described in this BIP.

SetupConnection (Client -> Server)
Initiates the connection. This MUST be the first message sent by the client on the newly
opened connection. Server MUST respond with either a ​SetupConnection.Success​ or
SetupConnection.Error​ message. Clients that are not configured to provide telemetry data to
the upstream node SHOULD set device_id to 0-length strings. However, they MUST always set
vendor to a string describing the manufacturer/developer and firmware version and SHOULD
always set hardware_version to a string describing, at least, the particular hardware/software
package in use.

Field Name Data Type Description

protocol U8 0 = Mining Protocol
1 = Job Negotiation Protocol
2 = Template Distribution Protocol
3 = Job Distribution Protocol

min_version U16 The minimum protocol version the client supports (currently must be 2).

max_version U16 The maximum protocol version the client supports (currently must be 2).

flags U32 Flags indicating optional protocol features the client supports. Each
protocol from ​protocol​ field has its own values/flags.

endpoint_host STR0_255 ASCII text indicating the hostname or IP address.

endpoint_port U16 Connecting port value.

Device information

vendor STR0_255 E.g. “Bitmain”

hardware_version STR0_255 E.g. “S9i 13.5”

firmware STR0_255 E.g. “braiins-os-2018-09-22-1-hash”

device_id STR0_255 Unique identifier of the device as defined by the vendor.

SetupConnection.Success (Server -> Client)
Response to ​SetupConnection​ message if the server accepts the connection. The client is
required to verify the set of feature flags that the server supports and act accordingly.

Field Name Data Type Description

used_version U16 Selected version proposed by the connecting node that the upstream
node supports. This version will be used on the connection for the rest
of its life.

flags U32 Flags indicating optional protocol features the server supports. Each
protocol from ​protocol​ field has its own values/flags.

SetupConnection.Error (Server -> Client)
When protocol version negotiation fails (or there is another reason why the upstream node
cannot setup the connection) the server sends this message with a particular error code prior
to closing the connection.

In order to allow a client to determine the set of available features for a given server (e.g. for
proxies which dynamically switch between different pools and need to be aware of supported
options), clients SHOULD send a SetupConnection message with all flags set and examine the
(potentially) resulting SetupConnection.Error message’s flags field. The Server MUST provide
the full set of flags which it does not support in each SetupConnection.Error message and
MUST consistently support the same set of flags across all servers on the same hostname and
port number. If flags is 0, the error is a result of some condition aside from unsupported flags.

Field Name Data Type Description

flags U32 Flags indicating features causing an error.

error_code STR0_255 Human-readable error code(s). See Error Codes section, below.

Possible error codes:

● ‘unsupported-feature-flags’
● ‘unsupported-protocol’
● ‘protocol-version-mismatch’

ChannelEndpointChanged (Server -> Client)
When a channel’s upstream or downstream endpoint changes and that channel had previously
sent messages with ​channel_msg​ bitset of unknown extension_type, the intermediate proxy
MUST send a​ ChannelEndpointChanged​ message. Upon receipt thereof, any extension state
(including version negotiation and the presence of support for a given extension) MUST be
reset and version/presence negotiation must begin again.

Field Name Data Type Description

channel_id U32 The channel which has changed endpoint.

Mining Protocol

Channels
The protocol is designed such that downstream devices (or proxies) open communication
channels with upstream stratum nodes within established connections. The upstream stratum
endpoints could be actual mining servers or proxies that pass the messages further upstream.
Each channel identifies a dedicated mining session associated with an authorized user.
Upstream stratum nodes accept work submissions and specify a mining target on a
per-channel basis.

There can theoretically be up to 2​32​ open channels within one physical connection to an
upstream stratum node. All channels are independent of each other, but share some messages
broadcasted from the server for higher efficiency (e.g. information about a new prevhash).
Each channel is identified by its channel_id (U32), which is consistent throughout the whole
life of the connection.

A proxy can either transparently allow its clients to open separate channels with the server
(preferred behaviour) or aggregate open connections from downstream devices into its own
open channel with the server and translate the messages accordingly (present mainly for
allowing v1 proxies). Both options have some practical use cases. In either case, proxies
SHOULD aggregate clients’ channels into a smaller number of TCP connections. This saves
network traffic for broadcast messages sent by a server because fewer messages need to be
sent in total, which leads to lower latencies as a result. And it further increases efficiency by
allowing larger packets to be sent.

The protocol defines three types of channels: ​standard channels​, ​extended channels​ (mining
sessions) and ​group channels​ (organizational), which are useful for different purposes.

The main difference between standard and extended channels is that standard channels
cannot manipulate the coinbase transaction / Merkle path, as they operate solely on provided
Merkle roots. We call this ​header-only​ ​mining​. Extended channels, on the other hand, are
given extensive control over the search space so that they can implement various advanced

use cases such as translation between v1 and v2 protocols, difficulty aggregation, custom
search space splitting, etc.

This separation vastly simplifies the protocol implementation for clients that don’t support
extended channels, as they only need to implement the subset of protocol messages related to
standard channels (see Mining Protocol Messages for details).

Standard Channels
Standard channels are intended to be used by end mining devices.

The size of the search space for one standard channel (header-only mining) for one particular
value in the nTime field is 2^(NONCE_BITS + VERSION_ROLLING_BITS) = ~280Th, where
NONCE_BITS = 32 and VERSION_ROLLING_BITS = 16. This is a guaranteed space before
nTime rolling (or changing the Merkle root).

The protocol dedicates all directly modifiable bits (version, nonce, and nTime) from the block
header to one mining channel. This is the smallest assignable unit of search space by the
protocol. The client which opened the particular channel owns the whole assigned space and
can split it further if necessary (e.g. for multiple hashing boards and for individual chips etc.).

Extended channels
Extended channels are intended to be used by proxies. Upstream servers which accept
connections and provide work MUST support extended channels. Clients, on the other hand, do
not have to support extended channels, as they MAY be implemented more simply with only
standard channels at the end-device level. Thus, upstream servers providing work MUST also
support standard channels.

