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0.1 Method

We propose particle graph autoencoders (PGAEs) based on graph neural networks [1] for un-

supervised detection of new physics in multijet final states at the LHC. By embedding particle

jet showers as a graph, GNNs are able to exploit particle-particle relationships to efficiently

encode and reconstruct particle-level information within jets. We posit that this can improve

the capacity of autoencoders to learn a compressed representation of a jet and consequently

help identify anomalous beyond-the-standard-model (BSM) multijet signal events from LHC

data.

In our PGAE model, we represent each input jet as a graph in which each particle of

the jet is a node, and each node has an edge connecting it to every other particle in the jet

(i.e. a fully-connected particle graph). When encoding and decoding, the graph structure of

the data remains the same, but the nodes’ features, initially the particle’s four-momentum

(E, px, py, pz), have their dimensionality reduced during the encoding phase. We note the

model can be expanded to consider additional particle-level information, such as particle

type, electromagnetic charge, and pileup probability weight [2]. For the encoder and decoder,

we use the edge convolution layer from Ref. [3], which performs message passing along the

edges and aggregation of messages at the nodes of the graphs. A schematic of this is shown

in Fig. 1.

The PGAE model is constructed using the PyTorch Geometric library [4]. In this model,

the input node features are first processed by a batch normalization layer [5]. The encoder

is an edge convolution layer [3], built from a fully connected neural network φe with layers

of sizes (32, 32, 2) and rectified linear activation unit (ReLU) activation functions [6]. The

network takes in an 8-dimensional input, which is given by (pi,pj − pi), where pi (pj) is

the four-momentum for particle i (j) and i 6= j. The final layer produces a two-dimensional

message vector from each pair of distinct particles. These two-dimensional message vectors

are aggregated (using a mean function) for each receiving particle

hi =
1

|N (i)|
∑

j∈N (i)

φe(pi,pj − pi) , (0.1)

where N (i) is the neighborhood of particles connected to the ith particle, which corresponds

to all other particles in this case. This summed message ~hi is the bottleneck or encoded

representation for the ith particle. The decoder is also an edge convolution layer, containing

1



Encoder

…
…
…
……

…

Decoder

…
…
…
…

pi

pj

hi

hj

p′ i

p′ j

hi

pj
ϕe(pi, pj − pi)

p′ i

hj
ϕd(hi, hj − hi)

Figure 1: Schematic of the particle graph autoencoder model proposed. Each input jet is

represented as a graph in which each particle of the jet is a node, and each node has an

edge connecting it to every other particle in the jet. After an edge convolution layer [3], each

particle is encoded in a reduced two-dimensional latent space, before another edge convolution

layer reconstructs each particle’s four-momentum (E, px, py, pz).

a network φd with layers of sizes (32, 32, 4) and ReLU activation functions, except for the

final layer. The input is a 4-dimensional vector representing (hi,hj − hi) and the output

is intended to reconstruct each particle’s momentum. We note that the architecture itself

is insensitive to the ordering and number of input particles. PyTorch Geometric supports

variable-size input graphs so there is no need for zero-padding.

The model is trained on the QCD background dataset with two different loss functions.

The first is the mean squared error (MSE) between the input and output particles. This choice

of loss function violates the permutation invariance of the algorithm because the particles

must be reconstructed in the same order as they are input to achieve a small value of the loss

function. For this reason, we also investigate a second, alternative loss function, the Chamfer

distance loss, whose value does not depend on either the order of the input particles or the

reconstructed particles [7–9]. Given two input sets of particlesM and N , expressed in terms

of the momentum vectors pi and pj (with i ∈M and j ∈ N ), the loss function is defined as

DNN(M,N ) =
1

|M|
∑
i∈M

min
j∈N

(
||pi − pj ||

)2
+

1

|N |
∑
j∈N

min
i∈M

(
||pi − pj ||

)2
, (0.2)

where ||pi − pj || is the Euclidean distance.

0.2 Results on LHC Olympics

First, we studied our algorithm on the R&D dataset. As the truth information is provided,

we can create a receiver operating characteristic (ROC) curve to determine the effectiveness

of the PGAE to identify a signal (W′ → XY, X → qq, and Y → qq with mW′ = 3.5 TeV,

mX = 500 GeV, and mY = 100 GeV) that it did not observe during training. The ROC
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Figure 2: Comparison of input and reconstructed features E (far left), px (center left),

py (center right), and pz (far right) for the models trained with MSE (top) and Chamfer

(bottom) loss functions on the QCD testing dataset.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

R&D dataset, MSE
ROC curve (AUC = 0.78)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te

R&D dataset, DNN

ROC curve (AUC = 0.62)

Figure 3: ROC curves for the PGAE trained with the MSE (left) and Chamfer loss (right).

curves for both the MSE and Chamfer loss functions are shown in Fig. 3. Although the MSE

loss is not permutation invariant, we find it provides better discrimination for a new unseen

signal.

