
eIDAS - Cryptographic requirements for the
Interoperability Framework

TLS and SAML

Version 1.2 – Final

23. Mai 2019

Table of Contents

1 Introduction..3

1.1 Key Words...3

2 Requirements for TLS..3

2.1 TLS version...3

2.2 Cipher Suites..3

2.3 Elliptic curves..4

2.4 Certificates...4

2.5 Domain parameters, keys and random numbers..4

2.6 Additional requirements and recommendations..5

3 Requirements for SAML..5

3.1 General requirements...6

3.1.1 Hash functions..6

3.2 XML Encryption with SAML..6

3.2.1 Content Encryption...6

3.2.2 Key Encryption...6

3.3 Signatures for SAML and SAML Metadata..7

3.3.1 Signature Algorithms..7

3.4 Elliptic curves..8

3.5 X.509 Certificates..8

3.5.1 Certificates for SAML Metadata...8

3.5.2 Certificates for SAML communication...8

2

1 Introduction

Within the eIDAS Interoperability Framework [1], communication between eIDAS nodes (i.e.
eIDAS-Services and eIDAS-Connectors) is performed via the citizen's browser. Here, the content of
the communication between eIDAS nodes is performed using cryptographically protected SAML
messages. To secure the transport layer of this communication between these components and the
citizen's browser, TLS is used.

This document specifies cryptographic requirements for the protection of the SAML
communication as well as on the usage of TLS within this communication.

1.1 Key Words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119. The key word "CONDITIONAL" is to be interpreted as
follows:

CONDITIONAL: The usage of an item is dependent on the usage of other items. It is therefore
further qualified under which conditions the item is REQUIRED or RECOMMENDED.

2 Requirements for TLS

Transport Layer Security (TLS) [2], formerly also known as Secure Socket Layer (SSL), is a
protocol to protect the communication over the Internet, e.g. connection via HTTP (HTTPS).
During TLS, a secure connection between the Client and the Server is negotiated.

As part of the establishment (handshake) of a TLS session, both parties negotiate the encryption and
authentication algorithms (cipher suite) and the keys to be used during the session.

Within the context of the cross-border setting of the interoperability framework, the client is usually
the citizen's browser, while the server is an eIDAS node. Here, the server has to authenticate to the
client based on X.509 certificates.

In the following, minimal cryptographic requirements for the TLS building blocks are specified, i.e.
the version of the TLS protocol, the cipher suites and crypto primitives as domain parameters, key
lengths and certificates to be used by eIDAS nodes.

The security requirements given in following aim to provide a security level of at least 100 bit.

2.1 TLS version

eIDAS nodes MUST use TLS 1.2. Prior TLS versions MUST NOT be accepted.

2.2 Cipher Suites

eIDAS nodes MUST only use cipher suites that provide perfect forward secrecy. It is
RECOMMENDED to use a cipher suite from the following table for the TLS handshake.

3

Key agreement and
authentication
mechanisms

Encryption
Mode of

operation
Hash

TLS_

ECDHE_ECDSA_ WITH_

AES_128_
CBC_
GCM_

SHA256

AES_256_ CBC_
GCM_

SHA384

ECDHE_RSA_ WITH_

AES_128_
CBC_
GCM_

SHA256

AES_256_ CBC_
GCM_

SHA384

DHE_RSA_ WITH_

AES_128_
CBC_
GCM_

SHA256

AES_256_
CBC_ SHA256

GCM_ SHA384

Table 1: Recommended Cipher Suites

If the usage of one of these cipher suites is not possible due to restrictions of the client's browser, an
eIDAS node SHOULD also accept a cipher suite of the table above with *_SHA1 instead of
*_SHA-256 or *_SHA384. However, eIDAS nodes MUST prefer the cipher suites given in table 1.

Other cipher suites than the ones listed above SHALL NOT be accepted by eIDAS nodes.

2.3 Elliptic curves

If Elliptic Curve Cryptography (ECC) is used for TLS, named curves MUST be used. It is
RECOMMENDED to support the following named curves and to use one of them (if supported by
the browser):

• BrainpoolP256r1, BrainpoolP384r1, BrainpoolP512r1 (cf. [3]);

• NIST Curve P-224, NIST Curve P-256, NIST Curve P-384, NIST Curve P-521 (cf. [4]).

Elliptic curves with a key length less than 224 bit MUST NOT be accepted.

2.4 Certificates

Until 2017, eIDAS nodes MUST use extended validation certificates or qualified website
certificates1 for TLS. As of 2018, newly issued TLS certificates for eIDAS nodes MUST be
qualified.

2.5 Domain parameters, keys and random numbers

eIDAS nodes SHALL use the following key lengths for ephemeral keys during the TLS handshake:

1 Cf. Article 45 of the eIDAS Regulation.

4

Protocol Minimal Key length

ECDH 256

DH 2048

Table 2: Key lengths for TLS

To provide acceptable security of a TLS session, it is REQUIRED that random numbers (for nonces
or ephemeral keys) to be used within the TLS handshake are generated with cryptographically
secure random number generators that provide sufficient entropy (according to the security level of
100 bits).

