
11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 1/13

The OGRE user guide
Sven Berres
11/21/2022

Abstract

OGRE calculates overlap between user defined annotated genomic region datasets. Any regions
can be supplied such as public annotations (genes), genetic variation (SNPs, mutations), regulatory
elements (TFBS, promoters, CpG islands) and basically all types of NGS output from sequencing
experiments. After overlap calculation, key numbers help analyse the extend of overlaps which can
also be visualized at a genomic level. To start OGRE’s GUI use function SHREC() in your R
console. Find additional information and tutorials on github (https://github.com/svenbioinf/OGRE/).
OGRE package version: 0.99.8

Installation
Quick start- load datasets from hard drive
Quick start- load datasets from AnnotationHub
Quick start- load user defined GenomicRanges (GRanges) datasets
Frequently asked questions

How to add additional datasets from AnnotationHub?
How to add custom GenomicRanges datasets?
How to add datasets stored as .gff files?
How to add datasets stored as tabular files?
What type of overlaps are reported?
How to change dataset names?

Session info

Installation
Install OGRE using Bioconductor’s package installer.

Load the OGRE package:

Quick start- load datasets from hard drive
To start up OGRE you have to generate an OGREDataSet that is used to store your datasets and additional
information about the analysis that you are conducting. Query and subjects files can be conveniently stored in
their own folders as GenomicRanges objects in form of stored .rds / .RDS files. We point OGRE to the correct

if(!requireNamespace("BiocManager", quietly = TRUE))

 install.packages("BiocManager")

BiocManager::install("OGRE")

library(OGRE)

https://github.com/svenbioinf/OGRE/

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 2/13

location by supplying a path for each folder with the character vectors queryFolder and subjectFolder . In
this vignette we are using lightweight query and subject example data sets to show OGRE’s functionality.

Initializing OGREDataSet...

By monitoring OGRE’s metadata information you can make sure the input paths you supplied are stored
correctly.

$queryFolder

[1] "/home/bioinf/R/x86_64-pc-linux-gnu-library/4.2/OGRE/extdata/query"

$subjectFolder

[1] "/home/bioinf/R/x86_64-pc-linux-gnu-library/4.2/OGRE/extdata/subject"

$outputFolder

[1] "/home/bioinf/R/x86_64-pc-linux-gnu-library/4.2/OGRE/extdata/output"

$gvizPlotsFolder

[1] "/home/bioinf/R/x86_64-pc-linux-gnu-library/4.2/OGRE/extdata/gvizPlots"

$summaryDT

list()

$itracks

list()

Query and subject datasets are read by loadAnnotations() and stored in the OGREDataSet as GRanges
objects. We are going to read in the following example datasets:

query “genes” (242 Protein coding genes)
subject “CGI” (365 CpG islands)
subject “TFBS” (48761 Transcription factor binding sites)

Reading query dataset...

Reading subject datasets...

OGRE uses your dataset file names to label query and subjects internally, we can check these names by using
the names() function since every OGREDataSet is a GRangesList .

myQueryFolder <- file.path(system.file('extdata', package = 'OGRE'),"query")

mySubjectFolder <- file.path(system.file('extdata', package = 'OGRE'),"subject")

myOGRE <- OGREDataSetFromDir(queryFolder=myQueryFolder,

 subjectFolder=mySubjectFolder)

metadata(myOGRE)

myOGRE <- loadAnnotations(myOGRE)

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 3/13

[1] "genes" "CGI" "TFBS"

Let’s have a look at the stored datasets:

names(myOGRE)

myOGRE

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 4/13

GRangesList object of length 3:

$genes

GRanges object with 242 ranges and 3 metadata columns:

seqnames ranges strand | ID name

<Rle> <IRanges> <Rle> | <character> <character>

[1] 21 10906201-11029719 - | ENSG00000166157 TPTE

[2] 21 14741931-14745386 - | ENSG00000256715 AL050302.1

[3] 21 14982498-15013906 + | ENSG00000166351 POTED

[4] 21 15051621-15053459 - | ENSG00000269011 AL050303.1

[5] 21 15481134-15583166 - | ENSG00000188992 LIPI

...

