Skip to content
A fancy and practical functional tools
Python
Branch: master
Clone or download
Latest commit f404550 Aug 4, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
docs Add @wrap_with() Jul 15, 2019
funcy Add @wrap_with() Jul 15, 2019
tests Add @wrap_with() Jul 15, 2019
.gitignore Fix python 2 tests Jul 1, 2018
.travis.yml Test against Python 3.7 Sep 29, 2018
CHANGELOG Up to 1.13 Aug 4, 2019
LICENSE Update copyright years Feb 8, 2018
MANIFEST.in Include tests in pypi sdist tarball Mar 12, 2019
README.rst Switch docs to Python 3 and polish them Sep 23, 2018
TODO.rst Update CHANGELOG and TODO Sep 24, 2018
VERSION Up to 1.13 Aug 4, 2019
setup.cfg Add wheel release May 9, 2018
setup.py Test against Python 3.7 Sep 29, 2018
test_requirements.txt Add @wrap_with() Jul 15, 2019
tox.ini Switch to ops after line break Mar 12, 2019

README.rst

Funcy Build Status Join the chat at https://gitter.im/Suor/funcy

A collection of fancy functional tools focused on practicality.

Inspired by clojure, underscore and my own abstractions. Keep reading to get an overview or read the docs. Or jump directly to cheatsheet.

Works with Python 2.6+, 3.3+ and pypy.

Installation

pip install funcy

Overview

Import stuff from funcy to make things happen:

from funcy import whatever, you, need

Merge collections of same type (works for dicts, sets, lists, tuples, iterators and even strings):

merge(coll1, coll2, coll3, ...)
join(colls)
merge_with(sum, dict1, dict2, ...)

Walk through collection, creating its transform (like map but preserves type):

walk(str.upper, {'a', 'b'})            # {'A', 'B'}
walk(reversed, {'a': 1, 'b': 2})       # {1: 'a', 2: 'b'}
walk_keys(double, {'a': 1, 'b': 2})    # {'aa': 1, 'bb': 2}
walk_values(inc, {'a': 1, 'b': 2})     # {'a': 2, 'b': 3}

Select a part of collection:

select(even, {1,2,3,10,20})                  # {2,10,20}
select(r'^a', ('a','b','ab','ba'))           # ('a','ab')
select_keys(callable, {str: '', None: None}) # {str: ''}
compact({2, None, 1, 0})                     # {1,2}

Manipulate sequences:

take(4, iterate(double, 1)) # [1, 2, 4, 8]
first(drop(3, count(10)))   # 13

lremove(even, [1, 2, 3])    # [1, 3]
lconcat([1, 2], [5, 6])     # [1, 2, 5, 6]
lcat(map(range, range(4)))  # [0, 0, 1, 0, 1, 2]
lmapcat(range, range(4))    # same
flatten(nested_structure)   # flat iter
distinct('abacbdd')         # iter('abcd')

lsplit(odd, range(5))       # ([1, 3], [0, 2, 4])
lsplit_at(2, range(5))      # ([0, 1], [2, 3, 4])
group_by(mod3, range(5))    # {0: [0, 3], 1: [1, 4], 2: [2]}

lpartition(2, range(5))     # [[0, 1], [2, 3]]
chunks(2, range(5))         # iter: [0, 1], [2, 3], [4]
pairwise(range(5))          # iter: [0, 1], [1, 2], ...

And functions:

partial(add, 1)             # inc
curry(add)(1)(2)            # 3
compose(inc, double)(10)    # 21
complement(even)            # odd
all_fn(isa(int), even)      # is_even_int

one_third = rpartial(operator.div, 3.0)
has_suffix = rcurry(str.endswith)

Create decorators easily:

@decorator
def log(call):
    print call._func.__name__, call._args
    return call()

Abstract control flow:

walk_values(silent(int), {'a': '1', 'b': 'no'})
# => {'a': 1, 'b': None}

@once
def initialize():
    "..."

with suppress(OSError):
    os.remove('some.file')

@ignore(ErrorRateExceeded)
@limit_error_rate(fails=5, timeout=60)
@retry(tries=2, errors=(HttpError, ServiceDown))
def some_unreliable_action(...):
    "..."

class MyUser(AbstractBaseUser):
    @cached_property
    def public_phones(self):
        return self.phones.filter(public=True)

Ease debugging:

squares = {tap(x, 'x'): tap(x * x, 'x^2') for x in [3, 4]}
# x: 3
# x^2: 9
# ...

@print_exits
def some_func(...):
    "..."

@log_calls(log.info, errors=False)
@log_errors(log.exception)
def some_suspicious_function(...):
    "..."

with print_durations('Creating models'):
    Model.objects.create(...)
    # ...
# 10.2 ms in Creating models

And much more.

Dive in

Funcy is an embodiment of ideas I explain in several essays:

Running tests

To run the tests using your default python:

pip install -r test_requirements.txt
py.test

To fully run tox you need all the supported pythons to be installed. These are 2.6+, 3.3+, PyPy and PyPy3. You can run it for particular environment even in absense of all of the above:

tox -e py27
tox -e py36
tox -e lint
You can’t perform that action at this time.