The size of search space for an extended channel is
2^(NONCE_BITS+VERSION_ROLLING_BITS+extranonce_size*8) per nTime value.

Group Channels
Standard channels opened within one particular connection can be grouped together to be
addressable by a common communication group channel.

Whenever a standard channel is created it is always put into some channel group identified by
its group_channel_id. Group channel ID namespace is the same as channel ID namespace on a
particular connection but the values chosen for group channel IDs must be distinct.

Future Jobs
An empty future block job or speculated non-empty job can be sent in advance to speedup
new mining job distribution. The point is that the mining server MAY have precomputed such a
job and is able to pre-distribute it for all active channels. The only missing information to start
to mine on the new block is the new prevhash. This information can be provided
independently.

Such an approach improves the efficiency of the protocol where the upstream node doesn’t
waste precious time immediately after a new block is found in the network.

Hashing Space Distribution
Each mining device has to work on a unique part of the whole search space. The full search
space is defined in part by valid values in the following block header fields:

● Nonce header field (32 bits),

● Version header field (16 bits, as specified by BIP 320),

● Timestamp header field.

The other portion of the block header that’s used to define the full search space is the Merkle
root hash of all transactions in the block, projected to the last variable field in the block header:

● Merkle root, deterministically computed from:

○ Coinbase transaction: typically 4-8 bytes, possibly much more.

○ Transaction set: practically unbounded space. All roles in Stratum v2 MUST NOT
use transaction selection/ordering for additional hash space extension. This
stems both from the concept that miners/pools should be able to choose their
transaction set freely without any interference with the protocol, and also to
enable future protocol modifications to Bitcoin. In other words, any rules
imposed on transaction selection/ordering by miners not described in the rest of
this document may result in invalid work/blocks.

Mining servers MUST assign a unique subset of the search space to each connection/channel
(and therefore each mining device) frequently and rapidly enough so that the mining devices
are not running out of search space. Unique jobs can be generated regularly by:

● Putting unique data into the coinbase for each connection/channel, and/or

● Using unique work from a work provider, e.g. a previous work update (note that this is
likely more difficult to implement, especially in light of the requirement that transaction
selection/ordering not be used explicitly for additional hash space distribution).

This protocol explicitly expects that upstream server software is able to manage the size of the
hashing space correctly for its clients and can provide new jobs quickly enough.

Mining Protocol Messages

SetupConnection flags for Mining Protocol

Flags usable in SetupConnection.flags and SetupConnection.Error::flags:

Field Name Bit Description

REQUIRES_STANDARD_JOBS 0 The downstream node requires standard jobs. It doesn’t
understand group channels - it is unable to process extended
jobs sent to standard channels through a group channel.

REQUIRES_WORK_SELECTION 1 If set to 1, the client notifies the server that it will send
SetCustomMiningJob on this connection.

REQUIRES_VERSION_ROLLING 2 The client requires version rolling for efficiency or correct

operation and the server MUST NOT send jobs which do not
allow version rolling.

SetupConnection.Success.flags:

Field Name Bit Description

REQUIRES_FIXED_VERSION 0 Upstream node will not accept any changes to the
version field. Note that if
REQUIRES_VERSION_ROLLING was set in the
SetupConnection::flags field, this bit MUST NOT be
set. Further, if this bit is set, extended jobs MUST NOT
indicate support for version rolling.

REQUIRES_EXTENDED_CHANNELS 1 Upstream node will not accept opening of a standard
channel.

OpenStandardMiningChannel (Client -> Server)
This message requests to open a standard channel to the upstream node.

After receiving a SetupConnection.Success message, the client SHOULD respond by opening
channels on the connection. If no channels are opened within a reasonable period the server
SHOULD close the connection for inactivity.

Every client SHOULD start its communication with an upstream node by opening a channel,
which is necessary for almost all later communication. The upstream node either passes
opening the channel further or has enough local information to handle channel opening on its
own (this is mainly intended for v1 proxies).

Clients must also communicate information about their hashing power in order to receive
well-calibrated job assignments.

Field Name Data Type Description

request_id U32 Client-specified identifier for matching responses from upstream server.
The value MUST be connection-wide unique and is not interpreted by
the server.

user_identity STR0_255 Unconstrained sequence of bytes. Whatever is needed by upstream
node to identify/authenticate the client, e.g. “braiinstest.worker1”.
Additional restrictions can be imposed by the upstream node (e.g. a
pool). It is highly recommended that UTF-8 encoding is used.

nominal_hash_rate F32 [h/s] Expected hash rate of the device (or cumulative hashrate on the
channel if multiple devices are connected downstream) in h/s.
Depending on server’s target setting policy, this value can be used for

setting a reasonable target for the channel. Proxy MUST send 0.0f when
there are no mining devices connected yet.

max_target U256 Maximum target which can be accepted by the connected device or
devices. Server MUST accept the target or respond by sending
OpenMiningChannel.Error message.

OpenStandardMiningChannel.Success (Server -> Client)
Sent as a response for opening a standard channel, if successful.

Field Name Data Type Description

request_id U32 Client-specified request ID from OpenStandardMiningChannel message,
so that the client can pair responses with open channel requests.

channel_id U32 Newly assigned identifier of the channel, stable for the whole lifetime of
the connection. E.g. it is used for broadcasting new jobs by
NewExtendedMiningJob.

target U256 Initial target for the mining channel.

extranonce_prefix B0_32 Bytes used as implicit first part of extranonce for the scenario when
extended job is served by the upstream node for a set of standard
channels that belong to the same group.

group_channel_id U32 Group channel into which the new channel belongs. See
SetGroupChannel for details.

OpenExtendedMiningChannel (Client -> Server)
Similar to ​OpenStandardMiningChannel​ but requests to open an extended channel instead of
standard channel.

Field Name Data Type Description

<All fields from ​OpenStandardMiningChannel​>

min_extranonce_size U16 Minimum size of extranonce needed by the device/node.

OpenExtendedMiningChannel.Success (Server -> Client)
Sent as a response for opening an extended channel.