[238] 21 47720095-47743789 - | ENSG00000160298 C21orf58

[239] 21 47744036-47865682 + | ENSG00000160299 PCNT

[240] 21 47878812-47989926 + | ENSG00000160305 DIP2A

[241] 21 48018875-48025121 - | ENSG00000160307 S100B

[242] 21 48055079-48085036 + | ENSG00000160310 PRMT2

score

<numeric>

[1] NA

[2] NA

[3] NA

[4] NA

[5] NA

... ...

[238] NA

[239] NA

[240] NA

[241] NA

[242] NA

seqinfo: 25 sequences (1 circular) from hg19 genome

$CGI

GRanges object with 365 ranges and 3 metadata columns:

seqnames ranges strand | ID name score

<Rle> <IRanges> <Rle> | <character> <character> <numeric>

[1] 21 9437273-9439473 * | 26635 CpG:_285 NA

[2] 21 9483486-9484663 * | 26636 CpG:_165 NA

[3] 21 9647867-9648116 * | 26637 CpG:_18 NA

[4] 21 9708936-9709231 * | 26638 CpG:_31 NA

[5] 21 9825443-9826296 * | 26639 CpG:_120 NA

...

[361] 21 48018543-48018791 * | 26995 CpG:_21 NA

[362] 21 48055200-48056060 * | 26996 CpG:_88 NA

[363] 21 48068518-48068808 * | 26997 CpG:_24 NA

[364] 21 48081242-48081849 * | 26998 CpG:_55 NA

[365] 21 48087201-48088106 * | 26999 CpG:_93 NA

seqinfo: 25 sequences (1 circular) from hg19 genome

$TFBS

GRanges object with 48761 ranges and 3 metadata columns:

seqnames ranges strand | ID name

<Rle> <IRanges> <Rle> | <character> <character>

[1] 21 29884415-29884427 + | GATA1.85108 GATA1_04

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 5/13

[2] 21 46923766-46923780 + | CDP.81529 CDP_02

[3] 21 9491627-9491638 - | HFH1.46541 HFH1_01

[4] 21 9491706-9491725 - | PPARA.24892 PPARA_01

[5] 21 9491792-9491815 + | GFI1.35413 GFI1_01

...

[48757] 21 48083381-48083404 + | STAT5A.43326 STAT5A_02

[48758] 21 48083400-48083419 + | ARNT.19751 ARNT_02

[48759] 21 48084826-48084841 + | BRN2.40426 BRN2_01

[48760] 21 48084830-48084847 + | FOXJ2.121681 FOXJ2_01

[48761] 21 48084834-48084845 + | NKX3A.47953 NKX3A_01

score

<numeric>

[1] 891

[2] 831

[3] 865

[4] 757

[5] 817

... ...

[48757] 751

[48758] 792

[48759] 803

[48760] 889

[48761] 851

seqinfo: 25 sequences (1 circular) from hg19 genome

To find overlaps between your query and subject datasets we call fOverlaps() . Internally OGRE makes use
of the GenomicRanges package to calculate full and partial overlap as schematically shown.

Any existing subject - query hits are then listed in detailDT and stored as a data.table .

queryID queryType subjID subjType queryChr queryStart queryEnd

1: ENSG00000166157 genes 26649 CGI 21 10906201 11029719

2: ENSG00000269011 genes 26654 CGI 21 15051621 15053459

queryStrand subjChr subjStart subjEnd subjStrand overlapWidth overlapRatio

1: - 21 10989914 10991413 * 1500 0.01214388

2: - 21 15052411 15052644 * 234 0.12724307

The summary plot provides us with useful information about the number of overlaps between your datasets.

myOGRE <- fOverlaps(myOGRE)

head(metadata(myOGRE)$detailDT,n=2)

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 6/13

Using the Gviz visualization each query can be displayed with all overlapping subject elements. Choose
labels for all region tracks by supplying a trackRegionLabels vector. Plots are stored in the same location
as your dataset files.

