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ABSTRACT

Timely analysis of cyber-security information
necessitates automated information extraction from
unstructured text. While state-of-the-art extraction
methods produce extremely accurate results, they
require ample training data, which is generally
unavailable for specialized applications, such as
detecting security related entities; moreover, manual
annotation of corpora is very costly and often not
a viable solution. In response, we develop a very
precise method to automatically label text from
several data sources by leveraging related, domain-
specific, structured data and provide public access
to a corpus annotated with cyber-security entities.
Next, we implement a Maximum Entropy Model
trained with the average perceptron on a portion
of our corpus (∼750,000 words) and achieve near
perfect precision, recall, and accuracy, with training
times under 17 seconds.

I INTRODUCTION

Online security databases, such as the National Vul-
nerability Database (NVD), the Open Source Vulner-
abilityDatabase (OSVBD), andExploitDB are impor-
tant sources of security information, in large part be-
cause their well defined structure facilitates quick ac-
quisition of information and allows integration with
various automated systems.1 On the other hand,
newly discovered information often appears first in
unstructured text sources such as blogs, mailing lists,
and news sites. Hence, in many cases there is a
time delay, sometimes months, between public dis-
closure of information and appropriate classification
into structured sources (as noted in [1]). Addition-
ally, many of the structured sources include a text
description that provides important details (e.g., Ex-
ploit DB). Timely use of this information, both by se-
curity tools and by the analysts themselves, neces-
sitates automated information extraction from these

1http://nvd.nist.gov/, http://www.osvdb.org/, http://
www.exploit-db.com/

unstructured text sources.

For identifyingmore general entity types, many “off-
the-shelf” software packages give impressive results
using proven supervised methods trained on enor-
mous corpora of labeled text. Because the training
data is only annotatedwith names, geo-political enti-
ties, dates, etc., these general entity recognition tools
are inadequate when expected to extract the rela-
tively foreign entities that occur in domain-specific
documents, simply because they are not trained to
handle such jargon. Exemplified by our need for en-
tity extraction in the cyber-security domain, there are
many domain-specific applications for which entity
extraction will be very beneficial. As evidenced by
the near perfect results of sequential labeling tech-
niques, for example [2], the machine learning is thor-
oughly developed. Rather, what is lacking is la-
beled training data tailored to domain specific needs.
Moreover, manual annotation of a sufficiently large
amount of text is generally too costly to be a viable
solution.

This paper describes an automated process for cre-
ating an annotated corpus from text associated with
structured data that can produce large quantities of
labeled text relatively quickly (compared to man-
ual annotation) by writing a script which labels text
with related structured sources. More specifically,
the wealth of structured data available in the cyber-
security domain is leveraged to automatically label
associated text descriptions andmade publicly avail-
able online.2 While labeling these descriptions may
be useful in itself, the intended purpose of this cor-
pus is to serve as training data for a supervised learn-
ing algorithm that accurately labels other text docu-
ments in this domain, such as blogs, news articles,
and tweets.

Next, we use a portion of the data to train a history-
based Maximum Entropy Model with the averaged
perceptron and greedy decoding, and exhibit preci-
sion, recall, and accuracy that are consistently above

2https://github.com/stucco/auto-labeled-corpus
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97%; moreover, the algorithm runs extremely effi-
ciently, training on over 750, 000 labeledwords in un-
der 17 seconds. In Section VI, we compare our work
to a previous similar attempt ( [3] ) at supervised
entity extraction within the cyber-security domain,
which produced scores under 80% when trained on
a hand-labeled corpus. While this is not a direct com-
parison, the increase in performance is evidently in
part due to the vast increase in training data as facil-
itated by our automated labeling process.

II BACKGROUND

1 ENTITY EXTRACTION IN CYBER-SECURITY
OVERVIEW

Our overall goal of automatically labeling cyber se-
curity entities is similar to a few previous efforts.
In order to instantiate a security ontology, More et
al. [4] attempt to annotate concepts in the Common
Vulnerability Enumeration (CVE)3 descriptions and
blogs with OpenCalais, an “out-of-the-box” entity
extractor [5]. Mulwad et al. [6] expand this idea by
first crawling the web and training a decision clas-
sifier to identify security relevant text. Then us-
ing OpenCalais along with the Wikipedia taxonomy,
they identify and classify vulnerability entities.