2.6 Additional requirements and recommendations

If the client indicates support for signature algorithms with a SHA-2 hash function for the signature
algorithm to be used, eIDAS nodes SHALL use this hash function for signatures within the
handshake (and not SHA-1).

Furthermore, the following recommendations for the deployment of TLS are given:

• TLS compression SHOULD NOT be used.

• The heartbeat extension SHOULD NOT be used (cf. [5]).

• If a CBC-based cipher suite is used, it is RECOMMENDED to first encrypt and then
authenticate the data to be transmitted. Hence, eIDAS nodes SHOULD support and use the
Enc-then-MAC extension according to [6].

• Session Renegotiation SHOULD NOT be used.

• eIDAS nodes SHOULD NOT use a truncated HMAC (cf. truncated_hmac extension, [7]).

3 Requirements for SAML

The Security Assertion Markup Language (SAML) is a XML framework for the exchange of
authentication information that is used within the eIDAS Interoperability Framework for the
communication between eIDAS nodes.

SAML is used, to protect

• confidentiality of the person identification data,

• authenticity/integrity of the person identification data, and

• secure identification of communication end-points.

SAML uses XML Encryption and XML Signatures based on authentication via X.509 certificates
according to [8].

Furthermore, eIDAS-Connectors and eIDAS-Proxy-Services need to provide metadata about their
node. This is done via signed SAML Metadata, that has to be validated up to a published trust
anchor.

In the following, we specify security requirements for the deployment of SAML that provide a
security level of at least 120 bit. Besides the provision of a suitable security level, the proposal also

5

aims to achieve interoperability between different eIDAS nodes.

3.1 General requirements

The following rules MUST apply to the SAML communication between eIDAS nodes:

• SAML request and SAML response messages MUST be signed by the sending party.

• The signature of a SAML assertion is OPTIONAL.

• The (signed) SAML assertion within the SAML response message MUST be encrypted.

Ephemeral keys or random numbers (for nonces or generation of ephemeral keys) SHALL be used
only once. It is REQUIRED that random numbers to be used within SAML are generated with
cryptographically secure random number generators that provide sufficient entropy (according to
the security level of 120 bits).

3.1.1 Hash functions

In XML Encryption/Signature, hash function are used for different purposes (e.g. key derivation,
signatures). The following hash functions MUST be supported.

Algorithm Minimal output length

SHA-2 256

Table 3: Hash function for SAML

Other hash functions than listed above SHALL NOT be used or accepted.

3.2 XML Encryption with SAML

To protect the confidentiality of data, a hybrid crypto system is used. The content MUST be
encrypted via symmetric cryptography (Content Encryption) and the corresponding symmetric key
(Session Key) MUST be randomly generated for each transmission. A static public key of the
receiver MUST be used to encrypt the session key (Key Encryption).

3.2.1 Content Encryption

For content encryption, algorithms of the following list MUST be supported:

• http://www.w3.org/2009/xmlenc11#aes128-gcm

• http://www.w3.org/2009/xmlenc11#aes256-gcm

Additionally, the following algorithms MAY be supported:

• http://www.w3.org/2009/xmlenc11#aes192-gcm

Other algorithms than listed above SHALL NOT be used or accepted for content encryption.

3.2.2 Key Encryption

To encrypt the session key for content encryption, either key transport or key agreement
mechanisms MUST be used. eIDAS-Services MUST support both key encryption mechanisms. In
case of key transport, the session key is asymmetrically encrypted using the public key of the

6

http://www.w3.org/2009/xmlenc11#aes192-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes128-gcm

receivers X.509 certificate. If key agreement is applied, the sender derives a symmetric key pair by
means of a ECDH key agreement using an ephemeral key pair and the static public key contained in
the receivers X.509 certificate. The derived symmetric key is then used to wrap the session key.

3.2.2.1 Methods for key transport

The following methods and key lengths MUST be supported for key transport. One of the methods
MUST be used.

Protocol/Algorithm Minimal key length

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p 3072

http://www.w3.org/2009/xmlenc11#rsa-oaep 3072

Table 4: Algorithms for key transport

Other algorithms or key lengths than listed above SHALL NOT be accepted for key transport.

3.2.2.2 Methods for key agreement

The following methods and key lengths MUST be supported for encryption of session keys via key
agreement. One of the methods MUST be used.

Protocol/Algorithm Minimal key length

Key agreement

http://www.w3.org/2009/xmlenc11#ECDH-ES 256

Key wrapping algorithm

http://www.w3.org/2001/04/xmlenc#kw-aes128 128

http://www.w3.org/2001/04/xmlenc#kw-aes256 256

Table 5: Key Agreement Algorithms for SAML

For derivation of the symmetric key for key encryption a hash function as specified above MUST
be used. The sender MUST generate a new ephemeral public key for each new message to be sent.
However, the receiver MUST support additional ephemeral data (KA-Nonce element) to be
included into the derivation of the key encryption key.