Plotting query: ENSG00000142168

 myOGRE <- sumPlot(myOGRE)

 metadata(myOGRE)$barplot_summary

 myOGRE <- gvizPlot(myOGRE,"ENSG00000142168",showPlot = TRUE,

 trackRegionLabels = setNames(c("name","name"),c("genes","CGI")))

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 7/13

The overlap distribution can be generated with summarizeOverlap(myOGRE) and outputs a table with
informative statistics such as minimum, lower quantile, mean, median, upper quantile, and maximum number
of overlaps per region and per dataset. Overlap distribution can also be displayed as histograms using
plotHist(myOGRE) and accessed by metadata(myOGRE)$hist and metadata(myOGRE)$summaryDT . Two

tables / plots are generated. The first one showing numbers for regions with and without overlap and the
second one showing numbers only for regions with overlap by excluding all others. Next, we generate an
histogram with the number of TFBS per gene (x-axis, log scale) and the TFBS frequency (y-axis). When
focusing only on regions with overlap, we see that genes have on average (median) 54 TFBS overlaps (black
dashed line).

 myOGRE <- summarizeOverlap(myOGRE)

 myOGRE <- plotHist(myOGRE)

 metadata(myOGRE)$summaryDT

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 8/13

$includes0

CGI TFBS

Min. 0.000000 0.0000

1st Qu. 0.000000 8.0000

Median 1.000000 36.0000

Mean 1.210744 119.6116

3rd Qu. 1.750000 129.7500

Max. 14.000000 3136.0000

$excludes0

CGI TFBS

Min. 1.00000 1.0000

1st Qu. 1.00000 15.0000

Median 1.00000 54.0000

Mean 2.02069 139.8357

3rd Qu. 2.00000 159.5000

Max. 14.00000 3136.0000

NA's 97.00000 35.0000

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

It is possible to create an average coverage profile of all gene-TFBS overlaps, split in 100 bins, which
represent gene bodies of all 242 genes. Both, forward and reverse coding genes are arranged on the x-Axis
and peaks indicate an TFBS overlap enrichment. Overlap coverage is calculated as the sum of all gene TFBS

 metadata(myOGRE)$hist$TFBS

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 9/13

overlaps in 5’-3’direction. Generated plots can be accessed by metadata(myOGRE)$covPlot$TFBS and the
resulting profile shows an accumulation of TFBS around gene start and end positions.

Generating coverage plot(s), this might take a while...

Excluding regions with nucleotides<nbin

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Quick start- load datasets from
AnnotationHub
AnnotationHub offers a wide range of annotated datasets which can be manually aquired but need some
parsing to work with OGRE as detailed in vignette section Frequently Asked Questions(FAQ). For convenience
addDataSetFromHub() adds one of the predefined human datasets of listPredefinedDataSets() to an

OGREDataSet. Those are taken from AnnotationHub and are ready to use for OGRE. We start by creating an
empty OGREDataSet and attaching one dataset after another, whereby one query and two subjects are
added. The datasets are now ready for further analysis.

 myOGRE <- covPlot(myOGRE)

 metadata(myOGRE)$covPlot$TFBS$plot

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 10/13

As you can see, the three datasets proteinCodingGenes, CGI and TFBS are stored within OGRE. You can
then continue with overlap analysis using fOverlaps() .

Quick start- load user defined
GenomicRanges (GRanges) datasets
To offer more flexibility addGRanges() enables the user to attach additional datasets to OGRE in form of
GenomicRanges objects. Again we start by creating an empty OGREDataSet and generate an example
GenomicRanges object which is then added to your OGREDataSet either as “query” or “subject”.

