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MURASAKI?
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IN THIS SECTION

• What is Murasaki?

• What is the target processor?

• What is the development environment?

• What is the overview of the classes?



OVERVIEW

• A collection of the peripheral wrapper class
• UART, SPI, I2C, ADC, Encoder, SAI, I2S, EXTI, GPIO

• RTOS aware classes are available
• Task, Synchronizer, CriticalSection

• IO APIs are :
• Wrapped by Class. 

• Synchronized : IO call returns when IO function is complete.

• Blocking : If IO is occupied, wait until it becomes vacant. 

• Hosted by GitHub
• https://github.com/suikan4github/murasaki

https://github.com/suikan4github/murasaki


TARGET

• STM32 microcomputer 
series.

• Core pressor is not matter.

• Providing one unified API 
through the STM32 variants

• Tested Target
• STM32F0 : CORTEX-M0

• STM32G0 : CORTEX-M0+

• STM32L1 : CORTEX-M3

• STM32F4 : CORTEX-M4

• STM32G4 : CORTEX-M4

• STM32F7 : CORTEX-M7

• STM32H7 : CORTEX-M7



REQUIRED ENVIRONMENT

• Linux or Windows
• Developed on Ubuntu 16.04 LTS

• Windows 10 + WSL is confirmed

• MacOS is not tested

• CubeIDE 1.3
• Device Configuration Tool is essential

• Makefile build must be acceptable. But not tested.

• Other tools
• Doxygen

• pdflatex

• Terminal emanator



MOTIVATION

• A class library which doesn’t bother the development.
• Strict name space

• Strict parameter typing

• Synchronous and blocking IO API

• Multi-task aware

• Enough speed to support audio DMA data

• Strict parameter checking

• Context free printf()



OUT OF SCOPE

• Very quick response processing
• Motor control

• Power supply control

• Very low power operation
• Mouse

• TV remote controller

• Very small memory footprint

• High reliability application



PLATFORM AS ABSTRACT LAYER

• Murasaki provides dedicated 
class for each peripheral

• Application will use the 
peripheral through these 
class variable.

• Programmer can create 
these class variable as 
he/she wants.
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CUBE IDE AND MURASAKI
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PRINTF() DEBUG SUPPORT

• A dedicated Printf() function 
is available.

• Thread safe

• Bi-context
• Can use from both task and 

interrupt context

• Buffered
• As soon as text is stored in the 

buffer, Print() returns. 



UART

• UART is packed in the Uart
class.

• Transmit() / Receive () 
member functions are :
• Synchronous

• Blocking



I2C

• I2C is packed in the 
I2cMaster and I2cSlave 
class.

• Transmit () / Receive() 
member functions are :
• Synchronous

• Blocking



SPI

• SPI is packed in the 
SpiMaster and SpiSlave
class.

• TransmitAndReceive() 
member function is :
• Synchronous

• Blocking



BY THE WAY, 
SPI IS CONSIDERED HARMFUL

• The clock polarity and the 
clock phase is up to the 
slave.
• For each time to access 

different slave, the master have 
to be re-configured.

• Muarsaki uses the 
SpiSlaveAdapter class to 
specify these configuration.



AUDIO

• Audio is packed in the 
DuplexAudio class.

• TransmitAndReceive() 
member functions is :
• Synchronous

• DuplexAudio is not blocking 
IO. 
• This IO doesn’t assume multiple 

task access the IO randomly

• Both I2S and SAI port are 
supported 



GPIO

• GPIO class
• GpIn

• GpOut

• Simple bit operations



OTHER PERIPHERALS

• ADC is packed in the Adc
class.

• Convert member function 
is :
• Synchronous

• Blocking

• EXTI is packed in the Exti
class.

• Wait member function is :
• Synchronous

• Exti is not blocking.
• Only one task wait for specific 

interrupt.



MULTI-TASKING

• Task is easy to create.