While the two sources above rely on standard en-
tity recognition software, such tools are not trained
to identify domain specific concepts, and they un-
surprisingly give poor results when applied to more
technical documents (as shown in Figure 2). This
is due to the general nature of their training cor-
pus; for example, the Stanford Named Entity Recog-
nizer4 is trained on the CoNLL, MUC-6, MUC-7 and
ACE named entity corpora, consisting of news doc-
uments annotated mainly with the names of people,
places, and organizations [7, 8]. Similar findings are
noted in Joshi et al.’s recent work [3], where Open-
Calais, The Stanford Named Entity Recognizer, and
the NERD framework [9] were all generally unable
to identify cyber security domain entities. Because
these tools do not use any domain specific training
data, domain entities are either unrecognized or are
labeled with descriptions that are too general to be
of use (e.g., “Industry Term”). The Joshi et al. paper
later supplies the Stanford Named Entity Recognizer
framework with domain specific, hand labeled train-
ing data, and it is then able to produce better results
for most of their domain specific entity types.

3http://cve.mitre.org/
4http://nlp.stanford.edu/software/CRF-NER.shtml

More specifically, the Joshi et al. [3] work also ad-
dresses the problem of entity extraction for cyber-
securitywith a similar solution, namely, by training a
supervised learning algorithm to identify desired en-
tities. Unlike our approach, which introduces an au-
tomated way to generate an arbitrarily large training
corpus, their approach, involves painstakingly hand-
annotating a small corpus that is then fed into the
Stanford Named Entity Recognizer’s “off-the-shelf”
template for training a conditional random field en-
tity extractor [7]. In all, they label a training corpus of
350 short text descriptions,mostly fromCVE records,
with categories surprisingly similarly to ours. While
their work has identified the same cyber-security
problem, they do not furnish a data set labeled for
this domain, nor do they address the more general
problem of how to automate the labeling process
when no training data exists. See Section VI for de-
tailed comparisons of the results, and [10] for more
specifics on the entity extraction implementation as
used in the Joshi paper.

Given this general lack of domain specific training
data, there has been some work considering semi-
supervised methods instead of supervised methods
because they are designed to do the best possible
with very little training data. Although a thorough
discussion of semi-supervisedmethods for entity ex-
traction is outside the scope of the current paper,
such techniques have yieldedworthwhile results; for
example see [11–15], and [16]. To our knowledge
only one such effort focuses on cyber-security; recent
work by McNeil et al. [1] develops a novel bootstrap-
ping algorithm and describes a prototypical imple-
mentation to extract information about exploits and
vulnerabilities. Using known databases for seeding
bootstrapping methods is also not uncommon; for
example, see [17].

2 AUTOMATIC LABELING OVERVIEW

Previous work has incorporated variations of auto-
labeling in several different contexts where NLP is
needed and no training data exists. “Distant label-
ing” generally refers to the process of producing a
gazetteer (comprehensive list of instances) for each
database field and performing a dictionary look-up
to label text that is not directly associated with a
given database record. While gazetteers give poor
results in an unconstrained setting [18], accurate re-
sults can be achieved when the text has little varia-
tion. An example is Seymore et al. [19] who use a
database of BIBTEX entries and some regular expres-

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 2

http://cve.mitre.org/
http://nlp.stanford.edu/software/CRF-NER.shtml


sions to produce training data for a Hidden Markov
Model (HMM) by labeling headers of academic pa-
pers.

In general, more accurate labels are possible if there
is a direct relationship between a given database
record and the text entry to be labeled, such as if a
text description occurs as a field of a database, or a
separate text document is referenced for each record,
as is the case for our setting. Herewedescribe known
instances of using an automated process for creating
labeled training data. Craven and Kumlien [20] train
a naive Bayes classifier to identify sentences contain-
ing a desired pair of entities via “weak labeling”.
Specifically, given a database record that includes a
pair of entity names along with a reference to an aca-
demic publication, sentences occurring in the arti-
cle’s abstract are automatically labeled positively if
that entity pair occurs in them. This is shown to yield
better precision and recall scores thanusing a smaller
hand-annotated training corpus and obviates the te-
dious manual labor.

