Text Analysis for Timely Discovery of Cyber Security Concepts

Corinne Jones¹, Robert Bridges², Mike Iannacone², and John Goodall² ¹ The Pennsylvania State University ² Oak Ridge National Laboratory clj180@psu.edu, {bridgesra, iannaconemd, jgoodall} @ ornl.gov

- concepts

- (supervised learning)

	OWL-QN	Perceptron	Percep
Precision	90.5%	99.0%	9
Recall	93.6%	77.3%	9
F-score	92.0%	86.8%	9
Accuracy	94.5%	91.8%	9
λ	1	N/A	
n	2,500	2,500	1

• Vulnerability Entities:

- -CVE-ID
- -Files
- -Functions
- -Relevant Terms

• Metasploit: -Precision = 95.3%-Recall = 54.3%-F-score = 69.1%

Histo

Advantages:

- Robust feature selection $-\text{E.g.}, f_1(x,y) = \begin{cases} 1\\ 0 \end{cases}$
- More sophisticated pro
- Maximizes entropy

Model:

 $p(t_i | t_{i-2}, t_{i-1})$

where $z(\bar{t}_i, \bar{w}_i) \equiv \sum_{\hat{t}} \exp$ Goal: Maximize the reg probability of the trainin $L(v) = \sum f(w)$

Concave and unique max such as OWL-QN

Heuristic Approach

Advantages of the Perceptron:

• Less computationally intensive • Does not make assumptions of history-based model **Goal:** Find the best values for the parameter vector by looping over each training set example several times and updating v at each step k: $v_k = v_{k-1} + f(w, t) - f(w, t'),$

where t is the "gold standard" tag sequence for w given by the training data and t' the most probable tag sequence for w given by v_{n-1} .

Entity Extraction

Goal: Find the optimal tag sequence, $t^*_{[1:n]}$, for each input sentence by solving

Can use the Viterbi algorithm, a dynamic programming algorithm that is $O(k^3n)$, where k is the number of possible tags.

ry-Based Model
n if $t_i = B$:vendor, $w_{i-1} =$ "the" else bability model
$_{-1}, w_{i-2}, w_{i-1}, w_{i}) \equiv \frac{e^{f(\bar{t}_i, \bar{w}_i) \cdot v}}{z(\bar{t}_i, \bar{w}_i)},$
$p[f(t_{i-2}, t_{i-1}, \hat{t}, \bar{w}_i) \cdot v].$ gularized log-likelihood of the conditional ag examples:
$(v, t) \cdot v - \sum \log Z(w) - \lambda \sum v_i $
ximum \implies Can use a quasi-Newton method

$\underset{t_{[1:n]} \in \mathcal{T}^n}{\operatorname{arg\,max}\, f(w_{[1:n]}, t_{[1:n]}) \cdot v}$

