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ABSTRACT

Fuentes, C., Haverkamp, R. and Parlange, J.-Y., 1992. Parameter constraints on closed-form soilwater
relationships. J. Hydrol., 134: 117-142.

The constraints on the different fitting parameters used in the water retention equation, 4(d), and
hydraulic conductivity, K(0), are analyzed using the infiltration equation as a testing tool. The following
characteristic equations are considered: those of Gardner; Brooks and Corey; Brutsaert; Van Genuchten
subject to both Mualem’s and Burdine’s condition; Van Genuchten combined with Brooks and Corey; and
Fujita. It is shown that most combinations of A(6) and K(0) or K(h) break down, when tested over the large
range of soil types encountered in field situations. For clay soils, especially, the best-fit parameter values
often become inconsistent with the infiltration theory. The best combination is the Van Genuchten
equation for 4(0) with the Burdine condition m = 1 — 2/n and the Brooks and Corey equation for K(6).
This combination satisfies the infiltration condition for all soil types, even when applied to the two extreme
.Swo.m used by Green and Ampt and Talsma and Parlange. The interdependence of /#(6) and K(6) parameters
18 discussed.

INTRODUCTION

Knowledge of hydraulic soil properties, expressing water pressure head,
h(em), as a function of volumetric water content, f(cm®cm~>) and hydraulic
Conductivity, K(cmhr™') as a function of 6, is of prime importance in many
field studies dealing with water transport in the unsaturated zone. Laboratory
and/or field measurements of the 4(0) and K(6) values give scattered exper-
Imental data points. As model studies require continuous relations, closed-
form expressions are used to fit the experimental data points. The many
Ewaosm proposed in the literature, can be divided into four groups based on
their dependent variables: .

(1) 6(h) (e.g. Brooks and Corey, 1964; King, 1965; Brutsaert, 1966; Farrel
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and Larson, 1972; Van Genuchten, 1980; Haverkamp and Vauclin, 1981;
Haverkamp and Parlange, 1986);

(2) K(6) (e.g. Averyanov, 1950; Irmay, 1954; Brooks and Corey, 1964;
Simmons et al., 1979; Van Genuchten, 1980:; Broadbridge and White, 1988;
Sander et al., 1988);

(3) K(h) (e.g. Wind, 1955; Rijtema, 1965; Gardner, 1958); and

(4) D(6), where D is the diffusivity defined by D(0) = K(0)dh/do (e.g.
Fujita, 1952; Gardner and Mayhugh, 1958).

The solution of the transport equation (e.g. Fokker Planck’s equation)
requires only two functional relations, but the number of fitting parameters
involved can be of the order of four to five depending on the relations chosen.
To overcome this problem some authors (e.g. Brooks and Corey, 1964;
Brutsaert, 1967; Van Genuchten, 1980) developed relationships between two
of the parameters used in 4(6) and K(0), based on the use of ad hoc capillary
models (e.g. Childs and Collis-George, 1950; Burdine, 1953; Millington and
Quirk, 1961; Mualem, 1976a).

Most parameters are pure fitting parameters without any physical meaning.
In the past, little attention has been paid by authors to the constraints on the
fitting parameters when used in the transport equations. Only Brutsaert (1974)
studied the problem for the very early stages of infiltration by considering the
constraint of a finite sorptivity.

The aim of this paper is to analyze the constraints on the different fitting
parameters which enter the closed-form relations, when using the infiltration
equation over its complete time range as a criterion. In this paper only six
expressions are considered; including the most frequently used expressions
like those of Fujita (1952), Gardner (1958), Brooks and Corey (1964),
Brutsaert (1966), and Van Genuchten (1980).

THEORY

The solution of Fokker Planck’s equation for vertical infiltration:

0 _ 9 a0
%= = PO% - k6] "

can be expanded in powers of 1", when

6 = Qo = %_. atz = oo va
0 = Qo = m_. att = 0 A&v

where 0, is water content at natural saturation, 6, is initial water content
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itive downwards, and ¢ (s) is an. . 3
%mwrvmmmow_mﬁ the cumulative infiltration I (cm) can be written as (Philip,

1957):

I = St + At +0(e") (5)
where S (cm/+/s) is the usual sorptivity given by:

p (6)
S,, 0,) = %ﬁav%

by
and
i ()

AQ, 0) = | 1©)do

[
’ . . %o
where ¢ is the Boltzmann (1894) transformation and y is the second term o

the time series of Philip (1957). .
. The shape-functions f(6, 0,) and g(0,0,), are defined by:

0

Mﬁg% .
10,6, =

[ e@a0

)
and

6

M (@) dD )
NAQV Qov = %m

% 1(0)do

Do _
Since ¢ and y are near constant over most of the range for 8, fand g are nearly
equal to (0 — 0,)/(8, — 6y)- .
The ﬁ%nmaﬁoca S and A can then be written as
05

© — %) pgyas (10)
%SAa""N% @ PO

and

an
A(0,,0)) = L1 + p (K — Ko)
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with
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O and K* stand, respectively, for the degree of saturation

% - Qc
0 = — (13)
and the relative conductivity
K — K
* 0
K KK, (14)

where K is the hydraulic conductivity at natural saturation 0, and K, =
K(6,).