To evaluate our model’s performance for anomaly detection, we perform a resonance

search (or “bump hunt”) in the dijet invariant mass mjj, computed from the two jets with

highest pT in the event. We perform this dijet search in black box (BB) 1, which contains

a resonant dijet signal at mjj ∼ 3.8 TeV, and BB 2, which contains no signal. We require

both of the jets to be “outliers,” which we define as jets with a reconstruction loss exceeding

a threshold corresponding to the 90% quantile of the loss distribution for the leading two jets

in the corresponding evaluation dataset. We note that because our algorithm is jet-focused,

it is straightforward to generalize this search to multijet events.

For the background prediction in the signal-enriched outlier region, we perform a simpli-
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fied analysis using the shape of the data in the background-enriched nonoutlier region. Specif-

ically, we fit the ratio of the nonoutlier-to-outlier dijet mass distribution with a fourth-order

polynomial to derive a transfer factor (TF). We take nonoutlier data distribution weighted by

the TF as an estimate of the expected background in the outlier region. We do not consider

systematic uncertainties associated to the TF although these could be taken into account in

a more complete analysis in the future. The procedure is illustrated in Fig. 4 for BB 2.
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Figure 4: Illustration of the simplified background estimation procedure in BB 2 for the

GAE trained with MSE loss. A comparison between the nonoutlier and outlier jet mass

distribution is shown (upper left). The ratio of the two distributions is fit with a fourth-order

polynomial to derive a transfer factor (lower left). The corresponding postfit prediction is

also shown (upper right). The postfit ratio is randomly scattered around one as expected for

BB 2, which contains no signal.

To derive the observed significance with the simplified background prediction, we use

the bump hunter (BH) algorithm [10], recently implemented in Python [11]. We choose the

variable-width mass binning from the CMS dijet searches [12] in the range from 2659 GeV

to 6099 GeV. We look for resonances in windows spanning two to five bins. With the MSE

model in BB 1, we identify a possible resonance around 3.9 TeV with a local significance of

2.1σ, which is close to the region of the injected dijet resonance with m′
Z = 3823 GeV. In

BB 2 using the same model, the most discernable bump lies around 3.3 TeV with a small

local significance of 0.8σ, which agrees with the fact that BB 2 has no injected signal. For

the model trained with the Chamfer loss, a 1.5σ excess is seen at 2.8 TeV in BB 1 and a

−1.4σ excess at 5.1 TeV in BB 2. Neither is significant. As noted previously, the permutation

invariant Chamfer loss performs worse at the unsupervised anomaly detection task. This may
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be due to the minimization, which will often return a smaller loss value than MSE even for

poorly reconstructed, anomalous jets. Fig. 5 shows the BH results for BBs 1 and 2 using the

models trained with both losses.
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Figure 5: Bump hunt in the dijet invariant mass in BB 1 (left) and 2 (right) using MSE

(top) and Chamfer (bottom) as the loss functions. Outlier jets have a reconstruction loss

in the top 10% with respect to the corresponding BB. Outlier events are required to have

both jets be outliers. BB 1 has an anomalous large-radius dijet signal Z′ → XY → (qq)(qq)

injected at m′
Z = 3823 GeV (with mX = 732 GeV and mY = 378 GeV), while BB 2 has no

injected anomalies.

0.3 Lessons Learned

Graph neural networks, like our proposed particle graph autoencoder, are promising methods

for anomaly detection. However, further work is needed to define a permutation-invariant loss

function for use with such architectures that is more performant for anomaly detection. In
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addition, a more generic resonance search procedure, such a multimensional fit in the trijet,

dijet, trijet, and single-jet mass distributions possibly using methods like Gaussian process

fitting [13], would be appropriate to use in combination with this algorithm. In our experience,

the R&D dataset was extremely helpful in preparing our anomaly detection algorithms and

gauging whether the algorithm we were developing was on the right track. In the future, more

extensive R&D datasets, together with additional black boxes with different signals, may be

useful. Finally, it may be productive to host a future competition on a well-known platform,

such as Kaggle, to increase engagement with the broader machine learning community.

0.4 Code Availability

All code is publicly available at https://github.com/stsan9/AnomalyDetection4Jets.
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