Field Name Data Type Description

request_id U32 Client-specified request ID from OpenExtendedMiningChannel message,
so that the client can pair responses with open channel requests.

channel_id U32 Newly assigned identifier of the channel, stable for the whole lifetime of
the connection. E.g. it is used for broadcasting new jobs by
NewExtendedMiningJob.

target U256 Initial target for the mining channel.

extranonce_size U16 Extranonce size (in bytes) set for the channel.

extranonce_prefix B0_32 Bytes used as implicit first part of extranonce.

OpenMiningChannel.Error (Server -> Client)

Field Name Data Type Description

request_id U32 Client-specified request ID from OpenMiningChannel message.

error_code STR0_32 Human-readable error code(s). See Error Codes section, below

Possible error codes:

● ‘unknown-user’
● ‘max-target-out-of-range’

UpdateChannel (Client -> Server)
Client notifies the server about changes on the specified channel. If a client performs
device/connection aggregation (i.e. it is a proxy), it MUST send this message when downstream
channels change. This update can be debounced so that it is not sent more often than once in a
second (for a very busy proxy).

Field Name Data Type Description

channel_id U32 Channel identification.

nominal_hash_rate F32 See Open*Channel for details.

maximum_target U256 Maximum target is changed by server by sending SetTarget. This
field is understood as device’s request. There can be some delay
between UpdateChannel and corresponding SetTarget messages,
based on new job readiness on the server.

When maximum_target is smaller than currently used maximum target for the channel,
upstream node MUST reflect the client’s request (and send appropriate SetTarget message).

UpdateChannel.Error (Server -> Client)
Sent only when UpdateChannel message is invalid. When it is accepted by the server, no
response is sent back.

Field Name Data Type Description

channel_id U32 Channel identification.

error_code STR0_32 Human-readable error code(s). See Error Codes section, below

Possible error codes:

● ‘max-target-out-of-range’
● ‘invalid-channel-id’

CloseChannel (Client -> Server, Server -> Client)
Client sends this message when it ends its operation. The server MUST stop sending messages
for the channel. A proxy MUST send this message on behalf of all opened channels from a
downstream connection in case of downstream connection closure.

Field Name Data Type Description

channel_id U32 Channel identification.

reason_code STR0_32 Reason for closing the channel.

If a proxy is operating in channel aggregating mode (translating downstream channels into
aggregated extended upstream channels), it MUST send an UpdateChannel message when it
receives CloseChannel or connection closure from a downstream connection. In general, proxy
servers MUST keep the upstream node notified about the real state of the downstream
channels.

SetExtranoncePrefix (Server -> Client)
Changes downstream node’s extranonce prefix. It is applicable for all jobs sent after this
message on a given channel (both jobs provided by the upstream or jobs introduced by
SetCustomMiningJob message). This message is applicable only for explicitly opened
extended channels or standard channels (not group channels).

Field Name Data Type Description

channel_id U32 Extended or standard channel identifier.

extranonce_prefix B0_32 Bytes used as implicit first part of extranonce.

SubmitSharesStandard (Client -> Server)
Client sends result of its hashing work to the server.

Field Name Data Type Description

channel_id U32 Channel identification.

sequence_number U32 Unique sequential identifier of the submit within the channel.

job_id U32 Identifier of the job as provided by​ NewMiningJob​ or
NewExtendedMiningJob​ message.

nonce U32 Nonce leading to the hash being submitted.

ntime U32 The nTime field in the block header. This MUST be greater than or equal
to the header_timestamp field in the latest SetNewPrevHash message
and lower than or equal to that value plus the number of seconds since
the receipt of that message.

version U32 Full nVersion field.

SubmitSharesExtended (Client -> Server)
Only relevant for extended channels. The message is the same as SubmitShares, with the
following additional field:

Field Name Data Type Description

<SubmitSharesStandard message fields>

extranonce B0_31 Extranonce bytes which need to be added to coinbase to form a fully
valid submission (full coinbase = coinbase_tx_prefix +
extranonce_prefix + extranonce + coinbase_tx_suffix). The size of the
provided extranonce MUST be equal to the negotiated extranonce size
from channel opening.

SubmitShares.Success (Server -> Client)
Response to SubmitShares or SubmitSharesExtended, accepting results from the miner.
Because it is a common case that shares submission is successful, this response can be
provided for multiple SubmitShare messages aggregated together.

Field Name Data Type Description

channel_id U32 Channel identifier.

last_sequence_number U32 Most recent sequence number with a correct result.

new_submits_accepted_count U32 Count of new submits acknowledged within this batch.

new_shares_sum U64 Sum of shares acknowledged within this batch.

The server doesn’t have to double check that the sequence numbers sent by a client are
actually increasing. It can simply use the last one received when sending a response. It is the
client’s responsibility to keep the sequence numbers correct/useful.

SubmitShares.Error (Server -> Client)
An error is immediately submitted for every incorrect submit attempt. In case the server is not
able to immediately validate the submission, the error is sent as soon as the result is known.
This delayed validation can occur when a miner gets faster updates about a new prevhash than
the server does (see NewPrevHash message for details).

Field Name Data Type Description

channel_id U32 Channel identifier.

sequence_number U32 Submission sequence number for which this error is returned.

error_code STR0_32 Human-readable error code(s). See Error Codes section, below

Possible error codes:

● ‘invalid-channel-id’
● ‘stale-share’
● ‘difficulty-too-low’

NewMiningJob (Server -> Client)
The server provides an updated mining job to the client through a standard channel.

If the future_job field is set to ​False​, the client MUST start to mine on the new job as soon as
possible after receiving this message.

Field Name Data Type Description

channel_id U32 Channel identifier, this must be a standard channel.

job_id U32 Server’s identification of the mining job. This identifier must be provided
to the server when shares are submitted later in the mining process.

future_job BOOL True if the job is intended for a future ​SetNewPrevHash​ message sent on

this channel. If False, the job relates to the last sent ​SetNewPrevHash
message on the channel and the miner should start to work on the job
immediately.