Frequently asked questions
How to add additional datasets from
AnnotationHub?
Use AnnotationHub() to connect to AnnotationHub. Each dataset is stored under a unique ID and can be
accessed in a list like fashion i.e. aH[["AH5086"]] . Queries like c("GRanges","Homo sapiens", "CpG")
enable browsing through datasets. In this case we are searching for human CpG islands ranges stored as
GenomicRanges objects. For more information refer to ?AnnotationHub To make those datasets compatible
with OGRE additional parsing is needed as stated in How to add custom GenomicRanges datasets?

How to add custom GenomicRanges datasets?
Any GenomicRanges datasets can be added that fulfill basic compatibility requirements. GenomicRanges
objects must:

Originate from a common genome build i.e. “HG19”

Use GenomeInfoDb::genome() on any GenomicRanges object to get/set genome information

Contain the same set of chromosomes i.e. chr1 != 1 or chrM != MT

Use GenomeInfoDb::seqinfo() on any GenomicRanges object to get/set chromosome information

Contain a “name” and a (unique) “ID” column

myOGRE <- OGREDataSet()

listPredefinedDataSets()

myOGRE <- addDataSetFromHub(myOGRE,"protCodingGenes","query")

myOGRE <- addDataSetFromHub(myOGRE,"CGI","subject")

myOGRE <- addDataSetFromHub(myOGRE,"TFBS","subject")

names(myOGRE)

myOGRE <- OGREDataSet()

myGRanges <- makeExampleGRanges()

myOGRE <- addGRanges(myOGRE,myGRanges,"query")

aH <- AnnotationHub()

aH[["AH5086"]]

q <- query(aH, c("GRanges","Homo sapiens", "CpG"))

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 11/13

Use S4Vectors::mcols() on any GenomicRanges object to get/set metadata information

How to add datasets stored as .gff files?
Datasets from external sources are often stored as .gff (v2&v3) files. Once those files exist in the query or
subject folder and their attribute columns contain “ID” and “name” information, OGRE tries to load them.
Working example .gff files can be found on OGRE’s github page (https://github.com/svenbioinf/OGRE) in
folder: inst/extdata/gffTest.

How to add datasets stored as tabular files?
Datasets stored as tabular files like .csv or .bed may need some preprocessing for them work with OGRE. We
recommend reading them in with read.table() or data.table::fread() to obtain a data frame object.
After making sure the dataset complies with the requirements in section How to add custom GenomicRanges
datasets?, GenomicRanges::makeGRangesFromDataFrame() offers a convenient way to generate
GenomicRanges object from data frames.

What type of overlaps are reported?
Both, partial overlap, where only a part of two (or more) regions are overlapping and complete overlap, where
one region is completely overlapped by another, are reported.

How to change dataset names?
OGRE automatically infers dataset names based on your file names. You can either change your file names
before you start OGRE or you can use names(myOGRE) <- c("NewName1", "NewName2","...") after you
read in your datasets.

Session info

myOGRE <- OGREDataSetFromDir(queryFolder = "pathToQueryFolder",

 subjectFolder = "pathToSubjectFolder")

myOGRE <- loadAnnotations(myOGRE)

sessionInfo()

https://github.com/svenbioinf/OGRE

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 12/13

R version 4.2.0 (2022-04-22)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Linux Mint 19

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=de_DE.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] GenomeInfoDb_1.32.4 IRanges_2.30.1 OGRE_0.99.8

[4] S4Vectors_0.34.0 BiocGenerics_0.42.0

loaded via a namespace (and not attached):

