
INTRODUCTION TO MURASAKI
An STM32 Peripheral Class Library

STAY HOME

CONTENTS

INTRODUCTION

WHO AM I?

WHAT IS
MURASAKI?

Photo by Daniele Levis Pelusi on Unsplash

IN THIS SECTION

• What is Murasaki?

• What is the target processor?

• What is the development environment?

• What is the overview of the classes?

OVERVIEW

• A collection of the peripheral wrapper class
• UART, SPI, I2C, ADC, Encoder, SAI, I2S, EXTI, GPIO

• RTOS aware classes are available
• Task, Synchronizer, CriticalSection

• IO APIs are :
• Wrapped by Class.

• Synchronized : IO call returns when IO function is complete.

• Blocking : If IO is occupied, wait until it becomes vacant.

• Hosted by GitHub
• https://github.com/suikan4github/murasaki

https://github.com/suikan4github/murasaki

TARGET

• STM32 microcomputer
series.

• Core pressor is not matter.

• Providing one unified API
through the STM32 variants

• Tested Target
• STM32F0 : CORTEX-M0

• STM32G0 : CORTEX-M0+

• STM32L1 : CORTEX-M3

• STM32F4 : CORTEX-M4

• STM32G4 : CORTEX-M4

• STM32F7 : CORTEX-M7

• STM32H7 : CORTEX-M7

REQUIRED ENVIRONMENT

• Linux or Windows
• Developed on Ubuntu 16.04 LTS

• Windows 10 + WSL is confirmed

• MacOS is not tested

• CubeIDE 1.3
• Device Configuration Tool is essential

• Makefile build must be acceptable. But not tested.

• Other tools
• Doxygen

• pdflatex

• Terminal emanator

MOTIVATION

• A class library which doesn’t bother the development.
• Strict name space

• Strict parameter typing

• Synchronous and blocking IO API

• Multi-task aware

• Enough speed to support audio DMA data

• Strict parameter checking

• Context free printf()

OUT OF SCOPE

• Very quick response processing
• Motor control

• Power supply control

• Very low power operation
• Mouse

• TV remote controller

• Very small memory footprint

• High reliability application

PLATFORM AS ABSTRACT LAYER

• Murasaki provides dedicated
class for each peripheral

• Application will use the
peripheral through these
class variable.

• Programmer can create
these class variable as
he/she wants.

STM32 MCU

Cube HAL

Uart

class SpiMaster

class

I2cMaster

class

Adc

class

Murasaki
Platform

Application

CUBE IDE AND MURASAKI

STM32 MCU

Cube HAL

Uart

class SpiMaster

class

I2cMaster

class

Adc

class

Murasaki
Platform

Application

PRINTF() DEBUG SUPPORT

• A dedicated Printf() function
is available.

• Thread safe

• Bi-context
• Can use from both task and

interrupt context

• Buffered
• As soon as text is stored in the

buffer, Print() returns.

UART

• UART is packed in the Uart
class.

• Transmit() / Receive ()
member functions are :
• Synchronous

• Blocking

I2C

• I2C is packed in the
I2cMaster and I2cSlave
class.

• Transmit () / Receive()
member functions are :
• Synchronous

• Blocking

SPI

• SPI is packed in the
SpiMaster and SpiSlave
class.

• TransmitAndReceive()
member function is :
• Synchronous

• Blocking

BY THE WAY,
SPI IS CONSIDERED HARMFUL

• The clock polarity and the
clock phase is up to the
slave.
• For each time to access

different slave, the master have
to be re-configured.

• Muarsaki uses the
SpiSlaveAdapter class to
specify these configuration.

AUDIO

• Audio is packed in the
DuplexAudio class.

• TransmitAndReceive()
member functions is :
• Synchronous

• DuplexAudio is not blocking
IO.
• This IO doesn’t assume multiple

task access the IO randomly

• Both I2S and SAI port are
supported

GPIO

• GPIO class
• GpIn

• GpOut

• Simple bit operations

OTHER PERIPHERALS

• ADC is packed in the Adc
class.