More recently, Bellare and McCallum [21] also use a
BIBTEX database to label corresponding citations and
then train a classifier to segment a given citation into
authors, title, date, etc. Because their goal is to create
a text segmentation tool, they rely on the implicit as-
sumption that every token will receive a label from
the given database field names. As our goal is to
identify and classify specific entities in text, no such
assumption can be leveraged.

While a few instances of automated labeling have oc-
curred in the literature, to our knowledge no previ-
ous work has addressed the accuracy of the auto-
matically prescribed labels. Rather, an increase in
accuracy of the supervised algorithm is usually at-
tributed to the increase in training data, which is fa-
cilitated by the automated process. We note that the
precision and recall of an algorithm’s output is de-
termined by comparison against the training data,
which may or may not have correct labels. In order
to address the quality of our auto-labeling, we have
randomly sampled sentences for manual inspection
(see Auto-Labeling Results Subsection III.3).

III AUTOMATIC LABELING

1 DATA SOURCES

To build a corpus with security-relevant labels, we
seek text that has a close tie to a database record
and use its field names to label matching entries in

Figure 1: NVD text description of CVE-2012-0678
with automatically generated labels.

Figure 2: NVD text description of CVE-2012-0678
with labels from OpenCalais.

the text. When a vulnerability is initially discov-
ered, the CommonVulnerability Enumeration (CVE)
is usually the first structured source to ingest the
new information and it provides, most importantly,
a unique identification number (CVE-ID), as well
as a few sentence overview. Shortly afterward, the
National Vulnerability Database (NVD) incorporates
the CVE record and adds additional information
such a classification of the vulnerability using a sub-
set of the Common Weakness Enumeration (CWE)
taxonomy5, a collection of links to external refer-
ences, and other fields. Hence, the NVD provides
both informative database records and many struc-
tured fields to facilitate auto-labeling. All NVD de-
scriptions from January 2010 through March 2013
have been auto-labeled and comprise the lion’s share
of our corpus.

While our main source for creating an auto-labeled
corpus is the NVD text description fields, the univer-
sal acceptance of the CVE-ID allows text from other
sources to be unambiguously linked to a specific vul-
nerability record in the database. The Microsoft Se-
curity Bulletin provides patch and mitigation infor-
mation and gives a wealth of pertinent text related

5http://cwe.mitre.org/
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to a specific vulnerability identified by the CVE-ID.6
Specific text fields include an “executive summary”
as well as “revision”, “general”, “impact”, “target
set”, “mitigation”, “work around”, and “vendor fix”
descriptions; moreover, while not all text fields are
populated for a given record, many times a single
text field will have multiple descriptions. Every de-
scription for the previous year’s MS-Bulletin entries
was added to our corpus.

Lastly, the Metasploit Framework contains a
database of available exploits that includes a text
description, several categorizations and properties,
and a reference to the associated vulnerability,
usually the CVE-ID.7 By linking these text sources
to the NVD via CVE-IDs we are able to leverage
the structured data for very precise labeling of the
unstructured data.

Overall, a corpus of over 850,000 tokens with au-
tomatic annotations are available online at https:
//github.com/stucco/auto-labeled-corpus.

2 AUTO-LABELING DETAILS

Given a database record and a block of associated
text, our algorithm assigns labels to the entities in the
text as follows:

• DatabaseMatching. Any string in the text that
exactlymatches an entry of the database record
is labeled with a generalization of the name
of the database field. For example, the label
“software product” is assigned to a string in
the text description if it also occurs in the re-
lated database record field “os” or “applica-
tion”. Similarly, instances of “version”, ”up-
date”, and “edition” occurring in the associ-
ated text are labeled ”software version”.