[1] backports_1.4.1 Hmisc_4.7-1

[3] AnnotationHub_3.4.0 systemfonts_1.0.4

[5] BiocFileCache_2.4.0 lazyeval_0.2.2

[7] shinydashboard_0.7.2 splines_4.2.0

[9] BiocParallel_1.30.3 ggplot2_3.3.6

[11] digest_0.6.29 ensembldb_2.20.2

[13] htmltools_0.5.3 fansi_1.0.3

[15] magrittr_2.0.3 checkmate_2.1.0

[17] memoise_2.0.1 BSgenome_1.64.0

[19] cluster_2.1.3 shinyFiles_0.9.3

[21] Biostrings_2.64.1 matrixStats_0.62.0

[23] prettyunits_1.1.1 jpeg_0.1-9

[25] colorspace_2.0-3 blob_1.2.3

[27] rappdirs_0.3.3 textshaping_0.3.6

[29] xfun_0.33 dplyr_1.0.10

[31] crayon_1.5.1 RCurl_1.98-1.8

[33] jsonlite_1.8.0 survival_3.2-13

[35] VariantAnnotation_1.42.1 glue_1.6.2

[37] gtable_0.3.1 zlibbioc_1.42.0

[39] XVector_0.36.0 DelayedArray_0.22.0

[41] scales_1.2.1 DBI_1.1.3

[43] Rcpp_1.0.9 xtable_1.8-4

[45] progress_1.2.2 htmlTable_2.4.1

[47] foreign_0.8-82 bit_4.0.4

[49] Formula_1.2-4 DT_0.25

[51] htmlwidgets_1.5.4 httr_1.4.4

[53] RColorBrewer_1.1-3 ellipsis_0.3.2

[55] farver_2.1.1 pkgconfig_2.0.3

[57] XML_3.99-0.10 Gviz_1.40.1

[59] nnet_7.3-18 sass_0.4.2

11/21/22, 3:21 PM The OGRE user guide

file:///home/bioinf/Downloads/The OGRE user guide.html 13/13

[61] dbplyr_2.2.1 deldir_1.0-6

[63] utf8_1.2.2 labeling_0.4.2

[65] tidyselect_1.1.2 rlang_1.0.5

[67] later_1.3.0 AnnotationDbi_1.58.0

[69] munsell_0.5.0 BiocVersion_3.15.2

[71] tools_4.2.0 cachem_1.0.6

[73] cli_3.4.0 generics_0.1.3

[75] RSQLite_2.2.17 evaluate_0.16

[77] shinyBS_0.61.1 stringr_1.4.1

[79] fastmap_1.1.0 yaml_2.3.5

[81] ragg_1.2.4 knitr_1.40

[83] bit64_4.0.5 fs_1.5.2

[85] purrr_0.3.4 KEGGREST_1.36.3

[87] AnnotationFilter_1.20.0 nlme_3.1-157

[89] mime_0.12 xml2_1.3.3

[91] biomaRt_2.52.0 compiler_4.2.0

[93] rstudioapi_0.14 filelock_1.0.2

[95] curl_4.3.2 png_0.1-7

[97] interactiveDisplayBase_1.34.0 tibble_3.1.8

[99] bslib_0.4.0 stringi_1.7.8

[101] highr_0.9 GenomicFeatures_1.48.3

[103] lattice_0.20-45 ProtGenerics_1.28.0

[105] Matrix_1.4-1 vctrs_0.4.1

[107] pillar_1.8.1 lifecycle_1.0.2

[109] BiocManager_1.30.18 jquerylib_0.1.4

[111] data.table_1.14.2 bitops_1.0-7

[113] httpuv_1.6.6 rtracklayer_1.56.1

[115] GenomicRanges_1.48.0 R6_2.5.1

[117] BiocIO_1.6.0 latticeExtra_0.6-30

[119] promises_1.2.0.1 gridExtra_2.3

[121] codetools_0.2-18 dichromat_2.0-0.1

[123] assertthat_0.2.1 SummarizedExperiment_1.26.1

[125] rjson_0.2.21 GenomicAlignments_1.32.1

[127] Rsamtools_2.12.0 GenomeInfoDbData_1.2.8

[129] mgcv_1.8-40 parallel_4.2.0

[131] hms_1.1.2 grid_4.2.0

[133] rpart_4.1.16 tidyr_1.2.1

[135] rmarkdown_2.17 MatrixGenerics_1.8.1

[137] biovizBase_1.44.0 Biobase_2.56.0

[139] shiny_1.7.2 base64enc_0.1-3

[141] interp_1.1-3 restfulr_0.0.15