• Convert member function
is :
• Synchronous

• Blocking

• EXTI is packed in the Exti
class.

• Wait member function is :
• Synchronous

• Exti is not blocking.
• Only one task wait for specific

interrupt.

MULTI-TASKING

• Task is easy to create.

• Syncronizer class for
• Wait

• Release

• CriticalSection class for
• Inter-task exclusive resource

access.

AUTOMATIC INTERRUPT HANDLING

• Peripheral interrupts are handled internally.

• Programmer doesn’t need to care.

IMPORT AND
RUN

Photo by Daniele Andy Li on Unsplash

IN THIS SECTION

• We fetch the sample
programs from github, and
import

• Run the program

• Walkthrough the program

• See the debug functionality

1.OPNE A NEW WORKSPACE

• Create a new workspace

2.OPEN THE GIT PERSPECTIVE

3.COPY AN URL OF THE REPOSITORY

4.CLONE THE REPOSITORY

Next, Next and then Finish

5.UPDATE SUBMODULES

Go to C perspective

6.START TO IMPORT

7.SPECIFY THE REPOSITORY

This is the one we cloned at step 4

8.SPECIFY A PROJECT TO IMPORT

1. Uncheck “Search for
nested project”

2. Click “Deselect All”

3. Check desired project.

4. Click “Finish”

1

2

4

3

9.TRIAL BUIDL

• Now, we have a sample
project in the workspace

• Ctrl-B to build

10.START THE DEBUGGER

Make sure the Nucleo is connected through USB

11.READY TO RUN

• Make sure a terminal
emulator is waiting the
serial communication

12.RUN THE PROGRAM

Blinking

13.PUSH THE BLUE BUTTON

TWO STRUCTURES OF PROJECT

• The CubeIDE introduce
“Advanced Project
structure”

• In the “Advanced” structure,
the Src directory is under
the Core directory.

• Let’s open the
murasaki_platform.cpp file

Old structure Advanced structure

INSIDE MURASAKI_PLATFORM.CPP

• InitPlatform()
• Initialization of Murasaki

• Programmer must edit this
function to initialize his/her
platform

• ExecPlatform()
• Execution body of application.

STM32 MCU

Cube HAL

Uart

class SpiMaster

class

I2cMaster

class

Adc

class

Murasaki
Platform

Application

INSIDE EXECPLATFORM()

1. Start a new task

2. Print a message

3. Then, wait for the blue
button

1. This task halt here and wait
for the interrupt from blue
button

1
2

3

AFTER BUTTON PUSHED

• An utility function
I2cSerch() is called.

INSIDE STARTED TASK

• The started task just blinks
LED.

Blinking

POWER OF NAME
SPACE

• Alt-/ shows the candidate of
the keywords/identifiers.

• This makes programming
easy

• Strict namespace of
Murasaki narrowing down
the candidate by minimum
timing.

DEBUG : PRINTF

Let’s add Murasaki::debugger->Print() and run

DEBUG : ASSERTION

Let’s add Murasaki::debugger->Print() and run

Push button

Resume again

DEBUG : SYSLOG

Let’s add Murasaki::SetSyslogFacilityMask() and SetSyslogSeverityThreshold()

DEBUG : TASK STACK HEADROOM

Let’s add member functions of TaskStrategy class

-1 ?

WE NEED ADDITIONAL SETTINGS

RESULT OF TASK HEADROOM

• We can see the “rest of
stack” for each task.

• The unit is byte.

• Check FreeRTOS
Configuration for details :
• configCHECK_FOR_STACK_OVE

RFLOW

DEBUG : HARD FAULT

DOCUMENTATION

Photo by Debby Hudson on Unsplash

IN THIS SECTION

• Location of PDF document

• Making Doxygen document

• Tour of Doxygen document

• WIKI

LOCATION OF PDF DOCUMENT

• murasaki/doc

• PDF document is same
contents with HTML
document

• Just a matter of format

MAKING DOXYGEN DOCUMENT

Install Eclox, to create the document

HTML DOCUMENTATION

• Classes and Functions are
grouped by “Module”

• “Murasaki Class Collection”
module is a list of the
peripheral classes.
• Usually, application programmer

uses classes in this module.