3.3 Signatures for SAML and SAML Metadata

This section specifies the requirements for signatures of SAML assertions, SAML messages and
SAML Metadata.

3.3.1 Signature Algorithms

The following algorithms MUST be supported for the generation/verification of signatures. One of
the algorithms MUST be used.

Algorithm Minimal key length

RSASSA-PSS [9]

http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1 3072

7

http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#rsa-oaep
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Algorithm Minimal key length

http://www.w3.org/2007/05/xmldsig-more#sha384-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha512-rsa-MGF1

ECDSA [9]

http://www.w3.org/ 2001/04/xmldsig-more#ecdsa-
sha256 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512

256

Table 6: Signature Algorithms for SAML

Within the signature algorithm, a hash function as specified above MUST be used. Other algorithms
or key lengths than listed above SHALL NOT be accepted.

3.4 Elliptic curves

If Elliptic Curve Cryptography (ECC) is used within SAML, only named curves MUST be used. It
is RECOMMENDED to support the following named curves:

• BrainpoolP256r1, BrainpoolP384r1, BrainpoolP512r1 ([10]);

• NIST Curve P-256, NIST Curve P-384, NIST Curve P-521 ([11])

Elliptic curves with a key length less than 256 bit SHALL NOT be accepted.

3.5 X.509 Certificates

3.5.1 Certificates for SAML Metadata

The algorithms and keys for the signature of certificates within the certificate chain to verify the
SAML Metadata MUST fulfill the following requirements.

Algorithm Minimal key length Minimal hash length

RSASSA-PSS [12] 3072 Bit 256 Bit

ECDSA [13] 256 Bit 256 Bit

Table 7: Signature of Certificates

3.5.2 Certificates for SAML communication

The authoritative references for X.509 certificates used for protection of SAML messages are the
key representation elements in SAML metadata (cf. [14]). X.509 Certificates used for SAML
communication SHOULD contain information on the key usage within the key usage extension. For
different purposes (encryption vs signature), different certificates containing different keys SHALL
be used.

8

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2007/05/xmldsig-more#sha512-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha384-rsa-MGF1

References
[1] eIDAS Technical Subgroup: eIDAS Interoperability Architecture

[2] IETF: RFC 5246: T. Dierks, E. Rescorla: The Transport Layer Security (TLS) Protocol
Version 1.2

[3] IETF: RFC 7027: J. Merkle, M. Lochter: Elliptic Curve Cryptography (ECC) Brainpool
Curves for Transport Layer Security (TLS)

[4] IETF: RFC 4492: S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, B. Moeller: Elliptic
Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)

[5] IETF: RFC 6520: R. Seggelmann, M. Tuexen, M. Williams, Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS) Heartbeat Extension, 2012

[6] IETF: RFC 7366: P. Gutmann, Encrypt-then-MAC for Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS), 2014

[7] D. Eastlake, Transport Layer Security (TLS) Extensions: Extension Definitions, 2011

[8] IETF: RFC 5280: D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk:
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

[9] IETF: RFC 6931: D. Eastlake, Additional XML Security Uniform Resource Identifiers, 2013

[10] IETF: RFC 5639: M. Lochter, J. Merkle, Elliptic Curve Cryptography (ECC) Brainpool
Standard Curves and Curve Generation

[11] IETF: RFC 5480: S. Turner, D.Brown, K. Yiu, R. Housley, T. Polk, Elliptic Curve
Cryptography Subject Public Key Information, 2009

[12] IETF: RFC 4055: J, Schaad, B. Kaliski, R. Housley, Additional Algorithms and Identifiers
for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, 2005

[13] IETF: RFC 5758: Q. Dang, S. Santesson, K. Moriarty, D. Brown, T.Polk, Internet X.509
Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA, 2010

[14] eIDAS Technical Subgroup: eIDAS Message Format

9

10

	1 Introduction
	1.1 Key Words

	2 Requirements for TLS
	2.1 TLS version
	2.2 Cipher Suites
	2.3 Elliptic curves
	2.4 Certificates
	2.5 Domain parameters, keys and random numbers
	2.6 Additional requirements and recommendations

	3 Requirements for SAML
	3.1 General requirements
	3.1.1 Hash functions

	3.2 XML Encryption with SAML
	3.2.1 Content Encryption
	3.2.2 Key Encryption
	3.2.2.1 Methods for key transport
	3.2.2.2 Methods for key agreement

	3.3 Signatures for SAML and SAML Metadata
	3.3.1 Signature Algorithms

	3.4 Elliptic curves
	3.5 X.509 Certificates
	3.5.1 Certificates for SAML Metadata
	3.5.2 Certificates for SAML communication

