Basic Probability Homework

Problem 1: Rule of Complements

Suppose the probability of an event A is given by $P(A)=0.3$. Calculate the probability of the complement of event $A, P\left(A^{c}\right)$.

Solution:

Using the rule of complements, we have $P\left(A^{c}\right)=1-P(A)$. Thus, $P\left(A^{c}\right)=1-0.3=0.7$.

Problem 2: Definition of Conditional Probability

The probabilities of events A and B are given by $P(A)=0.4$ and $P(B)=0.5$, respectively. The probability of both events occurring is given by $P(A$ and $B)=0.2$. Calculate the conditional probability $P(A \mid B)$.

Solution:

Using the definition of conditional probability, we have $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$. Thus, $P(A \mid B)=\frac{0.2}{0.5}=$ 0.4.

Problem 3: Law of Total Probability

A box contains three bags: Bag 1, Bag 2, and Bag 3. Bag 1 contains 2 red and 3 green balls, Bag 2 contains 4 red and 1 green balls, and Bag 3 contains 1 red and 4 green balls. You randomly choose a bag and then randomly choose a ball from that bag. Calculate the probability of drawing a red ball.

Solution:

Let R be the event of drawing a red ball, and let B_{i} be the event of choosing Bag i. Using the law of total probability, we have:

$$
\begin{aligned}
P(R) & =P\left(R \mid B_{1}\right) P\left(B_{1}\right)+P\left(R \mid B_{2}\right) P\left(B_{2}\right)+P\left(R \mid B_{3}\right) P\left(B_{3}\right) \\
& =\frac{2}{5} \cdot \frac{1}{3}+\frac{4}{5} \cdot \frac{1}{3}+\frac{1}{5} \cdot \frac{1}{3} \\
& =\frac{2}{15}+\frac{4}{15}+\frac{1}{15} \\
& =\frac{7}{15}
\end{aligned}
$$

Problem 4: Independent Events

Given events A and B, with $P(A)=0.6, P(B)=0.7$, and $P(A$ and $B)=0.42$. Determine if events A and B are independent.

Solution:

Events A and B are independent if $P(A$ and $B)=P(A) P(B)$. We check this condition:
$P(A) \times P(B)=0.6 \times 0.7=0.42$, which is the same as $P(A$ and $B)$, so A and B are independent.

Problem 5: Conditional Probability

Let $P(A)=0.3, P(B)=0.4$, and $P(A$ and $B)=0.1$. Calculate the conditional probability $P\left(A^{c} \mid B\right)$.

Solution:

We first find $P\left(A^{c}\right.$ and $\left.B\right)$:
$P\left(A^{c}\right.$ and $\left.B\right)=P(B)-P(A$ and $B)=0.4-0.1=0.3$
Now, we can find $P\left(A^{c} \mid B\right)$:
$P\left(A^{c} \mid B\right)=\frac{P\left(A^{c} \text { and } B\right)}{P(B)}=\frac{0.3}{0.4}=0.75$

Problem 6: Law of Total Probability

A company has two warehouses (Warehouse 1 and Warehouse 2). Warehouse 1 has 60% of the total stock, while Warehouse 2 has 40% of the total stock. The probability of a damaged item in Warehouse 1 is 2%, and in Warehouse 2 it is 5%. Calculate the probability of choosing a damaged item from the company's stock.

Solution:

Let D be the event of choosing a damaged item, and let W_{i} be the event of choosing from Warehouse i. Using the law of total probability, we have:

$$
\begin{aligned}
P(D) & =P\left(D \mid W_{1}\right) P\left(W_{1}\right)+P\left(D \mid W_{2}\right) P\left(W_{2}\right) \\
& =0.02 \times 0.6+0.05 \times 0.4 \\
& =0.012+0.02 \\
& =0.032
\end{aligned}
$$

Problem 7: Conditional Probability and Independence

Given events A and B, with $P(A)=0.5, P(B)=0.6$, and $P(A$ and $B)=0.3$. Calculate the conditional probability $P(B \mid A)$ and determine if events A and B are independent.

Solution:

First, we find $P(B \mid A)$:
$P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}=\frac{0.3}{0.5}=0.6$
To check for independence, we compare $P(B)$ and $P(B \mid A)$:
$P(B)=P(B \mid A) \Longrightarrow 0.6=0.6$
Since the equality holds, events A and B are independent.

