
Ahnjae Shin, Dong-Jin Shin, Sungwoo Cho, Do Yoon Kim, Eunji Jeong, Gyeong-In Yu, Byung-Gon Chun

Seoul National University

Stage-based Hyper-parameter Optimization 
for Deep Learning

Software Platform Lab

Stage-based Execution

Main features:
1. spilt & merge hyper-parameter sequences
2. automatically save & restore checkpoints
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Hyper-parameter trials Same search space in StageTree Previous systems: Trial-based Execution

Our system: Stage-based Execution

Evaluation

•Python + gRPC + Docker Implementation
•20 NVIDIA GeForce TITAN Xp GPU 
•CIFAR-10 (40K/10K/10K split)
•Tune learning rate for Grid Search / SHA
•Tune batch size for ASHA

End-to-end time GPU-hour

•Resnet-20: test error 8.24% with 4/5 of training 
data (original ResNet-20 report 8.75%)
up to 5.73x save of GPU-hour
•WideResNet 16-4: test error 5.2% (original 5.6%) 
up to 6.6x save of GPU-hour

Hyper-parameter Tuning as a Job

GPU Cluster
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Hyper-parameters are Sequences
Observation: State-of-the-art DL use Hyper-parameter as sequences

Returns trial results

4.19 times

Reduce GPU hour

6.60 times

0

5

10

E
n

d
-t

o
-e

n
d

 t
im

e
 (

h
o

u
r)

Stage Trial

ASHA (WideResNet 16-4)
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Stage Trial

ASHA (WideResNet 16-4)Grid Search (ResNet-20) SHA (ResNet-20)

x6.60x3.49 x5.73

275.13

219.32

33.23

61.08

10.66

learning-rate, drop-out ratio, optimizer, momentum, batch 
size, image augmentation parameters, training image input 

size, input sequence length, network architecture parameters 

Idea: Different sequences may have same prefix

à Each value has different behavior, use sequences for hybrid approach
à Such hyper-parameter sequences are parameterized

E.g. Learning rate schedule functions

• Most sequences are piece-wise constant
• Continuous-valued sequence (learning-rate) is also eligible for merging

E.g. Warm-up, Cyclic learning rate
• When there is no mergeable configurations, still behave similarly to 

existing systems

HP optimization job train multiple trials
Trials have common prefixes.
Common prefixes are merged to build a tree

Merged stages can be trained only once 
è Computation reuse happens

Each stage is homogenous from system 
perspective

Reuse container Reuse process Just-fit resource allocation
• Each task in hyper-parameter tuning job 

have same environment
• System maintains its worker pool, and reuse 

container whenever it could

• Stages have homogenous resource usage.
• When resource requirement changes, 

system adjusts allocated resource.
à Used to achieve x6.6 gain in GPU-hours

Worker
Pool

Executor

• Checkpoint overhead can be mitigated 
by continuing training in same process

• Stages are scheduled workers so that 
reusing can be maximized

Bad:            à Good:            à Trial 
based

Stage 
based
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Future Work
1. Evaluate with other models / datasets using 
various hyper-parameters. Expect larger gains

Continuous-valued sequences
Data augmentation / Network architecture

2. Multi-study optimization
Merging trials between multiple studies
Cooperation between multiple studies
Meta-learning between multiple studies

3. New hyper-parameter optimization algorithm
Algorithm that can maximize use of StageTree
Algorithm that exploit multi-study use case

Do you have any troubles in hyper-parameter tuning? 
Let us know J