An extensive analysis of the parameter u carried out by Fuentes et al.
(1991), shows that u varies over the interval 0 < # < 1depending on the type
of soil tested. The two extreme values # = 0and u = 1 correspond, respec-
tively, to the limiting soil described by Talsma and Parlange (1972) for which
D(0) and dK/d0 behave like a Dirac delta function (Parlange, 1977), and the
soil used by Green and Ampt (1911) for which only D(6) behaves like a delta
function. The behaviour of the parameter 4 is illustrated in Fig. 1.

Substitution of the extreme y-values into eqn. (11) gives the experimentally
verified interval of variation for A4:

13K, < 4 < 23K, (15)

as suggested by Youngs (1968), Philip (1969) and Talsma and Parlange (1972).

Since p is not easily accessible for routine handling, it can be estimated by
using the approximation of f(®) = £(®) = Oin eqn. (12) (Parlange, 1975),
yielding the estimator j:

A
~ s 6
: M,d A— V

where /; and 4, are two scaling variables characterizing the soil behavior
under infiltration. The scaling variables are expressed by:

sm Q%E@E@T wh R is%@ (17)
S 0 S o
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Fig. 1. Water retention diagram showing the influence of parameter y on the shape of h(0).
used earlier by Bouwer (1964, 1966), and:

), =& m O :N mM@ - @ D(©)do

0

T W W TM@M@ | @isni :@

=0i the

where 0, is taken equal to 0, and K(b,) = KS.L. = 0 in n.;.aom SWMMMMH
whole range of 0-values, independently of the initial A.uo:a:_osm. c _ . e
Comparison between estimator fi-values and Eo; theoretica tﬁw,m\mo s
calculated for 20 soils ranging from romé\m clay soils Moomwwm_nn mawwmo : M
in Fi i [l is correc <

< 1 are shown in Fig. 2. The behavior of i 1s ver

m < 1 nevertheless, the main importance for this study lies in the fact that

— 0
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Fig. 2. Estimator /1 plotted as function of

coarse sands (0 < 4 < 1) r ~ 096 # generated for 20 theoretical soils ranging from heavy clay to

estimator ft approaches, in an exact way, the limitin

U = i = 1,as these limits i
=1, mpos
constraints. pose theres

Condition 2 > 0 leads to:

1
K*©
%ﬁwlmwwnﬁng@:svwo

or expressed in terms of water pressure (h):

%mer@ﬁgng

— o

e ] gvalues: u = i = 0and
trictive conditions for the parameter

(19)

(20)

The other limiting value f
K*0) < 0. : o

The latter conditi i
ons will be used in t} :
definin . ) d in the following to test :
g the different soil characteristic relations Emm:o:na mﬂ%&mgsﬂna

<1 L
< | is automatically conserved as it implies

o
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APPLICATIONS
Gardner’s equation
Gardner (1958) proposed a relation between K and h of the form:
K(h) = Kexp(ah) witha > 0 21
Substitution of eqn. (21) into condition Awo.v with ®@ = 1, yields:
22

showing that Gardner’s equation (eqn. (21)) satisfies the infiltration condition
(20), since 1/© = (6, — 0,)/(0 — 6,) by definition is greater than 1. However,
it shows at the same time that eqn. (21) cannot be applied over the whole range
of possible soil types when 4, is near zero, since the left-hand side of eqn. (20)
cannot be zero for any «, i.e. eqn. (21) cannot be applied for sandy soils.

An alternative form of eqn. (21) also frequently used in literature, is written
in the form:

K(h) = K.expla(h — hy)] for b < hy (23)

and
K(h) = K forhy < h < 0

where h, is a constant negative pressure value for which 6 = 0;.

This expression proposed by Gardner (1958) is more flexible to describe
characteristics of field soils. Note that the introduction of parameter A, in the
conductivity equation imposes a composed diffusivity function of the form:

D) = D.(0) + D;(0) (25)

where D.(6) refers to the finite part of D(6) given by eqn. (23) and valid over
the interval [0,, 0,[; and D;(0) is the infinite part of D(0) for 0 = 0, where the
‘subscript’ 6 refers to it being approached by the use of a standard Dirac delta

function (Haverkamp et al., 1990) of the form:
Ds(6) = Klholo(0 — 0s)
Substitution of egns. (23) and (24) into condition (20) with ® =1, yields:

[ 250 )50 0 —

S

(24)

(26)

@7

— 0

showing similar shortcomings in the use of eqns. (23) and (24) as was noted



Y

124 C. FUENTES ET AL,

for the earlier conductivity equation of Gardner (eqn. (21)): for heavy clay
soils expressions (23) and (24) should not be used, as condition (20) cannot be
zero for any value of .

Brooks and Corey’s equations

Brooks and Corey (1964) assumed that:

m — mq &o_, ‘
6 — QN = Alblv for h < bnq Amwv

O, forh, < h <0 9

where 4, is a parameter commonly termed the ‘air entry pressure’ and 1 is a
positive soil index, being small for clay soils and large for sandy soils.