• Heuristic Rules. A variety of heuristic rules
are used for identifying entities in text that are
not direct matches of database fields. For ex-
ample, the database lists every version number
affected by a vulnerability, but such a list is al-
most neverwritten in text; rather, short phrases
such as “before 2.5”, “1.1.4 through 2.3.0”, and
“2.2.x” usually appear after a software applica-
tion name; consequently, a few regular expres-
sions combined with rules identifying both la-
bels and features of previous words give pre-

6http://technet.microsoft.com/en-us/security/
bulletin

7http://www.metasploit.com/

cise identification of version entities. Similarly,
source code file names, functions, parameters,
andmethods, although not in the database, are
often referenced in text. As file names end in a
file extension (e.g., “.dll”) and the standards of
camel- and snake-case (e.g., camelCaseExam-
ple, snake_case_example) are universal, such
entities are easily distinguishable by their fea-
tures.

• Relevant Terms Gazetteer. In order to ex-
tract short phrases that give pertinent informa-
tion about a vulnerability, a gazetteer of rele-
vant terms is created, and phrases in the text
matching the gazetteer are labeled “relevant
term”. As mentioned above, each record in
the NVD includes one (of twenty) CWE clas-
sifications, which gives the vulnerability type
(e.g., SQL injection, cross-site scripting, buffer
errors). As the goal of CWE is to provide a
common language for discussing vulnerabili-
ties, many phrases indicative of the vulnera-
bility’s characteristics occur regularly. To con-
struct the gazetteer of relevant terms, the NVD
is sorted by CWE type, and statistical analy-
sis of the text descriptions for a given CWE
classification is used to find the most prevalent
unigrams, bigrams, and trigrams. Commonly
occurring but uninformative phrases (e.g., “in
the”, “is of the”) are discarded manually. We
note that Python’s Natural Language Toolkit
(NLTK) facilitated tokenization and computa-
tion of frequency distributions of n-grams [18].
Examples of relevant terms include “remote at-
tackers”, “buffer overflow”, “execute arbitrary
code”, “XSS”, and “authentication issues”.

All together, the following is the comprehensive
list of labels used: “software vendor”, “software
product”, “software version”, “software language”,
“vulnerability name” (these are CVE-IDs), “software
symbol” (these are files, functions ormethods, or pa-
rameters), and “vulnerability relevant term”.

Because many multi-word names are commonplace,
standard IOB-tagging is used; specifically, the first
word of an identified entity name is labeled with a
“B” (for “beginning”) followed by the entity type,
and any word in an entity name besides the first is
tagged with an “I” (for “inside”) followed by the en-
tity name. Unidentifiedwords are labeled as “O”.An
example of an automatically labeled NVD descrip-
tion is given in Figure 1.
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3 AUTO-LABELING RESULTS

As the overall goal is to produce a machine learn-
ing algorithm that will identify entities in a much
broader class of documents, thereby aiding security
analysts, the accuracy of the algorithm, and there-
fore the training data, is very important. While both
high precision and recall are ideal, precision is more
important for our purposes as reliable information is
mandatory. More specifically, in a high recall but low
precision setting, nearly all desired entities would be
returned along with many incorrectly labeled ones;
hence, the quality of the data returned to the user
would suffer. On the other hand, if all information
extracted from text sources is correct, anything re-
turned is an immediate value-add. In general, this
is guaranteed by high precision in the auto-labeling
process, which we ensure by constructing precise
heuristics and using a specific database record to la-
bel closely related text.

Precision Recall F1
NVD 99% 77.8% .875
MS-Bulletin 99.4% 75.3% .778
Metasploit 95.3% 54.3% .691

Table 1: Precision, Recall, and F1 Scores for the au-
tomatically labeled corpus are calculated by hand la-
beling a random sample.

In order to test the accuracy of the auto-labeling,
about 30 randomly sampled text descriptions from
each source were manually labeled. Because the la-
bel “relevant term” is applied by a direct dictionary
look up against a list of terms we created, we know
each and every exact match in the text is labeled;
hence, they are not included in the accuracy scores to
prevent artificial score inflation. In other words, the
Precision, Recall, and F1 Score results of Table 1 are
with respect to only those labels matching an entry
of a database field or from a hand-crafted heuristic.