<Bitcoin specific part>

version U32 Valid version field that reflects the current network consensus. The
general purpose bits (as specified in BIP320) can be freely manipulated
by the downstream node. The downstream node MUST NOT rely on the
upstream node to set the BIP320 bits to any particular value.

merkle_root B32 Merkle root field as used in the bitcoin block header.

NewExtendedMiningJob (Server -> Client)
(Extended and group channels only)

For an ​extended channel​: The whole search space of the job is owned by the specified
channel. If the future_job field is set to ​False​, the client MUST start to mine on the new job as
soon as possible after receiving this message.

For a ​group channel​: This is a broadcast variant of NewMiningJob message with the
merkle_root field replaced by merkle_path and coinbase TX prefix and suffix, for further traffic
optimization. The Merkle root is then defined deterministically for each channel by the
common merkle_path and unique extranonce_prefix serialized into the coinbase. The full
coinbase is then constructed as follows: ​coinbase_tx_prefix​ + ​extranonce_prefix​ +
coinbase_tx_suffix​.

The proxy MAY transform this multicast variant for downstream standard channels into
NewMiningJob messages by computing the derived Merkle root for them. A proxy MUST
translate the message for all downstream channels belonging to the group which don’t signal
that they accept extended mining jobs in the SetupConnection message (intended and
expected behaviour for end mining devices).

Field Name Data Type Description

channel_id U32 For a group channel, the message is broadcasted to all standard
channels belonging to the group. Otherwise, it is addressed to
the specified extended channel.

job_id U32 Server’s identification of the mining job.

future_job BOOL True if the job is intended for a future ​SetNewPrevHash​ message
sent on the channel. If False, the job relates to the last sent
SetNewPrevHash​ message on the channel and the miner should
start to work on the job immediately.

version U32 Valid version field that reflects the current network consensus.

version_rolling_allowed BOOL If set to True, the general purpose bits of version (as specified in
BIP320) can be freely manipulated by the downstream node.
The downstream node MUST NOT rely on the upstream node to
set the BIP320 bits to any particular value.
If set to False, the downstream node MUST use version as it is
defined by this message.

merkle_path SEQ0_255[U256] Merkle path hashes ordered from deepest.

coinbase_tx_prefix B0_64K Prefix part of the coinbase transaction*.

coinbase_tx_suffix B0_64K Suffix part of the coinbase transaction.

*The full coinbase is constructed by inserting one of the following:

● For a ​standard channel: ​extranonce_prefix

● For an ​extended channel​: extranonce_prefix + extranonce (=N bytes), where N is the
negotiated extranonce space for the channel
(OpenMiningChannel.Success.extranonce_size)

SetNewPrevHash (Server -> Client, broadcast)
Prevhash is distributed whenever a new block is detected in the network by an upstream node.
This message MAY be shared by all downstream nodes (sent only once to each channel group).
Clients MUST immediately start to mine on the provided prevhash. When a client receives this
message, only the job referenced by Job ID is valid. The remaining jobs already queued by the
client have to be made invalid.

Note: There is no need for block height in this message.

Field Name Data Type Description

channel_id U32 Group channel or channel that this prevhash is valid for.

job_id U32 ID of a job that is to be used for mining with this prevhash. A pool may
have provided multiple jobs for the next block height (e.g. an empty
block or a block with transactions that are complementary to the set of
transactions present in the current block template).

prev_hash U256 Previous block’s hash, block header field.

min_ntime U32 Smallest nTime value available for hashing.

nbits U32 Block header field.

SetCustomMiningJob (Client -> Server)
Can be sent only on extended channel. SetupConnection.flags MUST contain
REQUIRES_WORK_SELECTION​ flag (work selection feature successfully negotiated).

The downstream node has a custom job negotiated by a trusted external Job Negotiator. The
mining_job_token provides the information for the pool to authorize the custom job that has
been or will be negotiated between the Job Negotiator and Pool.

Field Name Data Type Description

channel_id U32 Extended channel identifier.

request_id U32 Client-specified identifier for pairing responses.

mining_job_token B0_255 Token provided by the pool which uniquely identifies
the job that the Job Negotiator has negotiated with the
pool. See the Job Negotiation Protocol for more
details.

version U32 Valid version field that reflects the current network
consensus. The general purpose bits (as specified in
BIP320) can be freely manipulated by the downstream
node.

prev_hash U256 Previous block’s hash, found in the block header field.

min_ntime U32 Smallest nTime value available for hashing.

nbits U32 Block header field.

coinbase_tx_version U32 The coinbase transaction nVersion field.

coinbase_prefix B0_255 Up to 8 bytes (not including the length byte) which are
to be placed at the beginning of the coinbase field in
the coinbase transaction.

coinbase_tx_input_nSequence U32 The coinbase transaction input’s nSequence field.

coinbase_tx_value_remaining U64 The value, in satoshis, available for spending in
coinbase outputs added by the client. Includes both
transaction fees and block subsidy.

coinbase_tx_outputs SEQ0_64K[B0_64K] Bitcoin transaction outputs to be included as the last
outputs in the coinbase transaction.

coinbase_tx_locktime U32 The locktime field in the coinbase transaction.

merkle_path SEQ0_255[U256] Merkle path hashes ordered from deepest.

extranonce_size U16 Size of extranonce in bytes that will be provided by the
downstream node.

future_job BOOL TBD: Can be custom job ever future?

SetCustomMiningJob.Success (Server -> Client)
Response from the server when it accepts the custom mining job. Client can start to mine on
the job immediately (by using the job_id provided within this response).

Field Name Data Type Description

channel_id U32 Extended channel identifier.

request_id U32 Client-specified identifier for pairing responses. Value from the request
MUST be provided by upstream in the response message.

job_id U32 Server’s identification of the mining job.

coinbase_tx_prefix B0_64K Prefix part of the coinbase transaction*.

coinbase_tx_suffix B0_64K Suffix part of the coinbase transaction.

SetCustomMiningJob.Error (Server -> Client)

Field Name Data Type Description

channel_id U32 Extended channel identifier.

request_id U32 Client-specified identifier for pairing responses. Value from the request
MUST be provided by upstream in the response message.

error_code STR0_32 Reason why the custom job has been rejected.