For the hydraulic conductivity function Brooks and Corey (1964)
proposed:

KO (0-090Y

l\ﬂmlp = Aﬂ for h < \\NQ Awov
and

KO) = K forh, <h<0 31)
with

Note that several authors obtained other values of parameter # unrelated

to 4, i.e. Yuster (1951) suggested = 2; Irmay (1954) 4 = 3 and Averyanov
(1950) 4 = 3.5.

Substitution of eqns. (28)-(32) into condition (20) gives at once:
(=h)AS522 + 154 +2) > 0 (33)

which is always satisfied, since 1 > 0 and h,. < 0. However, eqn. (33) shows
again that the Brooks and Corey model does not cover the entire range of
and is inconsistent for heavy clay soils.

Brooks and Corey chose the power value n = 2/ + 3 of K(6) from the
capillary model of Burdine (1953), who derived the 1(2) relationship:

2

e

-
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i lues of p, i.e. Childs and
i — 1. Other authors proposed different va . - :
,Sﬁm. ono_ﬁmn (1950) p = 0; Mualem (19762) p = 1/2; and Millington M:w
mo:_m.comc p = 4/3. For any p-value in the Brooks and Corey model,
u

condition (20) is satisfied if:

5

ﬁ+®+wﬁ§:+®+3\:+»IHWO (35)

i < is the case for clay soils and :ommﬁ.zm
o mOnM BmmMmﬂwoﬂom@uwwm.owsmmmwww (35) will become zero or .zm.mm:,.\o.
oo mcow. w oo_wgswao: is rather unlikely for field mo:m‘u as it implies
EA_VMM,\MW:mo_o% to 1 (eqn. (34)), which is rarely met for clay wo:m.. As w Smc_z
Mmocao&mma Brooks and Corey model with 7 expressed as a ?:ocmn 0 Mow:vw
covers a limited range of i (1 > 0, eqn. (16)) and should, therefore,

used for heavy clay soils.

Brutsaert’s equation

Brutsaert (1966) proposed the following h(6) relation:

0 -0, 1 (36)
0, — 0, hY

'+ (5)
with b (b > 0) and h, being curve fitting parameters. Since Brutsaert did not

suggest a special K(0) relation, eqn. (36) is tested in oo.BE:M:%: ﬁwﬂ:ﬂﬂﬂﬂ“
and Corey’s equation (eqn. (30)) as used by Ahuja and Swa

.—O‘NN ’ . .. . .
A wcwmagaos of egns. (30), (34) and (36) into condition (20) gives:

3 1
NAW+§+MV wAN+u+mv

A m
ﬂAwATN.ﬁ.TMv _JAN.T.QITMV

=0 37

where I stands for the gamma function. . ;
,_m,mwm condition is satisfied only for b > 1, independently of the value

i ’ ion
of p chosen, which imposes a constraint on the use of Brutsaert’s equati
(eqn. (36)).
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Van Genuchten’s equations

Van Genuchten (1980) suggested the use of:
0 — 6, 1

%w - Qn \N nm Awwv
[+ G

with 4, < 0 and

NA.AQV - AQ —_ mqv_\w W— | 0 — 0 1m=ym 2
Nm %w - Q_. - ﬁ B A%w — %_.v H_ w AW@V
This conductivity was obtained th .
(1976a) imposing rough the capillary model of Mualem

1
1 — —withn > 1
: (40)

m =
Substitution of eqns. (38) and (39) into condition (20) gives:

1
2 B.REIN : — A_ - .xvs_a A_ _ lesak
0

o]
> 3 (Bmj2)-2 _ m —m
OT 1 — (= x"P( = x)"dx . 1)

where x stands for [0 — 0,/6, — g:s
Numerical calculati y e .
holds only for: ations of the integrals in eqn. (41) indicate that the condition

m = 0.4669 @)

which imposes a constraint on Van G i
. enuchten’s equation (eqn. (38)) when
used together with the conductivity equation (eqn. (39)) woﬂA oﬁwm% Mozvmv.

If the conductivit ion i i :
Burdins (1953 ctivity equation is derived through the capillary theory of

2 - =[G

with

n >

n

m =

A e e
- ———

Y N

[y

—

-

.

R ———————
T [P N
P v < s ——
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a constraint of the same type is obtained:

1

[xmmb=t = (1 = P2l - 0 = X — 131 — x> 0
c 43)

where x stands again for (6 — 0./6, — 6,)'". Numerical calculations show
that condition (45) holds if:

m = 0.2466

limiting the use of Van Genuchten’s equation together with Burdine’s

equation for clay soils.
Note that the limiting m-value of eqn. (46) is smaller than that calculated

by eqn. (42). This follows directly from different definitions of m: eqn. (40) or
eqn. (44).

