Bootstrapping for Text Extraction in Cyber Security

Nikki McNeil¹, Robert Bridges², and John Goodall³ ¹University of Maryland, Baltimore County

^{2,3} Computational Sciences and Engineering Division, Oak Ridge National Laboratory {nmcneil1@umbc.edu, rabridges@ornl.gov, jgoodall@ornl.gov}

Instance Name	Туре	Prefix	Suffix
	Vulnerability	Internet	
execute arbitrary	Potential	Explorer allows	" . Heis
programs	Effects	attackers to	Media
		HTTP header	" . Ado
Adobe Flash	Vulnerability	injection	System
Player	Software	vulnerabilities in	Novem
cross-site request forgery	Vulnerability Category) is the equivalent of	(CSRF desktor

The authors would like to thank Professor Bogdan Czejdo and Nicolas Perez of Fayetteville State University and Michael Iannacone of Oak Ridge National Laboratory for the domain exptertise they contributed to this project. This research was performed under an appointment to the U.S. Department of Homeland Security (DHS) Science & Technology (S&T) Directorate Office of University Programs HS-STEM Summer Internship Program, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and DHS. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All opinions expressed in this poster are the author's and do not necessarily reflect the policies and views of DHS, DOE, or ORAU/ORISE.

Improvements

Two types of patterns: a phrase to itself be extracted as an instance, or a prefix/suffix that indicates a nearby phrase to be extracted

Phrase is extracted if it contains, rather than matches, all tokens of a pattern Instead of the nouns extracted in other domains, extract longer phrases

Basilisk Scoring Method

The number of promoted instances that occur with the pattern divided by the total number

 $\log_2(F_j + 1)$

The total number of promoted instances that have been extracted by all patterns which this instance satisfied, divided by the number of patterns

Conclus		
Corpus	Number of Iterations	Results
240 Wikipedia articles	3	32% precision
240 Wikipedia articles	3	42% precision
10 news articles	indefinite	64% precision, 38% recall, .48 F-score

Results are dependent on scoring method, types of documents, and seeds used. Future goals are to utilize more useful seeds and relation extraction.