Possible errors:

● ‘invalid-channel-id’
● ‘invalid-mining-job-token’
● ‘invalid-job-param-value-{}’ - {} is replaced by a particular field name from

SetCustomMiningJob message

SetTarget (Server -> Client)
The server controls the submission rate by adjusting the difficulty target on a specified
channel. All submits leading to hashes higher than the specified target will be rejected by the
server.

Maximum target is valid until the next ​SetTarget​ message is sent and is applicable for all jobs
received on the channel in the future or already received with flag ​future_job=True ​. The
message is not applicable for already received jobs with ​future_job=False ​, as their
maximum target remains stable.

Field Name Data Type Description

channel_id U32 Channel identifier.

maximum_target U256 Maximum value of produced hash that will be accepted by a server to
accept shares.

When SetTarget is sent to a group channel, the maximum target is applicable to all channels in
the group.

Reconnect (Server -> Client)
This message allows clients to be redirected to a new upstream node.

Field Name Data Type Description

new_host STR0_255 When empty, downstream node attempts to reconnect to its present
host.

new_port U16 When 0, downstream node attempts to reconnect to its present port.

This message is connection-related so that it should not be propagated downstream by
intermediate proxies. Upon receiving the message, the client re-initiates the Noise handshake
and uses the pool’s authority public key to verify that the certificate presented by the new
server has a valid signature.

For security reasons, it is not possible to reconnect to a server with a certificate signed by a
different pool authority key. The message intentionally does ​not​ contain a ​pool public key ​and
thus cannot be used to reconnect to a different pool. This ensures that an attacker will not be
able to redirect hashrate to an arbitrary server should the pool server get compromised and
instructed to send reconnects to a new location.

SetGroupChannel (Server -> Client)
Every standard channel is a member of a group of standard channels, addressed by the
upstream server’s provided identifier. The group channel is used mainly for efficient job
distribution to multiple standard channels at once.

If we want to allow different jobs to be served to different standard channels (e.g. because of
different BIP 8 version bits) and still be able to distribute the work by sending
NewExtendendedMiningJob instead of a repeated NewMiningJob, we need a more
fine-grained grouping for standard channels.

This message associates a set of standard channels with a group channel. A channel (identified
by particular ID) becomes a group channel when it is used by this message as
group_channel_id. The server MUST ensure that a group channel has a unique channel ID
within one connection. Channel reinterpretation is not allowed.

This message can be sent only to connections that don’t have REQUIRES_STANDARD_JOBS
flag in SetupConnection.

Field Name Data Type Description

group_channel_id U32 Identifier of the group where the standard channel belongs.

channel_ids SEQ0_64K[U32] A sequence of opened standard channel IDs, for which the group
channel is being redefined.

Job Negotiation Protocol
As outlined above, this protocol runs between the Job Negotiator and Pool and can be
provided as a trusted 3rd party service for mining farms.

Protocol flow:

Job Negotiation Protocol Messages

SetupConnection flags for Job Negotiation Protocol

Flags usable in SetupConnection.flags and SetupConnection.Error::flags:

Field Name Bit Description

REQUIRES_ASYNC_JOB_MININ
G

0 The Job Negotiator requires that the mining_job_token in
AllocateMiningJobToken.Success can be used immediately on
a mining connection in SetCustomMiningJob message, even
before CommitMiningJob and CommitMiningJob.Success
messages have been sent and received.
The server MUST only send AllocateMiningJobToken.Success
messages with async_mining_allowed set.

No flags are yet defined for use in SetupConnection.Success.

AllocateMiningJobToken(Client->Server)
A request to get an identifier for a future-submitted mining job. Ratelimited to a rather slow
rate and only available on connections where this has been negotiated. Otherwise, only
mining_job_token(s) from CreateMiningJob.Success are valid.

Field Name Data Type Description

user_identifier STR0_255 Unconstrained sequence of bytes. Whatever is needed by the pool to
identify/authenticate the client, e.g. “braiinstest”. Additional restrictions
can be imposed by the pool. It is highly recommended that UTF-8
encoding is used.

request_id U32 Unique identifier for pairing the response.

AllocateMiningJobToken.Success(Server -> Client)
The Server MUST NOT change the value of coinbase_output_max_additional_size in
AllocateMiningJobToken.Success messages unless required for changes to the pool’s
configuration. Notably, if the pool intends to change the space it requires for coinbase
transaction outputs regularly, it should simply prefer to use the maximum of all such output
sizes as the coinbase_output_max_additional_size value.

Field Name Data Type Description

request_id U32 Unique identifier for pairing the response.

mining_job_token B0_255 Token that makes the client eligible for committing a mining job for
approval/transaction negotiation or for identifying custom mining job
on mining connection.

coinbase_output_max_a
dditional_size

U32 The maximum additional serialized bytes which the pool will add in
coinbase transaction outputs. See discussion in the Template
Distribution Protocol’s CoinbaseOutputDataSize message for more
details.

async_mining_allowed BOOL If true, the mining_job_token can be used immediately on a mining
connection in the SetCustomMiningJob message, even before
CommitMiningJob and CommitMiningJob.Success messages have
been sent and received.
If false, Job Negotiator MUST use this token for CommitMiningJob
only.
This MUST be true when SetupConnection.flags had
REQUIRES_ASYNC_JOB_MINING set.

CommitMiningJob (Client -> Server)
A request sent by the Job Negotiator that proposes a selected set of transactions to the
upstream (pool) node.