(46)

Combination of Van Genuchten’s h( 0) and Brooks and Corey’s K (0) equations

As an alternative to eqns. (39) or (43), Van Genuchten’s 4(6) equation (eqn.
(38)) combined with the Brooks and Corey relation for K(0), (eqn. (30)), is
analyzed with m independent of n. One can take in general
(47)

m=1-

e

The two cases of the previous section corresponded, respectively, to ¢ = 1

and ¢ = 2. Here c is kept arbitrary as long as ¢ < 1.
Van Genuchten’s and Brooks and Corey’s A(6) equations behave similarly

at low water content and by analogy with eqn. (34) the power 5 can be written
in the form:

2
o= —+2+p (48)
mn

Substitution of eqns. (30), (38), (47) and (48) into condition (20) then gives

where B is the usual beta function.

Analyzing relation (49) for a value of ¢ = 1, shows that the condition is not
satisfied for values of m < 0.15, independently of the value of p chosen
(shaded area of Fig. 3). Adding moreover the condition imposed by the power
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Eq.(49) >0

Eq.(50) DO

\
Eq.(50)< 0 \
Z

Eq.(49) < 0

I
-5 o 5 10 [

i
J

g. 3. Domain of <n~__&:.v\ Am v - =5
G
Fi haded area of the Van enuchten-Brooks and OC~nv\ model with ¢ 1

term 7. > 1 of the conductivity equation (eqn. (30)):

2
m TP 120 (50)

it follows that p should be greater than — 3 (Fig. 3). In consequence the use

of eqns. @8 and (38) with ¢ = 1 does not permit a full description of the soil
characteristics for all types of soils.

Considering now the case of m = 0 ich i ini
. as = 0, which is the most constra n.
(49) is satisfied if: e

31 11
2B (=, - -, -
Amu nv . Aqu qv S
which imposes the condition on parameter ¢ independently of p:

c = 2. (52)

The <m€o .o.: = .w m,m optimal as it is the only value which allows description
of the limiting soil /i = 0 (Talsma and Parlange, 1972) with condition (20)
equal to zero.
As a result the combination of Brooks and Corey’ i
! F y’s K(0) equation (eqn.
(30)) and Van Genuchten’s A(0) equation (eqn. (38)) together with Burdine’s

——— -~
—— —_ — e ——— e N — e 3

o

s gy

~

— e ————
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condition m = 1 — 2, can be applied to the full range of field soils without
peing limited by the infiltration condition (eqn. (20)). The only remaining
constraint is:

> -~ (53)
for the conductivity function K(0) to have a positive second derivative.

Combined Fujita and Parlange’s equation

The last equation tested is the Fujita (1952) diffusivity equation:

@.—0) (- poy >4

where f is a parameter between 0 and 1, and /4. is a constant negative pressure
used as a fitting parameter.

In a recent article by Sander et al. (1988) the Fujita equation (eqn. (54)) was
used in combination with an integral K(D) relation initially introduced by
Parlange et al. (1982) and later refined by Parlange et al. (1985) and
Haverkamp et al. (1990) of the form:

D) =

©]]

D(®)d

O —

(33)

1 —y
D(©)de

S, —

7 is a shape parameter defined over 0 < y < 1. The analysis of Sander et al.
(1988) showed that their results are identical to those of Rogers et al. (1983)
with only a change in notations. Broadbridge and White (1988) rederived the
same results independently of Rogers et al. (1983).

The Fujita equation (eqn. (54)) is used for the finite part D,(0), to which a
delta function is added:

Dy(0) = Klh6(0 — 0,) (56)

Similarly to the value A, of the Gardner conductivity equation (eqn. (23)),
the parameter A, is such that 6 = 0, for h > h,. Haverkamp et al. (1990)
calculated h,-values of the order of —10cm < A< —5cm for uniformly
structured soils like coarse sands, and smaller /g -values for less uniformly
structured soils like silt and clay soils.

Combination of eqns. (54), (55) and (56) yields the following h(6) function
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for h < hg (Sander et al., 1988)

_ — 1 -9+ @4y — PO B 1 —
WO) = Ft@of b i r+ O ; b ﬁ he
o1 = 7) Tope |ty T el
. (57)
Note that A is not the fitting parameter 4,, of Brooks and Corey (eqn. (28))
as h can be equal to zero, when df/d# is non-zero for 0 = 0,. ,

In a similar way combination of eqns. (54) and (55) yields the K(0) f .
(Sander et al., 1988), (53)y e K(0) function

NMV _ @T lu\%_lllmm%L

H.ﬁ m.m E.ﬁmnmwazm to note that for § = y, eqn. (58) reduces to Gardner’s conduc-
tivity in the form:

(58)

1
Kh) = ——(h —
) = Kexp| - (h = 1y (59
Substitution of eqns. (54), (55) and (56) into condition (20) gives:
|1 — ) + |h| = 0 (60)

which is always satisfied since 0 < y < 1. Moreover, condition (60) clearly
shows that for heavy clay soils the value of # tends to zero. The limiting soil
of Talsma and Parlange (1972) corresponds to the case y = 1 and h, = 0.

In consequence the Fujita diffusivity equation (eqn. (54)) together with the
conductivity given by eqn. (55) can be used to describe the soil characteristics
over the full range of field soils.