To our knowledge, similar work has assumed correct
automatically generated labels and ignored investi-
gating the accuracy of the labels. In total over 850,000
tokens have been labeled relatively quickly (with re-
spect to manual annotation) and with high accuracy,
and increasing the corpus size as necessary is both
expedient and easy. We hope the proposed method
can facilitate labeling data in many other domains.

IV ENTITY EXTRACTION VIA SEQUENTIAL
LABELING

As is common in the literature, our approach to su-
pervised entity extraction is treating the task as a se-
quential labeling problem, similar to previous work
on part-of-speech tagging, noun phrase chunking,
and parsing. This section gives an overview of ma-
chine learning techniques for such a task and reviews
the mathematical foundation for Maximum Entropy
(or Log-Linear) Models in preparation for our imple-
mentation, described in the Section V.

1 SEQUENTIAL TAGGINGMODELS

Used widely in sequential tagging problems, Hid-
den Markov Models (HMMs) are generative models
that estimate the joint probability of a given sentence
and corresponding tag sequence by first estimating
an emission parameter, that is, the probability of a
word given its label, and secondly, by estimating a
prior distribution on the set of labels using a Markov
Process [22].

While HMMs are computationally efficient, the sub-
class of discriminative models known as Maximum
EntropyModels (MEMs) are perhaps amore popular
choice for sequential tagging problems as they gener-
ally outperformHiddenMarkovModels by virtue of
their accommodation of amuch larger set of features;
for example, see [23, 24]. Two varieties of MEMs
are common in the literature, namely, those using
“history-based” features (whose features depend on
the current word as well as previous word(s) and la-
bel(s)) and those using “global features” (whose fea-
tures depend on both the words and labels before
and after a given word). More commonly referred to
as Conditional RandomFields (CRFs), globalmodels
treat each sentence as an object to be labeled with a
corresponding set of word tags (rather than labeling
individual words sequentially) and have achieved
better performance than history-based MEMs, but
at the price of greater computational expense [25].
More specifically, with k possible word labels and a
sentence of length n, the search space for sentence
tags is of order nk. Because of the dependence only
in the reverse direction, history-based MEMs admit
use of the Viterbi algorithm for finding the most
probable tag sequence efficiently (with order nkm for
features depending on the previous m labels); fur-
thermore, one has the option of a greedy algorithm,
which inductively chooses the highest probability
tag for each word and ignores the overall probabil-
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ity of the sequence. As no such options exist for de-
coding with CRFs, efforts include incorporating an
algorithm for narrowing the search space or using
probabilistic means for finding the best tag sequence
[7, 22]. Because of the observed performance of the
history-basedMEMwith a greedy tagging algorithm
in our setting (see Subsection VI), use of more com-
putationally expensive algorithms, such as CRFs or
even Viterbi decoding, was unwarranted.

2 MATHEMATICAL OVERVIEW

A brief mathematical overview of a history-based
MEM is followed by the implementation details used
in our experiment.

Derived by maximizing Shannon’s Entropy in the
presence of constraint equations, MEMs provide
a principled mathematical foundation that ensures
only the observed features design the probability
model. For a given sentence w = (w1, . . . , wn) and
corresponding tag sequence t = (t1, . . . , tn), the con-
ditional probability of t given w is estimated as

p(t|w) ≡
n∏

i=1

p(ti|ti−2, ti−1, wi−2, wi−1, wi) (1)

with t0, t−1, w0, w−1 defined to be distinguished start
symbols. Hence the probability of tag tj being as-
signed towordwj is conditioned on the previous two
tags (in our implementation), as well as the current
word and previous two words. For notational ease
we let t̄i = (ti−2, ti−i, ti), and similarly for w̄. As pre-
scribed by the MEM,

p(ti|ti−2, ti−1, wi−2, wi−1, wi) ≡
ef(t̄i,w̄i)·v

z(t̄i, w̄i)
(2)

where f = (f1, . . . , fm) denotes a feature vector,
v = (v1, . . . , vm) the parameter vector (or feature
weights) to be learned from the training data, and

z(t̄i, w̄i) ≡
∑
t̂

exp[f(ti−2, ti−1, t̂, w̄i) · v],

i.e., z is the appropriate constant to ensure the sumof
Equation 2 over the sample space is one. An example
of a feature (i.e., a component of the feature vector)
is

f1(t̄i, w̄i) =

 1 if ti = B: SW Vendor,
wi−1 = “the”