MURASAKI CLASS COLLECTION

• Peripheral like UART, SPI,
I2C, ADC, GPIO, SAI, I2S
are controlled by these
classes.

• Algorithm class like
SimpleTask or DuplexAudio
are also listed here.

DEFINITIONS AND CONFIGURATION

• These macros configures
Murasaki
• Buffer size

• Use of Debug

• To change the configuration,
define these macros in the
platform_config.hpp

SYNCHRONIZATION AND EXCLUSIVE
ACCESS

• Inter-task synchronization

• Interrupt vs. task
Synchronization

• Inter-task exclusive acsses.

UTILITY FUNCTIONS

• Cycle counter control

• I2C device search

• Other functionality may
added

USAGE GUIDES

• Beside of APIs, Murasaki
has different aspect of
documents.
• Usage Introduction

• Program flow explanation

• Porting Guide

CONFIGURATION OF PERIPHERAL

• Also, each peripheral class
describes :
• How to configure the device

• Interrupt handling

• IO operations

WIKI

• Murasaki project has its
own wiki.

• Supplemental information
will be placed here

HOW TO
CREATE YOUR
OWN
APPLICATION

Photo by Sneaky Elbow on Unsplash

IN THIS SECTION

• Create a new project to your Nucleo

• Configure the device by CubeIDE Device Configuration Tool

• Clone Murasaki into the project

• Install Murasaki

• Set up the project to use Murasaki

• Build

• Adjust to the target Nucleo

CREATE AN C++ PROJECT FOR YOUR
NUCLEO

• First of all, create a new
STM32 Project into your
work space.

• File -> New -> STM32
Project

SPECIFY THE CORRECT NUCLEO
NAME

• Follow the procedure :
1. Select board selector

2. Type the name of the Nucleo
to the Number search

3. Select correct Nucleo board

4. Then, click “Next”

SPECIFY THE PROJECT NAME

• Follow the procedure :
1. Specify the name in to

“Project Name”

2. Make sure to select the “C++”
as the Target Language

3. Then click “Finish”

4. Regarding the default pin
state and Eclipse perspective,
click OK for a while

5. Now, the Device Configuration
Tool appears

CONFIGURE THE FREERTOS

• Choose CMSIS_V1 as
FreeRTOS interface.

• Set the Minimal_stack_size
as 256
• This will increase the stack size

of the default task

CONFIGURE THE HEAP SIZE

• Set TOTAL_HEAP_SIZE
12kB or more.

• Murasaki uses FreeRTOS
heap for all activity.

• At least 12kB is require.

CONFIGURE THE UART
• Nucleo Uses one UART as USB

serial port.

• The port is up to the Nucleo
• UART
• USART
• LPUSART

• By default, appropriate port is
asynchronous, by CubeIDE

• Make sure the parameters are:
• 115200bps
• 8bit
• No parity
• 1 stop bit

CONFIGURE THE UART NVIC

• Check the Global interrupt

CONFIGURE THE UART DMA

• Follow procedure :
1. Select the DMA settings

2. Add a DMA

3. Configure it as TX

4. Add one more DMA

5. Configure it as RX

6. Leave the Mode and Width as
default

• Normal

• Byte

CHANGE THE TIME BASE

• QubeHAL uses its own time
base
• By default, this time base is

SysTick

• Also FreeRTOS uses it.

• Follow the procedure :
1. Select “System Core”

2. Select “SYS”

3. Choose any Timebase Source
except SysTick

1

3

2

CONFIGURE THE CLOCK (F722 ONLY)

• CubeIDE has bug of Nucleo
F722 clock configuration

• Follow the procedure to fix :
1. Select “Clock Configuration”

2. Change the “Input Frequency”
to 8 MHz.

• By default, it is 25MHz

CHECK THE NAME OF LED PIN

• We use LED pin in the
Skelton code

• Check the name of LED pin
• It is board dependent

GENERATE A CODE

• Now, time to generate a
code.

