Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
'''
Copyright (C) 2018 Travis DeWolf
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
import numpy as np
from abr_control.arms import ur5 as arm
from abr_control.interfaces import VREP
from abr_control.utils import transformations
# initialize our robot config
robot_config = arm.Config(use_cython=True)
# create our interface
interface = VREP(robot_config, dt=.005)
interface.connect()
# specify which parameters [x, y, z, alpha, beta, gamma] to control
# NOTE: needs to be an array to properly select elements of J and u_task
ctrlr_dof = np.array([True, True, True, True, True, True])
# control gains
kp = 300
ko = 300
kv = np.sqrt(kp+ko) * 1.5
orientations = [
[0, 0, 0],
[np.pi/4, np.pi/4, np.pi/4],
[-np.pi/4, -np.pi/4, np.pi/2],
[0, 0, 0],
]
positions =[
[0.15, -0.1, 0.6],
[-.15, 0.0, .7],
[.2, .2, .6],
[0.15, -0.1, 0.6]
]
try:
print('\nSimulation starting...\n')
count = 0
index = 0
while 1:
# get arm feedback
feedback = interface.get_feedback()
hand_xyz = robot_config.Tx('EE', feedback['q'])
if (count % 200) == 0:
# change target once every simulated second
if index >= len(orientations):
break
interface.set_orientation('target', orientations[index])
interface.set_xyz('target', positions[index])
index += 1
target = np.hstack([
interface.get_xyz('target'),
interface.get_orientation('target')])
# set the block to be the same orientation as end-effector
R_e = robot_config.R('EE', feedback['q'])
EA_e = transformations.euler_from_matrix(R_e, axes='rxyz')
interface.set_orientation('object', EA_e)
# calculate the Jacobian for the end effectora
# and isolate relevate dimensions
J = robot_config.J('EE', q=feedback['q'])[ctrlr_dof]
# calculate the inertia matrix in task space
M = robot_config.M(q=feedback['q'])
# calculate the inertia matrix in task space
M_inv = np.linalg.inv(M)
Mx_inv = np.dot(J, np.dot(M_inv, J.T))
if np.linalg.det(Mx_inv) != 0:
# do the linalg inverse if matrix is non-singular
# because it's faster and more accurate
Mx = np.linalg.inv(Mx_inv)
else:
# using the rcond to set singular values < thresh to 0
# singular values < (rcond * max(singular_values)) set to 0
Mx = np.linalg.pinv(Mx_inv, rcond=.005)
u_task = np.zeros(6) # [x, y, z, alpha, beta, gamma]
# calculate position error
u_task[:3] = -kp * (hand_xyz - target[:3])
# Method 1 ------------------------------------------------------------
#
# transform the orientation target into a quaternion
q_d = transformations.unit_vector(
transformations.quaternion_from_euler(
target[3], target[4], target[5], axes='rxyz'))
# get the quaternion for the end effector
q_e = transformations.unit_vector(
transformations.quaternion_from_matrix(
robot_config.R('EE', feedback['q'])))
# calculate the rotation from the end-effector to target orientation
q_r = transformations.quaternion_multiply(
q_d, transformations.quaternion_conjugate(q_e))
u_task[3:] = q_r[1:] * np.sign(q_r[0])
# Method 2 ------------------------------------------------------------
# From (Caccavale et al, 1997) Section IV - Quaternion feedback -------
#
# get rotation matrix for the end effector orientation
# R_EE = robot_config.R('EE', feedback['q'])
# # get rotation matrix for the target orientation
# R_d = transformations.euler_matrix(
# target[3], target[4], target[5], axes='rxyz')[:3, :3]
# R_ed = np.dot(R_EE.T, R_target) # eq 24
# q_e = transformations.quaternion_from_matrix(R_ed)
# q_e = transformations.unit_vector(q_e)
# u_task[3:] = np.dot(R_EE, q_e[1:]) # eq 34
# Method 3 ------------------------------------------------------------
# From (Caccavale et al, 1997) Section V - Angle/axis feedback --------
#
# R_EE = robot_config.R('EE', feedback['q'])
# # get rotation matrix for the target orientation
# R_d = transformations.euler_matrix(
# target[3], target[4], target[5], axes='rxyz')[:3, :3]
# R = np.dot(R_target, R_EE.T) # eq 44
# q_e = transformations.quaternion_from_matrix(R)
# q_e = transformations.unit_vector(q_e)
# u_task[3:] = 2 * q_e[0] * q_e[1:] # eq 45
# Method 4 -------------------------------------------------------------
# From (Yuan, 1988) and (Nakanishi et al, 2008) ------------------------
# NOTE: This implementation is not working properly --------------------
#
# # transform the orientation target into a quaternion
# q_d = transformations.unit_vector(
# transformations.quaternion_from_euler(
# target[3], target[4], target[5], axes='rxyz'))
# # get the quaternion for the end effector
# q_e = transformations.unit_vector(
# transformations.quaternion_from_matrix(
# robot_config.R('EE', feedback['q'])))
#
# # given r = [r1, r2, r3]
# # r^x = [[0, -r3, r2], [r3, 0, -r1], [-r2, r1, 0]]
# S = np.array([
# [0.0, -q_d[2], q_d[1]],
# [q_d[2], 0.0, -q_d[0]],
# [-q_d[1], q_d[0], 0.0]])
#
# # calculate the difference between q_e and q_d
# # from (Nakanishi et al, 2008). NOTE: the sign of the last term
# # is different from (Yuan, 1998) to account for Euler angles in
# # world coordinates instead of local coordinates.
# # dq = (w_d * [x, y, z] - w * [x_d, y_d, z_d] -
# # [x_d, y_d, z_d]^x * [x, y, z])
# # the sign of quaternion that moves between q_e and q_d
# u_task[3:] = -(q_d[0] * q_e[1:] - q_e[0] * q_d[1:] +
# np.dot(S, q_e[1:]))
#
# ---------------------------------------------------------------------
u_task[3:] *= ko # scale orientation signal by orientation gain
# remove uncontrolled dimensions from u_task
u_task = u_task[ctrlr_dof]
# transform from operational space to torques
# add in velocity and gravity compensation in joint space
u = (np.dot(J.T, np.dot(Mx, u_task)) -
kv * np.dot(M, feedback['dq']) -
robot_config.g(q=feedback['q']))
# apply the control signal, step the sim forward
interface.send_forces(u)
count += 1
finally:
interface.disconnect()