Skip to content
Permalink
master
Switch branches/tags
Go to file
 
 
Cannot retrieve contributors at this time
from sklearn.base import BaseEstimator, TransformerMixin, ClassifierMixin
from scipy.optimize import minimize
import numpy as np
from ._base import AbstractRealIsotonicRegression
from .curves import PiecewiseLinearIsotonicCurve
__all__ = ['LpIsotonicRegression']
class LpIsotonicRegression(AbstractRealIsotonicRegression):
def __init__(self, npoints, power=2, increasing=True, cut_algo='quantile', curve_algo=PiecewiseLinearIsotonicCurve):
super().__init__(npoints, increasing=increasing, cut_algo=cut_algo, curve_algo=curve_algo)
assert (power >= 1), "Power must be bigger than or equal to 1"
self.power = power
def _check_x_y(self, X, y):
assert np.all(np.isfinite(X)), "All x-values must be finite"
assert np.all(np.isfinite(y)), "All y-values must be finite"
def _err_func(self, x_cuts, X, y):
def err(alpha):
gamma = self.gamma_of_alpha(alpha)
curve = self.curve_algo(x=x_cuts, y=gamma)
y_p = curve.f(X)
result = 0
result += np.power(np.abs(y_p-y), self.power).sum()
return result / len(X)
return err
def _grad_err_func(self, x_cuts, X, y):
N = len(X)
grad_y = [] # Part of performance hack, see below
def grad_err(alpha):
gamma = self.gamma_of_alpha(alpha)
curve = self.curve_algo(x=x_cuts, y=gamma)
y_p = curve.f(X)
delta = y_p - y
dE_dgamma = np.zeros(shape=(N,))
if self.power == 1:
dE_dgamma += np.sign(delta)
else:
dE_dgamma += self.power * np.power(np.abs(delta), self.power-1) * np.sign(delta)
if len(grad_y) == 0: # Terrible performance hack
grad_y.append(curve.grad_y(X)) # This value depends only on x_cuts, so if we calculate it once we don't need to recalculate it
dE_dgamma = grad_y[0] @ dE_dgamma
result = self.grad_gamma_of_alpha(alpha) @ dE_dgamma / N
return result
return grad_err