• Once generated, type Ctrl-B
to build.

• Build must be OK.

OPEN THE PROJECT LOCATION

• This is most tricky part.

• If you have installed
EasyShell, execute “Open
with default Application”
• On Linux, project location is

opened by Nautilus file browser

• On Windows, project location is
opened by command prompt
window

• If you have not installed
EasyShell, go to the project
by yourself

OPEN THE SHELL WINDOW

• Linux only

• From the context menu
open the shell window

SHELL WINDOW IS OPEN

• Shell window is located at
project

• Make sure the project
contents exist

• Now, we are ready to clone
the Murasaki repository

COPY THE REPOSITORY URL

Make sure the protocol

is HTTPS

CLONE THE REPOSITORY

git clone https://github.com/suikan4github/murasaki.git

INSTALL MURASKI TO PROJECT

Linux

cd Murasaki

./install

REM Windows

cd Murasaki

wsl ./install

WHY DO WE NEED INSTALLATION?

• There are several point which CubeIDE Skelton calls Murasaki.
• InitPlatform()

• ExecPlatform()

• HAL’s assertion failure hook

• Spurious Interrupt

• Hard fault

• These call must be coded by programmer
• No weak binding routines

• The installer script is the best way to avoid the routine works

REFRESH THE PROJECT

• While we installed on the
shell command, Eclipse
doesn’t know that

• Follow the procedure :
1. Select project

2. Open the context menu

3. Execute “Refresh”

4. Now, you can see “Murasaki”
in the project

OPEN THE PROPERTY

• Now, we open the project to
set :
• Include directory

• Source directory

ADD INCLUDE PATH

• Follow the procedure :
1. Open “C/C++ General”

2. Select “Paths and Symbols”

3. Select “Includes tab”

4. Select “GNU C++”

5. Click “Add”

6. Write “murasaki/Inc”

7. Click “OK”

1

2

3

4

6

5

murasaki/Inc

ADD SOURCE LOCATION

• Follow the procedure :
1. Select “Source Location”

2. Click “Add Folder…”

3. Select “murasaki/Src”

4. Click “OK”

1

2

3

BUILD MAY FAIL

• The result of build is up to
Nucleo board
• F722, F746, H743 : No error

• Nucleo 64 :

• UART port may be different

• LD name may be different

• Fix depends on the target.

FIX THE UART PORT IDENTIFIER

• The correct UART port is
defined in main.c

• Apply this identifier to the
murasaki_platform.cpp

ADJUST THE LED IDENTIFIER

• The LED name is generated
by the Device Configuration
Tool

• Port name and Pin name
have to be adjusted
• LDx_GPIO_Port

• LDx_Pin

FINALLY WE CAN RUN

• Build the target

• Debug the target

• And then, resume

FURTHER PROGRAMING WITH
MURASAKI

• Platform variable is defined in Inc/platform_def.hpp
• Programmer must modify the Murasaki::Platform type

• And must configure the device by Device Configuration Tool

• And then Initialize them

• There is no Global Interrupt Mask
• Murasaki assumes the peripheral IO control is in task context

• Thus, inter-task exclusive access is enough

• If you need to control the IO which is not covered by
Murasaki
• You can control them through the HAL in a Murasaki task

• You can use its HAL callback as you want

• Murasaki doesn’t interfere such the IO

SUMMARY

Photo by Aaron Burden on Unsplash

MURASAKI

• A class library for STM32 series
• Multi-task native

• Synchronous and blocking IO

• Strict name space and IDE’s name completion helps coding

• Automatic interrupt handling

• Rich debugging method

• Supporting multiple STM32 MCU series

• Hosted and managed by GitHub repository / tools

• Documentation by Doxygen

THANKS & STAY HOME