Field Name Data Type Description

request_id U32 Unique identifier for pairing the response.

mining_job_token B0_255 Previously reserved mining job token received by
AllocateMiningJobToken.Success.

version U32 Version header field. To be later modified by
BIP320-consistent changes.

coinbase_tx_version U32 The coinbase transaction nVersion field.

coinbase_prefix B0_255 Up to 8 bytes (not including the length byte) which are to be
placed at the beginning of the coinbase field in the coinbase
transaction.

coinbase_tx_input_nSe
quence

U32 The coinbase transaction input’s nSequence field.

coinbase_tx_value_rem
aining

U64 The value, in satoshis, available for spending in coinbase
outputs added by the client. Includes both transaction fees
and block subsidy.

coinbase_tx_outputs SEQ0_64K[B0_64K] Bitcoin transaction outputs to be included as the last outputs
in the coinbase transaction.

coinbase_tx_locktime U32 The locktime field in the coinbase transaction.

min_extranonce_size U16 Extranonce size requested to be always available for the
mining channel when this job is used on a mining connection.

tx_short_hash_nonce U64 A unique nonce used to ensure tx_short_hash collisions are
uncorrelated across the network.

tx_short_hash_list SEQ0_64K[B8] Sequence of SipHash-2-4(SHA256(transaction_data),
tx_short_hash_nonce)) upstream node to check against its
mempool. Does not include the coinbase transaction (as there
is no corresponding full data for it yet).

tx_hash_list_hash U256 Hash of the full sequence of SHA256(transaction_data)
contained in the transaction_hash_list.

excess_data B0_64K Extra data which the Pool may require to validate the work (as
defined in the Template Distribution Protocol).

CommitMiningJob.Success (Server->Client)

Field Name Data Type Description

request_id U32 Identifier of the original request.

new_mining_job_token B0_255 Unique identifier provided by the pool of the job that the Job Negotiator
has negotiated with the pool. It MAY be the same token as
CommitMiningJob::mining_job_token if the pool allows to start mining
on not yet negotiated job.
If the token is different from the one in the corresponding
CommitMiningJob message (irrespective of if the client is already mining
using the original token), the client MUST send a SetCustomMiningJob
message on each Mining Protocol client which wishes to mine using the
negotiated job.

CommitMiningJob.Error (Server->Client)

Field Name Data Type Description

request_id U32 Identifier of the original request.

error_code STR0_255

error_details B0_64K Optional data providing further details to given error.

Possible error codes:

● ‘invalid-mining-job-token’
● ‘invalid-job-param-value-{}’ - {} is replaced by a particular field name from

CommitMiningJob message

IdentifyTransactions (Server->Client)
Sent by the Server in response to a CommitMiningJob message indicating it detected a
collision in the tx_short_hash_list, or was unable to reconstruct the tx_hash_list_hash.

Field Name Data
Type

Description

request_id U32 Unique identifier for pairing the response to the CommitMiningJob message.

IdentifyTransactions.Success (Client->Server)
Sent by the Client in response to an IdentifyTransactions message to provide the full set of
transaction data hashes.

Field Name Data Type Description

request_id U32 Unique identifier for pairing the response to the
CommitMiningJob/IdentifyTransactions message.

tx_hash_list SEQ0_64K[U256] The full list of transaction data hashes used to build the mining job in
the corresponding CommitMiningJob message.

ProvideMissingTransactions (Server->Client)

Field Name Data Type Description

request_id U32 Identifier of the original CreateMiningJob request.

unknown_tx_position_list SEQ0_64K[U16] A list of unrecognized transactions that need to be supplied by
the Job Negotiator in full. They are specified by their position in

the original CommitMiningJob message, 0-indexed not including
the coinbase transaction.

ProvideMissingTransactions.Success (Client->Server)
This is a message to push transactions that the server didn’t recognize and requested them to
be supplied in ProvideMissingTransactions.

Field Name Data Type Description

request_id U32 Identifier of the original CreateMiningJob request.

transaction_list SEQ0_64K[B0_16M] List of full transactions as requested by
ProvideMissingTransactions, in the order they were requested
in ProvideMissingTransactions.

Template Distribution Protocol
The Template Distribution protocol is used to receive updates of the block template to use in
mining the next block. It effectively replaces BIPs 22 and 23 (getblocktemplate) and provides
a much more efficient API which allows Bitcoin Core (or some other full node software) to push
template updates at more appropriate times as well as provide a template which may be
mined on quickly for the block-after-next. While not recommended, the template update
protocol can be a remote server, and is thus authenticated and signed in the same way as all
other protocols (using the same SetupConnection handshake).

Like the Job Negotiation and Job Distribution protocols, all Template Distribution messages
have the channel_msg bit unset, and there is no concept of channels. After the initial common
handshake, the client MUST immediately send a CoinbaseOutputDataSize message to indicate
the space it requires for coinbase output addition, to which the server MUST immediately reply
with the current best block template it has available to the client. Thereafter, the server
SHOULD push new block templates to the client whenever the total fee in the current block
template increases materially, and MUST send updated block templates whenever it learns of
a new block.

Template Providers MUST attempt to broadcast blocks which are mined using work they
provided, and thus MUST track the work which they provided to clients.

CoinbaseOutputDataSize (Client -> Server)
Ultimately, the pool is responsible for adding coinbase transaction outputs for payouts and
other uses, and thus the Template Provider will need to consider this additional block size
when selecting transactions for inclusion in a block (to not create an invalid, oversized block).

Thus, this message is used to indicate that some additional space in the block/coinbase
transaction be reserved for the pool’s use (while always assuming the pool will use the entirety
of available coinbase space).

The Job Negotiator MUST discover the maximum serialized size of the additional outputs which
will be added by the pool(s) it intends to use this work. It then MUST communicate the
maximum such size to the Template Provider via this message. The Template Provider MUST
NOT provide NewWork messages which would represent consensus-invalid blocks once this
additional size — along with a maximally-sized (100 byte) coinbase field — is added. Further,
the Template Provider MUST consider the maximum additional bytes required in the output
count variable-length integer in the coinbase transaction when complying with the size limits.

Field Name Data Type Description

coinbase_output_max_
additional_size

U32 The maximum additional serialized bytes which the pool will add in
coinbase transaction outputs.

NewTemplate (Server -> Client)
The primary template-providing function. Note that the coinbase_tx_outputs bytes will appear
as is at the end of the coinbase transaction.