ILLUSTRATIONS

. In nana to illustrate the practical problem of curve fitting 4(6) and K(0),
nine different soils are chosen from the literature, hygiene sandstone, touched
silt loam, Guelph loam (main drying curve), silt loam (GE3) and Beit Netofa
clay soil (Van Genuchten, 1980); Sellingen loam (Beuving, 1984); Yolo light
clay (Moore, 1939); Columbia silt (main wetting curve) (Mualem mgmcv. and
Grenoble sand (Parlange et al., 1985). v “

Hr.m different parameters are optimized over the pressure and conductivity
functions using least-square analyses with the standard deviation as criterion;
e.g. for the retention curve 6, (h) is expressed by:

N

2. [0, — 0(h)Y
i=1 AQC

N -1

ap(h) =

B ~—— - -

—_— e ——

— e ————
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where 6, and 0(h;) are, respectively, the measured and calculated water content
values and N is the total number of data.

For all soils the values of 6, and K are known experimentally. For the first
five soils (Van Genuchten, 1980) the conductivity data were given as a
function of pressure (4), while for the other soils conductivity was given as a

function of 6.

Brooks and Corey’s equations

The results of Brooks and Corey’s equations are shown in Table 1. For the
first five soils with conductivity given by K(h), a value of p = 1 was chosen
in order to optimize the parameters 0., &, and 4. For the other soils 4., 4 and
p were optimized with 0, equal to zero.

The results for p clearly show the main drawback of the Brooks and Corey
model; it does not permit values of p close to zero (even for clay soils, i.e. soils
5 and 7, p is greater than 0.3), explaining the poor fit of the model to heavy
clay soils.

The value of p optimized for soils 6-9 illustrate the ambiguity of taking an
a priori value for p based on some ad hoc capillary model.

Brutsaert’s equation

The results related to Brutsaert’s equation are given in Table 2. For soils
1-5 parameters 0,, i, and b are optimized with p = 1, while for soils 6-9
parameters &, b and p are calculated with 6, equal to zero.

The results for u clearly show the flaw of Brutsaert’s equation: for values
of b smaller than 1 (soils 6, 7 and 8), u becomes negative, which is physically
unacceptable. Moreover, for the same soils the fitting of the h(6) relation is
poor, as the optimization criterion a,(h) is ten times greater than for the other
soils (ie. 2 x 107? instead of 3 x 107*cm*cm™).

Note the great variation in 6, for soils 1-5, as compared with the Brooks
and Corey model especially for heavy soils. This emphasizes that 6, should be
considered as a fitting parameter without any physical meaning and depends
on the model chosen.

Van Genuchten’s equations

Van Genuchten’s equations are tested separately for the two capillary

models of Mualem (¢ = 1) and Burdine (¢ = 2).
The results for m = 1 — ! are shown in Table 3. For soils 1-5 the values

of parameters 0,, 0, K, h, and m are those given by Van Genuchten (1980).
For soils 6-9, h, and m are optimized with 0, equal to zero.
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TABLE 1

Fitting parameters for Brooks and Corey’s equations

u

- hcr

6. (cm*cm™)  K(cmh™")

0,(cm*cm?)

Soil type

No.

0.9179
0.8704
0.6952
0.6436
0.4823
0.4671
0.3110
0.53%4
0.7272

1.0
1.0
1.0
1.0
1.0
—0.248

—-2.5

2.9483
1.7429
0.5205
0.3854
0.1305
0.1827
0.2074
0.2745
1.2876

105.35

0.1326
0.1207
0.1708
0.0127
0.0887
0.0
0.0
0.0

0.0

0.2500
0.4690
0.5200
0.3960
0.4460
0.4554
0.4950
0.4010
0.3120

Hygiene sandstone

148.80

12.625

Touched silt loam (G.E.3)
Guelph loam (main drying)
Silt loam (G.E.3)

Beit Netofa clay

Sellingen loam

45.82
128.48

1.3167
0.2067
0.0034
0.4455

4

208.04

16.05
16.56

32.81

0.0443
0.21
15.37

Yolo light clay

0.102
1.288

Columbia silt (main wetting)

Grenoble sand

11.43

h(0), eqn. (28); K(0), eqn. (30).
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TABLE 2

Fitting parameters for Brutsaert’s cquation

Soil no. 6 (cm’cm™) O (cm’cm™’) K(emh™') —h(cm) b p u

| 0.2500 0.1536 4.5 127.84 10.112 1.0 0.8847
2 0.4690 0.1923 12.625 204.05 6.846 1.0 0.8302
3 0.5200 0.2447 1.3167 127.51 1.819 1.0 0.3938
4 0.3960 0.1606 0.2067 342.86 1.873 1.0 0.4096
5 0.4460 0.3100 0.0034 1093.26 1.289 1.0 0.1833
6 0.4554 0.0 0.4455 1020.99 0.434 6.093 —0.6220
7 0.4950 0.0 0.0443 392.62 0.695 4.266 —0.2773
8 0.4010 0.0 0.21 406.22 0.805 4904 —0.1621
9 0.3120 0.0 15.37 40.07 1.621 3.494 0.3176

h(0), eqn. (36); K(0), eqn. (30).