• Syncronizer class for
• Wait

• Release

• CriticalSection class for
• Inter-task exclusive resource 

access.



AUTOMATIC INTERRUPT HANDLING

• Peripheral interrupts are handled internally.

• Programmer doesn’t need to care. 



IMPORT AND 
RUN
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IN THIS SECTION

• We fetch the sample 
programs from github, and 
import

• Run the program

• Walkthrough the program

• See the debug functionality



1.OPNE A NEW WORKSPACE

• Create a new workspace 



2.OPEN THE GIT PERSPECTIVE 



3.COPY AN URL OF THE REPOSITORY



4.CLONE THE REPOSITORY

Next, Next and then Finish



5.UPDATE SUBMODULES

Go to C perspective



6.START TO IMPORT



7.SPECIFY THE REPOSITORY

This is the one we cloned at step 4



8.SPECIFY A PROJECT TO IMPORT

1. Uncheck “Search for 
nested project”

2. Click “Deselect All”

3. Check desired project.

4. Click “Finish”

1

2

4

3



9.TRIAL BUIDL

• Now, we have a sample 
project in the workspace

• Ctrl-B to build



10.START THE DEBUGGER

Make sure the Nucleo is connected through USB



11.READY TO RUN

• Make sure a terminal 
emulator is waiting the 
serial communication



12.RUN THE PROGRAM

Blinking



13.PUSH THE BLUE BUTTON



TWO STRUCTURES OF PROJECT 

• The CubeIDE introduce 
“Advanced Project 
structure”

• In the “Advanced” structure, 
the Src directory is under 
the Core directory.

• Let’s open the 
murasaki_platform.cpp file

Old structure Advanced structure



INSIDE MURASAKI_PLATFORM.CPP

• InitPlatform()
• Initialization of Murasaki

• Programmer must edit this 
function to initialize his/her 
platform

• ExecPlatform()
• Execution body of application.

STM32 MCU

Cube HAL

Uart

class SpiMaster

class

I2cMaster

class

Adc

class

Murasaki
Platform

Application



INSIDE EXECPLATFORM()

1. Start a new task

2. Print a message

3. Then, wait for the blue 
button

1. This task halt here and wait 
for the interrupt from blue 
button

1
2

3



AFTER BUTTON PUSHED

• An utility function 
I2cSerch() is called.



INSIDE STARTED TASK

• The started task just blinks 
LED.

Blinking



POWER OF NAME 
SPACE

• Alt-/ shows the candidate of 
the keywords/identifiers. 

• This makes programming 
easy

• Strict namespace of 
Murasaki narrowing down 
the candidate by minimum 
timing. 



DEBUG : PRINTF

Let’s add Murasaki::debugger->Print() and run



DEBUG : ASSERTION

Let’s add Murasaki::debugger->Print() and run

Push button

Resume again



DEBUG : SYSLOG

Let’s add Murasaki::SetSyslogFacilityMask() and SetSyslogSeverityThreshold()



DEBUG : TASK STACK HEADROOM

Let’s add member functions of TaskStrategy class

-1 ?



WE NEED ADDITIONAL SETTINGS



RESULT OF TASK HEADROOM

• We can see the “rest of 
stack” for each task.

• The unit is byte.

• Check FreeRTOS
Configuration for details :
• configCHECK_FOR_STACK_OVE

RFLOW



DEBUG : HARD FAULT



DOCUMENTATION
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IN THIS SECTION

• Location of PDF document

• Making Doxygen document

• Tour of Doxygen document

• WIKI



LOCATION OF PDF DOCUMENT

• murasaki/doc

• PDF document is same 
contents with HTML 
document

• Just a matter of format



MAKING DOXYGEN DOCUMENT

Install Eclox, to create the document



HTML DOCUMENTATION

• Classes and Functions are 
grouped by “Module”

• “Murasaki Class Collection” 
module is a list of the 
peripheral classes.
• Usually, application programmer 

uses classes in this module.