Field Name Data Type Description

template_id U64 Server’s identification of the template. Strictly increasing, the
current UNIX time may be used in place of an ID.

future_template BOOL True if the template is intended for future ​SetNewPrevHash
message sent on the channel. If False, the job relates to the last
sent ​SetNewPrevHash​ message on the channel and the miner
should start to work on the job immediately.

version U32 Valid header version field that reflects the current network
consensus. The general purpose bits (as specified in BIP320) can
be freely manipulated by the downstream node. The downstream
node MUST NOT rely on the upstream node to set the BIP320 bits
to any particular value.

coinbase_tx_version U32 The coinbase transaction nVersion field.

coinbase_prefix B0_255 Up to 8 bytes (not including the length byte) which are to be placed
at the beginning of the coinbase field in the coinbase transaction.

coinbase_tx_input_se
quence

U32 The coinbase transaction input’s nSequence field.

coinbase_tx_value_re
maining

U64 The value, in satoshis, available for spending in coinbase outputs
added by the client. Includes both transaction fees and block
subsidy.

coinbase_tx_outputs_
count

U32 The number of transaction outputs included in
coinbase_tx_outputs.

coinbase_tx_outputs B0_64K Bitcoin transaction outputs to be included as the last outputs in the
coinbase transaction.

coinbase_tx_locktime U32 The locktime field in the coinbase transaction.

merkle_path SEQ0_255[U256] Merkle path hashes ordered from deepest.

SetNewPrevHash (Server -> Client)
Upon successful validation of a new best block, the server MUST immediately provide a
SetNewPrevHash message. If a NewWork message has previously been sent with the
future_job flag set, which is valid work based on the prev_hash contained in this message, the
template_id field SHOULD be set to the job_id present in that NewTemplate message
indicating the client MUST begin mining on that template as soon as possible.

TODO: Define how many previous works the client has to track (2? 3?), and require that the
server reference one of those in SetNewPrevHash.

Field Name Data Type Description

template_id U64 template_id referenced in a previous NewTemplate message.

prev_hash U256 Previous block’s hash, as it must appear in the next block’s header.

header_timestamp U32 The nTime field in the block header at which the client should start
(usually current time). This is NOT the minimum valid nTime value.

nBits U32 Block header field.

target U256 The maximum double-SHA256 hash value which would represent a valid
block. Note that this may be lower than the target implied by nBits in
several cases, including weak-block based block propagation.

RequestTransactionData (Client -> Server)
A request sent by the Job Negotiator to the Template Provider which requests the set of
transaction data for all transactions (excluding the coinbase transaction) included in a block, as
well as any additional data which may be required by the Pool to validate the work.

Field Name Data
Type

Description

template_id U64 The template_id corresponding to a NewTemplate message.

RequestTransactionData.Success (Server->Client)
A response to RequestTransactionData which contains the set of full transaction data and
excess data required for validation. For practical purposes, the excess data is usually the
SegWit commitment, however the Job Negotiator MUST NOT parse or interpret the excess data
in any way. Note that the transaction data MUST be treated as opaque blobs and MUST include
any SegWit or other data which the Pool may require to verify the transaction. For practical
purposes, the transaction data is likely the witness-encoded transaction today. However, to
ensure backward compatibility, the transaction data MAY be encoded in a way that is different
from the consensus serialization of Bitcoin transactions.

Ultimately, having some method of negotiating the specific format of transactions between the
Template Provider and the Pool’s Template verification node would be overly burdensome,
thus the following requirements are made explicit. The RequestTransactionData.Success
sender MUST ensure that the data is provided in a forwards- and backwards-compatible way to
ensure the end receiver of the data can interpret it, even in the face of new,
consensus-optional data. This allows significantly more flexibility on both the
RequestTransactionData.Success-generating and -interpreting sides during upgrades, at the
cost of breaking some potential optimizations which would require version negotiation to
provide support for previous versions. For practical purposes, and as a non-normative
suggested implementation for Bitcoin Core, this implies that additional consensus-optional
data be appended at the end of transaction data. It will simply be ignored by versions which do
not understand it.

To work around the limitation of not being able to negotiate e.g. a transaction compression
scheme, the format of the opaque data in RequestTransactionData.Success messages MAY be
changed in non-compatible ways at the time a fork activates, given sufficient time from
code-release to activation (as any sane fork would have to have) and there being some
in-Template Negotiation Protocol signaling of support for the new fork (e.g. for soft-forks
activated using BIP 9).

Field Name Data Type Description

template_id U64 The template_id corresponding to a
NewTemplate/RequestTransactionData message.

excess_data B0_64K Extra data which the Pool may require to validate the work.

transaction_list SEQ0_64K[B0_16M] The transaction data, serialized as a series of B0_16M byte
arrays.

RequestTransactionData.Error (Server->Client)

Field Name Data Type Description

template_id U64 The template_id corresponding to a
NewTemplate/RequestTransactionData message.

error_code STR0_255 Reason why no transaction data has been provided

Possible error codes:

● template-id-not-found

SubmitSolution (Client -> Server)
Upon finding a coinbase transaction/nonce pair which double-SHA256 hashes at or below
SetNewPrevHash::target, the client MUST immediately send this message, and the server
MUST then immediately construct the corresponding full block and attempt to propagate it to
the Bitcoin network.

Field Name Data Type Description

template_id U64 The template_id field as it appeared in NewTemplate.

version U32 The version field in the block header. Bits not defined by BIP320 as
additional nonce MUST be the same as they appear in the NewWork
message, other bits may be set to any value.

header_timestamp U32 The nTime field in the block header. This MUST be greater than or equal
to the header_timestamp field in the latest SetNewPrevHash message
and lower than or equal to that value plus the number of seconds since
the receipt of that message.

header_nonce U32 The nonce field in the header.

coinbase_tx B0_64K The full serialized coinbase transaction, meeting all the requirements of
the NewWork message, above.