As stated earlier the model breaks down for values of m smaller than
m = 0.4669 (eqn. (42)); this is clearly illustrated for soils 5-8 with negative
p-values. The problem occurs especially for heavy soils. However, when
comparing the different values of the optimization criterion a4(h), it is obvious
that the () equation (eqn. (38)) is accurate. It is the conductivity function
which is erratic in its behavior.

This point is illustrated by comparing the results of soil 5 (Table 3) with those
obtained with Brutsaert’s 4(0) equation (eqn. (36)) (which is a particular case
of Van Genuchten’s equation (eqn. (38)) with m = 1) combined with Brooks
and Corey’s conductivity function, eqn. (30) (Table 2). The use of eqn. (39)
is far less physical (u < 0) than Brooks and Corey’s K(6) relation (¢ > 0).

The results of the second form of Van Genuchten’s equations with m =
I — 2 (eqn. (44)) are shown in Table 4.

As in the previous case the model breaks down for soils 4-8 (u < 0), when
the value of m drops under the threshold value m = 0.2466 (eqn. (46)). Once
more this is due to the conductivity function (eqn. (43)).

In view of these results it seems preferable to use a K(0) function not

connected to the chosen h(0).
Van Genuchten—Brooks and Corey’s equations

The results of the Van Genuchten-Brooks and Corey’s equations are
shown in Tables 5 and 6, with ¢ = 1 and 2, respectively.

Considering first ¢ = 1 (Table 5), p had to be chosen for the first five soils
(Van Genuchten, 1980) since the conductivity data were given by K(h). The
value p = 0.5 is chosen, as suggested by Mualem (1976a). For soils 6-9, p is
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TABLE 3

Fitting parameters for the Van Genuchten-Mualem model with ¢ = 1

Soil no. O,(cm*cm~?) 6, (cm*cm—?) K(cmh™") — hy(cm) m As(cm) u oy(h)(cm*cm ™)

1 0.2500 0.1531 4.5 126.13 0.9035 97.34 0.8768 29 x 1073

2 0.4690 0.19C2 12.625 198.04 0.8690 132.48 0.8096 8.9 x 107}

3 0.5200 0.2183 1.3167 86.96 0.5089 6.59 0.1722 7.3 x 1073

4 0.3960 0.1312 0.2067 236.25 0.5142 11.36 0.1140 24 x 1073

S 0.4460 0.2859 0.0034 495.81 0.3725 —30.85 —0.2360 2.8 x 1073

6 0.4554 0.0 0.4455 21.61 0.1629 —1.11 —0.7592 6.9 x 1073

7 0.4950 0.0 0.0443 30.82 0.2080 —2.07 —0.6525 9.9 x 107*

g 0.4010 0.0 0.21 56.95 0.2560 —4.42 —0.5332 6.2 x 107?

0.3120 0.0 15.37 23.16 0.5096 0.99 0.1031 6.2 x 1073

h(0), eqn. (38); K(0), eqn. (39).
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TABLE 4

Fitting parameters for the Van Genuchten-Burdine model with ¢ = 2
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Soil no. 6, (cm*cm™?) 8. (cm*cm™?) K. (cmh™") — hy(cm) m As(cm) u o,(h)(cm’*cm ™)
1 0.2500 0.1526 4.5 124.41 0.8123 95.14 0.8738 29 x 10:2
2 0.4690 0.1878 12.625 192.01 0.7297 127.52 0.8038 8.4 x 10,3
3 0.5200 0.2125 1.3167 62.50 0.2888 3.65 0.1138 5.7 x 1073
4 0.3960 0.0412 0.2067 155.91 0.1942 —9.97 —0.1598 3.6 x 1073
5 0.4460 0.2237 0.0034 282.13 0.1198 —34.32 —0.4298 1.8 x 1073
6 0.4554 0.0 0.4455 16.57 0.0842 —2.06 —0.5802 4.5 x ]0,3
7 0.4950 0.0 0.0443 19.31 0.0995 —2.43 —0.5137 5.2 x l()_3
8 0.4010 0.0 0.21 36.06 0.1248 —4.31 —0.4099 50 x 10_3
9 0.3120 0.0 15.37 16.39 0.2838 0.84 0.1010 6.3 x 10

h(0), eqn. (38); K(0), eqn. (43).
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TABLE 5

Fitting parameters for the Van Genuchten-Brooks and Corey model with ¢ = 1

9¢1

"1V L3 SAININd D

Soil no. O, (cm*cm™? 3em 3 -1
( ) 0.(cm’cm™?) K,(cmh™") — hy(cm) m p " oy (h)(cm’em~")

1 0.2500

5 0 2590 0.1531 4.5 126.13 0.9035 0.5 0.8897 29 x 107?
. 0.1903 12.625 198.04 0.8690 0.5 0.8366 8.9 x 107°

3 0.5200 0.2183 1.3167 86.96 0.5089 . -

4 0.39 . . 0.5 0.3657 7.3 x 107}

s 0'4428 0.1312 0.2067 236.25 0.5142 0.5 0.3854 24 x 1073

p 0'45 0.2859 0.0034 495.81 0.3725 0.5 0.1865 2.8 x 107?
4554 0.0 0.4455 21.61 0.1629 0.4 - -3

