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Figure 2.4 Number of stops by the New York City police for each month over a 15-month 
period, for three different precincts (chosen to show different patterns in the data).
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Figure 2.5 Histograms of monthly counts of stops for the three precincts displayed in 2-4, 
with fitted Poisson distributions overlain. The data are much more variable than the fitted 
distributions, indicating overdispersion that is mild in precinct A and huge in precincts B 
and C.

Testing for the existence of a variance component

We illustrate with the example of overdispersion in the binomial or Poisson model. 
For example, the police stop-and-frisk study (see Sections 1.2, 6.2, and 15.1) includes 
data from a 15-month period. We can examine the data within each precinct to see 
if the month-to-month variation is greater than would be expected by chance.

Figure 2.4 shows the number of police stops by month, in each of three differ
ent precincts. If the data in any precinct really came from a Poisson distribution, 
we would expect the variance among the counts, var^y*, to be approximately 
equal to their mean, avgYLiVt- The ratio of variance/mean is thus a measure of 
dispersion, with var/mean = 1 indicating that the Poisson model is appropriate, 
and var/mean > 1 indicating overdispersion (and var/mean < 1 indicating under
dispersion, but in practice this is much less common). In this example, all three 
precincts are overdispersed, with variance/mean ratios well over 1.

To give a sense of what this overdispersion implies, Figure 2.5 plots histograms 
of the monthly counts in each precinct, with the best-fitting Poisson distributions 
superimposed. The observed counts are much more variable than the model in each 
case.

Underdispersion

Count data with variance less than the mean would indicate underdispersion, but 
this is rare in actual data. In the police example, underdispersion could possibly 
result from a “quota” policy in which officers are encouraged to make approximately 
the same number of stops each month. Figure 2.6 illustrates with hypothetical data 
in which the number of stops is constrained to be close to 50 each month. In this
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Figure 2.6 (a) Time series and (b) histogram of number of stops by month for a hy
pothetical precinct with underdispersed counts. The theoretical Poisson distribution (with 
parameter set to the mean of the data) is overlain on the histogram.

particular dataset, the mean is 49 and the variance is 34, and the underdispersion 
is clear in the histogram.

Multiple hypothesis testing and why we do not worry about it

A concern is sometimes expressed that if you test a large number of hypotheses, then 
you’re bound to reject some. For example, with 100 different hypothesis tests, you 
would expect about 5 to be statistically significant at the 5% level—even if ell the 
hypotheses were true. This concern is sometimes allayed by multiple comparisons 
procedures, which adjust significance levels to account for the multiplicity of tests.

From our data analysis perspective, however, we are not concerned about multiple 
comparisons. For one thing, we almost never expect any of our “point null hypothe
ses” (that is, hypotheses that a parameter equals zero, or that two parameters are 
equal) to be true, and so we are not particularly worried about the possibility of 
rejecting them too often. If we examine 100 parameters or comparisons, we expect 
about half the 50% intervals and about 5% of the 95% intervals to exclude the true 
values. There is no need to correct for the multiplicity of tests if we accept that 
they will be mistaken on occasion.

2.5 Problems with statistical significance

A common statistical error is to summarize comparisons by statistical significance 
and to draw a sharp distinction between significant and nonsignificant results. The 
approach of summarizing by statistical significance has two pitfalls, one that is 
obvious and one that is less well known.

First, statistical significance does not equal practical significance. For exa mple, 
if the estimated predictive effect of height on earnings were $10 per inch with a 
standard error of $2, this would be statistically but not practically significant. Con
versely, an estimate of $10,000 per inch with a standard error of $10,000 would not 
be statistically significant, but it has the possibility of being practically significant 
(and also the possibility of being zero; that is what “not statistically significant” 
means).

The second problem is that changes in statistical significance are not themselves 
significant. By this, we are not merely making the commonplace observation that 
any particular threshold is arbitrary—for example, only a small change is req aired 
to move an estimate from a 5.1% significance level to 4.9%, thus moving it into 
statistical significance. Rather, we are pointing out that even large changes in sig-