0 else.
(3)

After fixing a set of features, one must decide on
the “best” parameter vector v to use and many tech-
niques for fitting the model to the training data (i.e.,

learning v) exist [26]. Perhaps the most principled
approach for fitting the model is maximum likeli-
hood estimation (MLE), which assumes each (sen-
tence, tag sequence)-pair is independent and uses a
prior on v (or regularization parameter) to prevent
over-fitting. Specifically, the argument maximum of

v 7→ p(v|{(w, t)}) ∝
∏

(w,t)

p((w, t)|v)p(v)

is generally found by maximizing the log-likelihood,
usually by a numerical algorithm such as L-BFGS, or
OWL-QN [27]. We note that the function in question
is concave, and has a unique maximum.

Initially introduced in [28], the perceptron algorithm
and itsmodern variants are a class of onlinemethods
for fitting parameters that have produced competi-
tive results in accuracy and are often more efficient
than MLE techniques [22, 29]. After initializing the
parameter vector v (usually setting v = 0), percep-
tron algorithms cycle through the training set a fixed
number of times. At each training example the algo-
rithm predicts the “best” label with the current pa-
rameter v and compares it to the ground-truth value.
In the case of a mis-assigned label, the parameter v
is updated so that the probability of the correct label
increases. As perceptron algorithms depend on de-
coding at each step, their computational expense can
vary, but in the case of greedy or Viterbi decoding,
they are relatively fast.

V ENTITY EXTRACTION IMPLEMENTATION

While the auto-labeled corpus may be useful in its
own right, the overall goal is to train a classifier
that can apply domain-appropriate labels to a wider
class of documents including news articles, security
blogs, and tweets. Our choices for such implemen-
tation follow Mathew Honnibal’s persuasive results
anddocumentation of greedy tagging using the aver-
aged perceptron for part-of-speech tagging,8 where
he shows impressive results with respect to a balance
of accuracy, speed, and simplicity. To our knowl-
edge no publication of the results exists. Here we
give a brief synopsis of possible tagging algorithms,
and describe our implementation of a history-based
Maximum EntropyModel trained with the averaged
perceptron. Finally, we present performance results
from a simple greedy model for tagging.

8http://honnibal.wordpress.com/2013/09/11/a-good-part-
of -speechpos-tagger-in-about-200-lines-of-python/
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1 AVERAGED PERCEPTRON

We chose to use a modern perceptrion variant,
namely, the averaged perceptron, which has exhib-
ited exceptional results in many natural language
processing tasks [22, 29–31]. The averaged percep-
tron algorithm is presented in detail in Algorithm 1,
and explained below.

Algorithm 1: Averaged Perceptron
Input: {(w, t)} = training set
Niter = number of iterations
Output: vave = trained parameter vector
Initialize iter = 1
Initialize i = 0
Initialize v = (0, . . . , 0)
Initialize vt−stamp = (0, . . . , 0)
Initialize vtot = (0, . . . , 0)
while iter ≤ Niter do

for (w, t) in training set do
Set y = argmaxt̂ p(t̂|w, v)
if y! = t then

vtot+ = [(i, . . . , i)− vt−stamp] ∗ v
v+ = f(w, t)− f(w, y)
for j = 1 . . . length(v) such that
f(w, y)[j]! = 0 do