7 0.4950 0.0 . 4215 0.1119 6.9 x 10

g . . 0.0443 30.82 0.2080 —0.4721 —0.0764 9.9 x 1073
0.4010 0.0 0.21 56.95 0 -

9 0.3120 0.0 . .2560 1.5751 0.0468 6.2 x 1073
: . 15.37 23.16 0.5096 2.8036 0.3962 6.2 x 107°

h(0), eqn. (38); K(0), eqn. (30).
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TABLE 6

Fitting parameters for the Van Genuchten-Brooks and Corey model with ¢ = 2

Soil no. 0. (cm*cm™) 0.(cm*cm™) K, (cmh™") — hy(cm) m p u op(h)(cm®cm ™)

1 0.2500 0.1526 4.5 124.41 0.8123 1.0 0.8868 29 x 1073

2 0.4690 0.1878 12.625 192.01 0.7297 1.0 0.8339 8.4 x 107°

3 0.5200 0.2125 1.3167 62.50 0.2888 1.0 0.4744 57 x 1073

4 0.3960 0.0412 0.2067 15591 0.1942 1.0 0.3598 3.6 x 107?

5 0.4460 0.2237 0.0034 282.13 0.1198 1.0 0.2496 1.8 x 107?

6 0.4554 0.0 0.4455 16.57 0.0842 —0.1775 0.1492 4.5 x 107°

7 0.4950 0.0 0.0443 19.31 0.0995 —1.9070 0.0888 52 x 1073

8 0.4010 0.0 0.21 36.06 0.1248 0.3748 0.2362 5.0 x 107°

9 0.3120 0.0 15.37 16.39 0.2838 2.2046 0.4887 63 x 1073

h(0), eqn. (38); K(0), eqn. (30).
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mzoacmm:mm@:.Aﬁw:oﬁw%v.1oﬂm:mo:mSQ\ASEEB@SS 0, hy and m
are those calculated before in Table 3.

Although the use of Brooks and Corey’s conductivity function (eqn. (30))
is a slight improvement on Van Genuchten’s conductivity function (eqn. (39)),
the results are still physically unacceptable for soils 6 and 7, the small values

o?:Rmc_::mw::amm:éé?%mo:;mmmEm.8.m<osm0nmxna p-values, e.g,
p = 0.5, u is negative for these soils.

The ay(h)-values are identical to those given in Table 3.

The second form of the Van Genuchten-Brooks and Corey model consists
in taking ¢ = 2, following Burdine’s (1953) hypothesis. The results are shown
in Table 6. Once more the value of p = 1 is chosen for the first five soils (as
suggested by Burdine, 1953), while for soils 6-9, p is obtained by curve-fitting,
For all soils, the A4(0) parameters: 0., h, and m are those given in Table 4.

As shown in Table 6 the infiltration criterion (0 < p < 1) is satisfied for
all nine soils. This confirms the result found theoretically before: the com-
bination of Van Genuchten’s 4(f) equation (eqn. (38)) and Brooks and
Corey’s K:(6) equation (eqn. (30)) together with Burdines’ condition m = 1
— is one of only two acceptable possibilities among the eight models
tested. That is, it can be used without any restriction to describe soil charac-
teristics of all soil types encountered in field situations.

The model can be applied for two purposes:

(1) for simulation: parameters 0,, h, and m are optimized from pressure
data, while 7 (or p) is calculated independently from K(0);

(2) for prediction: only 6,, h, and m are optimized from A(6) data and the
power term 7 of the K(0) expression is directly calculated from m and p with
pequal to 0, 1/2, 1 or 4/3 depending on the chosen capillary model.

Fujita and Parlange’s equation

The results of the Fujita-based equations eqn. (57) for A(6), and eqn. (58)
for K(0) are reported in Table 7. Only the last four soils are analyzed, since
their conductivity was readily available in K(6) form.

The parameters to optimize are: 0,, A, h,, f and y, where 0,, f and y enter
in both soil characteristics A4(6) and K(6). Simultaneous optimizations need an
objective function taking into account weighting between pressure and con-

ductivity data. The objective function O(v) proposed by Wésten and Van
Genuchten (1988) is used:

06 = 310, 0@F + 3 (k) — In (K@) (©)

i=M+1

where 0, and K; are the measured water contents and hydraulic conductivities,
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TABLE 7

Fitting parameters for the Fujita model

ay(h)em’em™)

B

—h.(cm)

0.(cm’cm™®)  K(mh™")  —h(cm)

0,(cm*cm ™)

Soil no.

