Skip to content

swarupchandra/secure-analytics-sgx

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
App
 
 
 
 
 
 
 
 
 
 

Securing Data Analytics on SGX with Randomization

Details can be found in here.

Project:

  1. App/App.cpp contains the untrusted code.
  2. Enclave/Analytics/ contain the data analytics used in various experiments in the paper.

Settings (in App/App.cpp):

  1. basedir: Directory of input data files.
  2. Experiments settings on chunk/minibatch size, proportion of dummy data instances, number of clusters in K-Means clustering.
  3. Class label prediction analytics include Decision Tree, Naive Bayes and K-means. Each classifier can be run by choosing appropriate code, as given in App.cpp under ocall_manager function.

How to Build/Execute the Code

  1. Install Intel(R) SGX SDK for Linux* OS
  2. Specify data directory in basedir of App/App.cpp.
  3. Also specify appropriate settings in App/App.cpp file.
  4. Build the project with the prepared Makefile: a. Hardware Mode, Debug build: $ make SGX_MODE=HW SGX_DEBUG=1 b. Hardware Mode, Pre-release build: $ make SGX_MODE=HW SGX_PRERELEASE=1 c. Hardware Mode, Release build: $ make SGX_MODE=HW d. Simulation Mode, Debug build: $ make SGX_DEBUG=1 e. Simulation Mode, Pre-release build: $ make SGX_PRERELEASE=1 f. Simulation Mode, Release build: $ make
  5. Execute the binary directly: $ ./app

About

Securing Data Analytics on Intel SGX using Randomization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published