MURASAKI CLASS COLLECTION

• Peripheral like UART, SPI, 
I2C, ADC, GPIO, SAI, I2S 
are controlled by these 
classes.

• Algorithm class like 
SimpleTask or DuplexAudio
are also listed here. 



DEFINITIONS AND CONFIGURATION

• These macros configures 
Murasaki 
• Buffer size

• Use of Debug

• To change the configuration, 
define these macros in the 
platform_config.hpp



SYNCHRONIZATION AND EXCLUSIVE 
ACCESS

• Inter-task synchronization

• Interrupt vs. task 
Synchronization

• Inter-task exclusive acsses. 



UTILITY FUNCTIONS

• Cycle counter control

• I2C device search

• Other functionality may 
added



USAGE GUIDES

• Beside of APIs, Murasaki 
has different aspect of 
documents.
• Usage Introduction

• Program flow explanation

• Porting Guide



CONFIGURATION OF PERIPHERAL

• Also, each peripheral class 
describes :
• How to configure the device

• Interrupt handling

• IO operations



WIKI

• Murasaki project has its 
own wiki.

• Supplemental information 
will be placed here



HOW TO 
CREATE YOUR 
OWN 
APPLICATION 
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IN THIS SECTION

• Create a new project to your Nucleo

• Configure the device by CubeIDE Device Configuration Tool

• Clone Murasaki into the project

• Install Murasaki

• Set up the project to use Murasaki

• Build

• Adjust to the target Nucleo



CREATE AN C++ PROJECT FOR YOUR 
NUCLEO

• First of all, create a new 
STM32 Project into your 
work space.

• File -> New -> STM32 
Project



SPECIFY THE CORRECT NUCLEO
NAME

• Follow the procedure :
1. Select board selector

2. Type the name of the Nucleo
to the Number search

3. Select correct Nucleo board

4. Then, click “Next”



SPECIFY THE PROJECT NAME 

• Follow the procedure :
1. Specify the name in to 

“Project Name”

2. Make sure to select the “C++” 
as the Target Language

3. Then click “Finish”

4. Regarding the default pin 
state and Eclipse perspective, 
click OK for a while

5. Now, the Device Configuration 
Tool appears



CONFIGURE THE FREERTOS

• Choose CMSIS_V1 as 
FreeRTOS interface.

• Set the Minimal_stack_size
as 256
• This will increase the stack size 

of the default task



CONFIGURE THE HEAP SIZE

• Set TOTAL_HEAP_SIZE 
12kB or more. 

• Murasaki uses FreeRTOS
heap for all activity.

• At least 12kB is require. 



CONFIGURE THE UART
• Nucleo Uses one UART as USB 

serial port.

• The port is up to the Nucleo
• UART
• USART
• LPUSART

• By default, appropriate port is 
asynchronous, by CubeIDE

• Make sure the parameters are:
• 115200bps
• 8bit
• No parity
• 1 stop bit



CONFIGURE THE UART NVIC

• Check the Global interrupt



CONFIGURE THE UART DMA

• Follow procedure :
1. Select the DMA settings

2. Add a DMA

3. Configure it as TX

4. Add one more DMA

5. Configure it as RX

6. Leave the Mode and Width as 
default

• Normal

• Byte



CHANGE THE TIME BASE

• QubeHAL uses its own time 
base
• By default, this time base is 

SysTick

• Also FreeRTOS uses it.

• Follow the procedure :
1. Select “System Core”

2. Select “SYS”

3. Choose any Timebase Source 
except SysTick

1

3

2



CONFIGURE THE CLOCK (F722 ONLY)

• CubeIDE has bug of Nucleo
F722 clock configuration

• Follow the procedure to fix :
1. Select “Clock Configuration”

2. Change the “Input Frequency” 
to 8 MHz.

• By default, it is 25MHz



CHECK THE NAME OF LED PIN

• We use LED pin in the 
Skelton code

• Check the name of LED pin
• It is board dependent 



GENERATE A CODE

• Now, time to generate a 
code. 

