No description, website, or topics provided.
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
TextlineDetection
README.md

README.md

###################################################################
#                                                                                                                                  #
#                   Symmetry-based text detection                                                             #
#                                                                                                                                 #
#                                                                                                                                 #
###################################################################

1. Introduction.

The source code of symmetry-based text detection algorithm. We adopt approximate calculation technology and parallel technology to speed up the proposed algorithm.
For this reason, the probability output has a slightly difference but very close result on ICDAR dataset, compared to the CVPR'15 version.

###################################################################

2. Installation.

a) This code is written for the Windows x64 and Visual Studio 2012, and you may needs OpenCV 2.4.10 and VL-feat. 

b) You should check the config.txt for parameter setting.
   The config.txt is consists of several lines:
   line #1: Dataset Path
   line #2: Mode flag(0 or 1), 0 is testing mode and 1 is training mode
   line #3: The normalized height of input image
   line #4: number of sliding window scales for each octave
   line #5: the minimum sliding window scale, it would be 2^min_scale
   line #6: the maximum sliding window scale, it would be 2^min_scale
   line #7: Only for training stage. This parameter indicate an absolute distance. 
   Pixels whose distance greater than this distance are regard as negative samples.
   line #8: Only for training stage. This parameter indicate an relative distance(relative to the height of ground truth, Eg: if the height of ground truth is 10 and the paprameter is 0.2, the distance is 2). 
   Pixels whose distance less than this distance are regard as positive samples
   line #9: Only for training stage. The maximum negative samples in training stage.
   line #10: Only for training stage. The maximum positive samples in training stage.
   line #11: the bin number of lab channel
   line #12: the bin number of gradient channel
   line #13: the bin number of texture channel. In current version, this parameter is fixed by 58
   line #14: the angle threshold for symmetry line linkage
   line #15: the core number for parallel
   line #16: the shrink step, it should be 2^n

   and We support an example in the package. Note that the setting of config.txt(line #11 ~ line#13) should be keep consistent during training and testing.

c) Prepare the dataset and create folders.
   The directory structure is described as bellow:
   ->Dataset\
->Annotation\ 
->train\
->Feature
->train\
->Images
->train\
->test\
->Model
->Result
    And for annotation files, each of them should contains several lines, and each line should contain 4 numbers: x, y, width, height.
    For more details, please refer to the sample in the package.
###################################################################

3. Getting Started.

 - Make sure to carefully follow the installation instructions above.
 - Set config.txt.
 - Run TextlineDetection.exe config.txt in command line.

###################################################################