Message Types

Message Type (8-bit) channel_msg bit Message Name

0x00 0 SetupConnection

0x01 0 SetupConnection.Success

0x02 0 SetupConnection.Error

0x03 1 ChannelEndpointChanged

Mining protocol

0x10 0 OpenStandardMiningChannel

0x11 0 OpenStandardMiningChannel.Success

0x12 0 OpenStandardMiningChannel.Error

0x13 0 OpenExtendedMiningChannel

0x14 0 OpenExtendedMiningChannel.Success

0x15 0 OpenExtendedMiningChannel.Error

0x16 1 UpdateChannel

0x17 1 UpdateChannel.Error

0x18 1 CloseChannel

0x19 1 SetExtranoncePrefix

0x1a 1 SubmitSharesStandard

0x1b 1 SubmitSharesExtended

0x1c 1 SubmitShares.Success

0x1d 1 SubmitShares.Error

0x1e 1 NewMiningJob

0x1f 1 NewExtendedMiningJob

0x20 1 SetNewPrevHash

0x21 1 SetTarget

0x22 0 SetCustomMiningJob

0x23 0 SetCustomMiningJob.Success

0x24 0 SetCustomMiningJob.Error

0x25 0 Reconnect

0x26 0 SetGroupChannel

Job Negotiation Protocol

0x50 0 AllocateMiningJobToken

0x51 0 AllocateMiningJobToken.Success

0x52 0 AllocateMiningJobToken.Error

0x53 0 IdentifyTransactions

0x54 0 IdentifyTransactions.Success

0x55 0 ProvideMissingTransactions

0x56 0 ProvideMissingTransactions.Success

Template Distribution Protocol

0x70 0 CoinbaseOutputDataSize

0x71 0 NewTemplate

0x72 0 SetNewPrevHash

0x73 0 RequestTransactionData

0x74 0 RequestTransactionData.Success

0x75 0 RequestTransactionData.Error

0x76 0 SubmitSolution

Extensions
There are not yet any defined extensions.

Extension Type
(no channel_msg bit)

Extension Name Description / BIP

Discussion
Speculative Mining Jobs
TBD Describe how exactly sending of new jobs before the next block is found works.

Rolling nTime
nTime field can be rolled once per second with the following notes:

● Mining proxy must not interpret greater than minimum nTime as invalid submission.
● Device MAY roll nTime once per second.
● Pool SHOULD accept nTime which is within the consensus limits.
● Pool MUST accept nTime rolled once per second.

Hardware nTime rolling

The protocol allows nTime rolling in the hardware as long as the hardware can roll the nTime
field once per second.

Modern bitcoin ASIC miners do/will support nTime rolling in hardware because it is the most
efficient way to expand hashing space for one hashing core/chip. The nTime field is part of the
second SHA256 block so it shares midstates with the nonce. Rolling nTime therefore can be
implemented as efficiently as rolling nonce, with lowered communication with a mining chip
over its communication channels. The protocol needs to allow and support this.

Notes
● Legacy mode: update extranonce1, don’t send all the time (send common merkle-root)

● mining on a locally obtained prevhash (server SHOULD queue the work for some time if
the miner has faster access to the network).

● Proxying with separated channels helps with merging messages into TCP stream,
makes reconnecting more efficient (and done in proxy, not HW), allows to negotiate
work for all devices at once.

● Evaluate reaching the design goals.

● Add promise protocol extension support. It is mainly for XMR and ZEC, but can be
addressed in generic way already. Promise construction can be coin specific, but the
general idea holds for all known use cases.

Usage Scenarios
v2 ST - protocol v2 (this), standard channel

v2 EX - protocol v2, extended channel

v1 - original stratum v1 protocol

End Device (v2 ST)
Typical scenario for end mining devices, header-only mining. The device:

● Sets up the connection without enabling extended channels.

● Opens a Standard channel or more (in the future).

● Receives standard jobs with Merkle root provided by the upstream node.

● Submits standard shares.

Transparent Proxy (v2 any -> v2 any)
Translation from v2 clients to v2 upstream, without aggregating difficulty.

Transparent proxy (connection aggregation):

● Passes all OpenChannel messages from downstream connections to the upstream, with
updated request_id for unique identification.

● Associates channel_id given by OpenChannel.Success with the initiating downstream
connection. All further messages addressed to the channel_id from the upstream node
are passed only to this connection, with channel_id staying stable.

Difficulty Aggregating Proxy (v2 any -> v2 EX)
Proxy:

● Translates all standard ...

V1

(todo difficulty aggregation with info about the devices)

Proxy (v1 -> v2)
Translation from v1 clients to v2 upstream.

The proxy:

● Accept Opens ...

Proxy (v2 -> v1)
...

FAQ

Why is the protocol binary?
The original stratum protocol uses json, which has very bad ratio between the payload size and
the actual information transmitted. Designing a binary based protocol yields better data
efficiency. Technically, we can use the saved bandwidth for more frequent submits to further
reduce the variance in measured hash rate and/or to allow individual machines to submit its
work directly instead of using work-splitting mining proxy.

Terminology
• upstream stratum node​: responsible for providing new mining jobs, information about

new prevhash, etc.

• downstream stratum node​: consumes mining jobs by physically performing
proof-of-work computations or by passing jobs onto further downstream devices.

• channel ID​: identifies an individual mining device or proxy after the channel has been
opened. Upstream endpoints perform job submission

• public key​: ...

• signature​: signature encoded as...(?)

• BIP320​: this proposal identifies general purpose bits within version field of bitcoin block
header. Mining devices use these bits to extend their search space.

• Merkle root​: the root hash of a Merkle tree which contains the coinbase transaction and
the transaction set consisting of all the other transactions in the block.

Open Questions / Issues
• Write more about channel ID being identifier valid for a particular connection only. It

works only in the namespace of it.

• Refresh sequence diagrams.

• Is it useful to have channel-based reconnect? Or is connection-based enough?

• Decide on how to control a single device and allow it to have open multiple channels.

• Describe precisely scenarios with SetNewPrevHash with regards to repeated blockheight

• Decide on how to manage assignment of message ID’s and the size of the message ID
space. Shall we allow 2 level multiplexing? E.g. dedicate an ID to a class of vendor
messages, while allowing the vendor to assign custom messages ID’s within the class?

• More information about telemetry data

Hashing Power Information

Field Name Data
Type

Description

aggregated_device_count U32 Number of aggregated devices on the channel. An end mining device
must send 1. A proxy can send 0 when there are no connections to it yet
(in aggregating mode)

