From 8185de3f7f59051263af2905211b832ea397fcca Mon Sep 17 00:00:00 2001 From: Cristopher-Morales Date: Fri, 3 Oct 2025 09:53:48 +0200 Subject: [PATCH] reformulating --- _docs_v7/Theory.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/_docs_v7/Theory.md b/_docs_v7/Theory.md index 935d81a1..c03d7ddc 100644 --- a/_docs_v7/Theory.md +++ b/_docs_v7/Theory.md @@ -264,11 +264,12 @@ $$S$$ is a generic source term, and the convective and viscous fluxes are $$\bar{F}^{c}(V) = \left\{\begin{array}{c} \rho Y_1 \bar{v} \\ ... \\\rho Y_{N-1} \, \bar{v} \end{array} \right\}$$ -$$\bar{F}^{v}(V,\nabla V) = \left\{\begin{array}{c} D \nabla Y_{1} \\ ... \\ D \nabla Y_{N-1} \end{array} \right\} $$ +$$\bar{F}^{v}(V,\nabla V) = \left\{\begin{array}{c} \rho D \nabla Y_{1} \\ ... \\ \rho D \nabla Y_{N-1} \end{array} \right\} $$ with $$D$$ $$[m^2/s]$$ being the mass diffusion. +For turbulence modeling, the diffusion coefficient becomes: -$$D = D_{lam} + \frac{\mu_T}{Sc_{T}}$$ +$$\rho D = \rho D_{lam} + \frac{\mu_T}{Sc_{T}}$$ where $$\mu_T$$ is the eddy viscosity and $$Sc_{T}$$ $$[-]$$ the turbulent Schmidt number.