• Once generated, type Ctrl-B 
to build. 

• Build must be OK.



OPEN THE PROJECT LOCATION

• This is most tricky part.

• If you have installed 
EasyShell, execute “Open 
with default Application”
• On Linux, project location is 

opened by Nautilus file browser

• On Windows, project location is 
opened by command prompt 
window

• If you have not installed 
EasyShell, go to the project 
by yourself



OPEN THE SHELL WINDOW

• Linux only

• From the context menu 
open the shell window



SHELL WINDOW IS OPEN

• Shell window is located at 
project

• Make sure the project 
contents exist

• Now, we are ready to clone 
the Murasaki repository



COPY THE REPOSITORY URL

Make sure the protocol 

is HTTPS



CLONE THE REPOSITORY

git clone https://github.com/suikan4github/murasaki.git



INSTALL MURASKI TO PROJECT

# Linux

cd Murasaki

./install

REM Windows

cd Murasaki

wsl ./install



WHY DO WE NEED INSTALLATION?

• There are several point which CubeIDE Skelton calls Murasaki.
• InitPlatform()

• ExecPlatform()

• HAL’s assertion failure hook

• Spurious Interrupt

• Hard fault

• These call must be coded by programmer
• No weak binding routines

• The installer script is the best way to avoid the routine works



REFRESH THE PROJECT

• While we installed on the 
shell command, Eclipse 
doesn’t know that

• Follow the procedure :
1. Select project

2. Open the context menu

3. Execute “Refresh”

4. Now, you can see “Murasaki” 
in the project



OPEN THE PROPERTY

• Now, we open the project to 
set :
• Include directory

• Source directory



ADD INCLUDE PATH

• Follow the procedure :
1. Open “C/C++ General”

2. Select “Paths and Symbols”

3. Select “Includes tab”

4. Select “GNU C++”

5. Click “Add”

6. Write “murasaki/Inc”

7. Click “OK”

1

2

3

4

6

5

murasaki/Inc



ADD SOURCE LOCATION

• Follow the procedure :
1. Select “Source Location”

2. Click “Add Folder…”

3. Select “murasaki/Src”

4. Click “OK”

1

2

3



BUILD MAY FAIL

• The result of build is up to 
Nucleo board
• F722, F746, H743 : No error

• Nucleo 64 :

• UART port may be different

• LD name may be different

• Fix depends on the target.



FIX THE UART PORT IDENTIFIER

• The correct UART port is 
defined in main.c

• Apply this identifier to the 
murasaki_platform.cpp



ADJUST THE LED IDENTIFIER

• The LED name is generated 
by the Device Configuration 
Tool

• Port name and Pin name 
have to be adjusted
• LDx_GPIO_Port

• LDx_Pin



FINALLY WE CAN RUN

• Build the target

• Debug the target

• And then, resume



FURTHER PROGRAMING WITH 
MURASAKI

• Platform variable is defined in Inc/platform_def.hpp
• Programmer must modify the Murasaki::Platform type

• And must configure the device by Device Configuration Tool

• And then Initialize them

• There is no Global Interrupt Mask 
• Murasaki assumes the peripheral IO control is in task context

• Thus, inter-task exclusive access is enough

• If you need to control the IO which is not covered by 
Murasaki
• You can control them through the HAL in a Murasaki task

• You can use its HAL callback as you want

• Murasaki doesn’t interfere such the IO



SUMMARY
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MURASAKI

• A class library for STM32 series
• Multi-task native

• Synchronous and blocking IO

• Strict name space and IDE’s name completion helps coding

• Automatic interrupt handling

• Rich debugging method

• Supporting multiple STM32 MCU series

• Hosted and managed by GitHub repository / tools

• Documentation by Doxygen



THANKS & STAY HOME