0.008 563 x 1073

1.0
1.0
1.0
1.0

0.8559
0.8912
0.8834
0.8882

0.21 26.54

0.4455

0.0443

0.21
15.37

0.2351
0.2285
0.1738
0.0438

0.4554
0.4950
0.4010
0.3120

6.95 x 107°

0.036

27.05

1.61
0.41

2.54 x 1077

0.0107
0.3014

37.15

6.34 x 107°

9.20

3.97

h(0), eqn. (57); K(B), eqn. (58).
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“MMMMQZN_.S QAS. and Nﬁ.ev are the predicted values for given paramet
‘ r {v}; and w is the weighting coefficient, chosen in such a way that tor
oom, ME Mm.ﬂm :mﬁw roughly the same weight as the In (K) data vater
<mnﬁowwoﬁ Mwoo om mawnnﬁ SM_ m:wmsm coefficients w, leads to different parameter
vy = 100, he, hg, By}, which makes th ji
characteristic functions rather subjective. ¢ e of these Fujita-based
mohm_v“w w ohnmﬁlw m:o,mm that the infiltration criterion (0 < px < 1) is satisfied
Lls tested, confirming the theoretical result. I h i
KO exmromsons e o sult. In general the Fujita-based
urate for 0,-values close to zero i i
pr A , which
.Eol HMEHZ@%\ large <m€ow of 0, for soils 6 and 7. Moreover, the <Mwmw_ww
y |>., Ew 0855 :M the choice y = | stated earlier by Haverkamp et al. (1990)
. Q@Mm Hm om.w MWmEoS:m:n forms of 4(6) and K(6) permit a %moacmom
ol soil, the great number of fitting parameters i i
with the delicate optimization N es the Fuiite Pacienaoined
. procedure, makes the Fujita—Parl
useful primarily, for theoretical ¢ f ol applications van
: ase studies. For practical applicati
iz , : ons V
Genuchten-Brooks and Corey’s equations are the most oo:wwamsr "

CONCLUSIONS

of i inati
ix BOm%omeM Mh_vwdﬁw_%nﬂ:o:,m M_m%mﬁ%vv and K(0) characteristic equations tested
. , L.e. ner’s equations; (2) Brooks and C ’ )
equations; (3) Brutsaert’s (1966) equation; : otey’s (106%)
: . quation; (4) and (5) Van Genuchten’s (1
equations subjected to either Mualem’s (1976 i chten'’s (1950)
Burdine’s (1953 dition;
and (6) Van Genuchten’s () equati e ) condition;
4 quation subjected to Mualem’ iti
together with Brooks and Corey’ i palems condition,
: y’s K(0) equation, may not describ
soils properly, since for these soils he gscribe heavy clay
/> . the values of the fittin
cooHoEm cg\m_.omzw inconsistent with infiltration theory. ® parameters may
wﬁn,_ﬁommowgg%m.cosw Le. (I) Van Genuchten’s equation for A(6) subject to
for K(0); mom :w_oP m =1 = 2 8%92 with Brooks and Corey’s equation
on:wmozw oM ! Mv ov Eo_.omagﬂma Fujita (1952) and Parlange et al. (1982)
! ) applied to the full r: i i . -
tions for the fitting marametets range of field soils without any restric-
Ehuwmymo_aaﬁ combination Cv w.mw the advantage of using one parameter less
T the. atter B.oanr Rm.::_sm ina straightforward optimization procedure.
mmoo_ma oM hmwdvﬂim:mw _m%m:_o:_mzu\ useful for practical application. The
ination of characteristic equations i ien

. ) . | : ; 1s more convenient for
rMoR:o& case .mE&omv as 1t can yield the solution of certain Sm_%m:%:

and/or evaporation problems in analytical form.
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Dominant events in extreme rainfall records

K.J.A. Revfeim
278 Cockayne Road, Ngaio, Wellington, New Zealand
(Received 11 March 1991; revised and accepted 19 September 1991)

ABSTRACT

Revfeim, K.J.A., 1992. Dominant events in extreme rainfall records. J. Hydrol., 134: 143-149.

A maximum rainfall over a short interval will sometimes be greater than the maximum persisting over
a longer interval. Data from this situation are usually taken as point values in the analysis of extremes but
these maxima are interpretable as upper bounds for the longer interval. Physically meaningful parameters
of a model of rainfall extremes can still be estimated from data including upper bounds, by the method of
maximum likelihood, with little loss of precision compared with the analysis of point valued data only. The
benefits of recognizing these upper bounds are an improved ordering of the estimated average number of

rainfall events with increasing event duration.

INTRODUCTION

For hydrological engineering design purposes it is necessary to obtain
estimates of the maximum water flows that a culvert or catchment outlet is
expected to accommodate over the design lifetime of the engineering works.
In the absence of flow records of streams and rivers there are well-established
methods for estimating extreme flows from catchment characteristics. These
flows are obtained from extreme rainfall accumulations over particular lead
times which characterize the catchment response (World Meteorological
Organization (WMO), 1974).

Traditional methods of analysing extreme values involve the estimation of
empirical scale and location parameters of a statistical distribution derived
from asymptotic theory. A plausible small sample theory leads to a distri-
bution with physically meaningful parameters (Revfeim, 1983) which gives
predictors of long-term extremes similar to, but simpler than, traditional
methods. However, if qualifications on the data are ignored, interpretation of
the estimated physically meaningful parameters exposes anomalies in the
parameter sequence for increasing interval lengths (duration). In particular it
may expose an increase in a parameter sequence where a decrease was

expected.
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