Set vt−stamp[j] = i

i+ = 1

else
i+ = 1

iter+ = 1

vtot+ = [(i, . . . , i)− vt−stamp] ∗ v
Set vave = vtot/i
return vave

The averaged perceptron uses the same online al-
gorithm to tweak the parameter vector as it iterates
through the training set, although this updated vec-
tor from the “vanilla” perceptron training is not re-
turned. Instead, we now keep track of how many
successful labels are predicted by each intermedi-
ate parameter vector and return the weighted aver-
age of the vectors observed in training. Rather than
storing every intermediate vector along with a tally
of each vector’s success, the implementation below
keeps two auxiliary vectors, a time-stamp (vt−stamp),
which records when it was last changed, along with
a running weighted sum (vtot). Upon encounter-
ing a mislabeled instance, v is updated (as required
by the “vanilla” perceptron), vtot updates to include
the weighted sums before the components of v are

changed, and the time-stamp vector is set to the cur-
rent counter for all vector components that fired. Fi-
nally, to obtain the averaged vector, vtot is divided
by the number of examples encountered and is re-
turned. Hence, the algorithm requires minimal stor-
age, and runs efficiently provided the decoding, that
is, the labeling algorithm, is quick. In our case, we
employed a simple greedy model, which labels each
word inductively.

As an intuitive but informal justification for the aver-
aged perceptron, consider a scenario where the per-
ceptron vector is initialized and succeeds on labeling
the first 9,999 of 10,000 training examples correctly,
but then mis-labels the last example and therefore
changes the weight vector. Unfortunately, a vector
that has achieved at least 99.99% accuracy has been
deselected! The averaged perceptron is designed to
prevent overfitting and in particular to counter-act
the perceptron’s seeming over-weighting of the final
training examples9. While formal justification, such
as convergence theorems, and theorems bounding
the expectation of success on test data exist for the
“vanilla” perceptron and voted perceptron [22,29], to
our knowledge, and as noted here [32], no formal re-
sults have been proven for the averaged perceptron.

2 FEATURE SELECTION

Recall that our goal is to use ‘IOB’-tagging to collec-
tively identify multi-word phrases, in addition to ap-
plying the appropriate domain labels; for example, a
correct labeling of an instance of “Internet Explorer”
is “B: Software Product” for “Internet” and “I: Soft-
ware Product” for “Explorer”. Hencewe view this as
an iterative labeling process, first applying ‘IOB’ la-
bels, and secondly applying the domain labels; con-
sequently, we train two averaged perceptron classi-
fiers.

To develop robust features, regular expressions are
used to identify words that begin with a digit, con-
tain an interior digit, begin with a capital letter, are
camel-case, are snake-case, or contain punctuation,
and part-of-speech tags are applied to each word us-
ing NLTK and used as features for tagging. Simi-
larly, once the ‘IOB’-labels have been applied, they
are used as features for the domain specific labeling.
We then generate binary features as follows:

9This intuitive explanation is attributed to Hal Daumé III,
http://ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf.
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Features for ‘IOB’-tagging

• Unigram features for

– previous two, current, and following two
words

– previous two, current and following one
part of speech tags

– previous two ‘IOB’-tags

• Bigram features for

– previous two ’IOB’-tags
– previous ’IOB’-tag & current word
– previous part of speech tag & current
word

• Regular expressions as listed above for

– previous two, current, and following two
words

Following observations made in [10], we include
gazetteer features for the labels “Software Vendor”
and “Software Product”; that is, sets of Software
Vendor and Software Products are collected during
training. Upon an occurrence of such a word, the ap-
propriate gazetteer feature fires.

Features for domain-tagging

• Unigram features for

– previous two, current, and following two
words

– previous two, current and following one
part of speech tags

– previous two, current, and following
‘IOB’-tags

– previous two domain labels

• Bigram features for

– previous two domain tags
– previous domain tag & current word
– previous ’IOB’-tag & current word
– previous part of speech tag & current
word

• Regular expressions as listed above for

– previous two, current, and following two
words

• Gazetteer features for

– Software Product
– Software Vendor

VI RESULTS

In order to examine the performance of the tag-
gers, five-fold random sub-sampling validation is
performed on the automatically labeled corpus of
NVD text, which is comprised of 15,192 text descrip-
tions averaging about 50 words each. For various
sizes of data samples (n), five random samples of
n text descriptions are split 80/20 % into training
and testing sets. For experimentation with both fea-
ture and model selection, a prototype was coded in
Python, and subsequently, a faster implementation,
which relied on the Apache OpenNLP library10, was
developed. We provide both the Python code and
the OpenNLP configuration details online for those
interested,11 and report the performance results of
the OpenNLP runs in Tables 2 ,3. In particular, pre-
cision, recall, accuracy, F1-score, and training time,
that is, actual clock time in seconds as observed on
a Macbook Pro with 2.3Ghz Intel quad-core i7, 8GB
memory, 256GB flash storage. We note that treating
the ‘IOB’-tagging and the domain labeling separately
allowed unambiguous analysis of the performance;
that is, trying to judge accuracy of both labels at once
results in cases where, for example, the ‘IOB’-tag is
correct but the domain specific labels are incorrect,
and no principled treatment exists.

