Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
39 lines (31 sloc)
1.51 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.base import BaseEstimator, TransformerMixin, ClassifierMixin | |
from scipy.optimize import minimize | |
import numpy as np | |
from ._base import AbstractProbabilityIsotonicRegression | |
from .curves import PiecewiseLinearIsotonicCurve | |
__all__ = ['BinomialIsotonicRegression'] | |
class BinomialIsotonicRegression(AbstractProbabilityIsotonicRegression): | |
def _check_x_y(self, X, y): | |
assert (((y == 0) | (y == 1)).all()), "All y-values must be either 0 or 1" | |
def _err_func(self, x_cuts, X, y): | |
def err(alpha): | |
gamma = self.gamma_of_alpha(alpha) | |
curve = self.curve_algo(x=x_cuts, y=gamma) | |
p = curve.f(X) | |
result = -1*(np.log(p[y == 1]).sum() + np.log(1-p[y==0]).sum()) | |
return result / len(X) | |
return err | |
def _grad_err_func(self, x_cuts, X, y): | |
grad_y = [] # Part of terrible performance hack | |
def grad_err(alpha): | |
gamma = self.gamma_of_alpha(alpha) | |
curve = self.curve_algo(x=x_cuts, y=gamma) | |
p = curve.f(X) | |
dE_dgamma = np.zeros(shape=(len(X),)) | |
dE_dgamma[y == 1] = 1.0/p[y == 1] | |
dE_dgamma[y == 0] = -1.0/(1-p[y == 0]) | |
if len(grad_y) == 0: # Terrible performance hack | |
grad_y.append(curve.grad_y(X)) # This value depends only on x_cuts, so if we calculate it once we don't need to recalculate it | |
dE_dgamma = grad_y[0] @ dE_dgamma | |
return -1*self.grad_gamma_of_alpha(alpha) @ dE_dgamma / len(X) | |
return grad_err |