Both the Python and OpenNLP implementations
performed with almost perfect accuracy, with
slightly better performance by the OpenNLP im-
plementation on the domain-specific labeling,
although, as expected, the OpenNLP implemen-
tation is much faster. Perhaps the most satisfying
observation in light of the result is that as the data
size increases, training time seems to be growing
only linearly, and as expected, precision, recall, and
accuracy are monotone increasing. Hence, in the
abundance of training data, as furnished by our
auto-labeling technique, state-of-the-art entity ex-
tractors can perform exceptionally in both accuracy
and speed.

The Joshi et. al. work, [3], which trained the Stan-
ford NER (using a CRF, a global model) for extract-
ing very similar entities reportedmuchmoremodest

10https://opennlp.apache.org
11https://github.com/stucco/auto-labeled-corpus
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Table 2: OpenNLP ‘IOB’-Labels
n P R F1 A T (sec)
500 0.906 0.929 0.917 0.944 1.192
1000 0.921 0.935 0.928 0.950 1.396
2500 0.926 0.966 0.944 0.962 3.023
5000 0.947 0.950 0.948 0.965 5.468
15192 0.963 0.968 0.965 0.976 15.265

Note: In both Tables 2 and 3, n refers to the number of
NVDdescriptions, which contain about 50words on aver-
age. For each n, five random samples are divided 80/20%
into training and test sets. Precision, recall, F1-score, ac-
curacy, and training time are reported.

Table 3: OpenNLP Domain Labels
n P R F1 A T (sec)
100 0.938 0.918 0.928 0.952 0.361
500 0.965 0.965 0.965 0.976 0.890
1000 0.972 0.979 0.975 0.983 1.996
2500 0.980 0.986 0.983 0.989 4.792
5000 0.981 0.988 0.984 0.989 9.530
15192 0.989 0.993 0.991 0.994 28.527

results, namely, precision = .837, recall = .764, for an
F1 score = .799. (Accuracy and training timewere not
recorded.) Moreover, we recall that Joshi et. al. used
a hand-labeled training corpus of 240 CVE descrip-
tions, 80 Microsoft or Adobe security bulletins, and
30 security blogs, a corpus of approximately one thir-
tieth of our full NVD data set. As CRFs have also es-
tablished themselves in the literature as state-of-the-
art entity extractors, we conjecture that there are two
reasons for the relatively lower performance in the
Joshi paper, namely that their training set is substan-
tially smaller than ours, and also more varied in the
types of text it included.

VII CONCLUSION

Our auto-labeling technique gives an expedient way
to annotate unstructured text using associated struc-
tured database fields as a step towards deploying the
machine learning capabilities for entity extraction to
diverse and tailored applications. With respect to
automating extraction of security specific concepts,
we provide a publicly available corpus labeled with
security entities and a trained MEM for identifica-
tion and classification of appropriate entites, which

exhibited extremely accurate results. Additionally,
since many sources for our auto-labeling (NVD,
CVE, ...) provide RSS feeds, we seek to automate the
process of acquiring and auto-labeling the new data
to provide an ever growing corpus, which hopefully
will help extraction methods adapt to changing lan-
guage trends. As the overall telos of this work is to
accurately label “real world” documents containing
timely security information, futureworkwill include
making the technique operationally effective by test-
ing and tweaking the method on desired input texts.
Lastly, upon sufficient progress towards an entity ex-
traction system, we plan to incorporate the extrac-
tion technique into a larger architecture for acquiring
documents from the web and populating a database
with the domain specific concepts as an aid to secu-
rity analysts.
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