
Ahnjae Shin, Dong-Jin Shin, Sungwoo Cho, Do Yoon Kim, Eunji Jeong, Gyeong-In Yu, Byung-Gon Chun

Seoul National University

Stage-based Hyper-parameter Optimization
for Deep Learning

Software Platform Lab

Stage-based Execution

Main features:
1. spilt & merge hyper-parameter sequences
2. automatically save & restore checkpoints

G

G

time

B

A

A

EB

BCA

A

D

G

G

A1 A2

B1

E D

B2 F

time

Hyper-parameter trials Same search space in StageTree Previous systems: Trial-based Execution

Our system: Stage-based Execution

Evaluation

•Python + gRPC + Docker Implementation
•20 NVIDIA GeForce TITAN Xp GPU
•CIFAR-10 (40K/10K/10K split)
•Tune learning rate for Grid Search / SHA
•Tune batch size for ASHA

End-to-end time GPU-hour

•Resnet-20: test error 8.24% with 4/5 of training
data (original ResNet-20 report 8.75%)
up to 5.73x save of GPU-hour
•WideResNet 16-4: test error 5.2% (original 5.6%)
up to 6.6x save of GPU-hour

Hyper-parameter Tuning as a Job

GPU Cluster

User Algorithm AutoML System…

Our
System

RM

Study

Trial

Stage

Submit trials to system

StageTree

queue

Estimator

Reduce E2E time

Executor

Worker Pool

Metric
Aggregator

B: 0.05

A: 0.1

E: 0.01

B: 0.05

C: 0.02

epoch

Trial 1

Trial 2

Trial 3

Trial 4

A: 0.1

A: 0.1

D: 0.01

0 10 20 30

A: 0.1

B: 0.05

A1

B2

D

C

A2

B1

E Trial 1

Trial 2

Trial 3

Trial 4

Hyper-parameters are Sequences
Observation: State-of-the-art DL use Hyper-parameter as sequences

Returns trial results

4.19 times

Reduce GPU hour

6.60 times

0

5

10

E
n

d
-t

o
-e

n
d

 t
im

e
 (

h
o

u
r)

Stage Trial

ASHA (WideResNet 16-4)

x4.19

4.68

Grid Search (ResNet-20) SHA (ResNet-20)

x2.94 x2.02

13.76

1.96

12.38

2.95

3.96
78.78

0

100

200

G
P

U
-h

o
u

r

Stage Trial

ASHA (WideResNet 16-4)Grid Search (ResNet-20) SHA (ResNet-20)

x6.60x3.49 x5.73

275.13

219.32

33.23

61.08

10.66

learning-rate, drop-out ratio, optimizer, momentum, batch
size, image augmentation parameters, training image input

size, input sequence length, network architecture parameters

Idea: Different sequences may have same prefix

à Each value has different behavior, use sequences for hybrid approach
à Such hyper-parameter sequences are parameterized

E.g. Learning rate schedule functions

• Most sequences are piece-wise constant
• Continuous-valued sequence (learning-rate) is also eligible for merging

E.g. Warm-up, Cyclic learning rate
• When there is no mergeable configurations, still behave similarly to

existing systems

HP optimization job train multiple trials
Trials have common prefixes.
Common prefixes are merged to build a tree

Merged stages can be trained only once
è Computation reuse happens

Each stage is homogenous from system
perspective

Reuse container Reuse process Just-fit resource allocation
• Each task in hyper-parameter tuning job

have same environment
• System maintains its worker pool, and reuse

container whenever it could

• Stages have homogenous resource usage.
• When resource requirement changes,

system adjusts allocated resource.
à Used to achieve x6.6 gain in GPU-hours

Worker
Pool

Executor

• Checkpoint overhead can be mitigated
by continuing training in same process

• Stages are scheduled workers so that
reusing can be maximized

Bad: à Good: à Trial
based

Stage
based

1 GPU idleA1 A2A1 B1

Future Work
1. Evaluate with other models / datasets using
various hyper-parameters. Expect larger gains

Continuous-valued sequences
Data augmentation / Network architecture

2. Multi-study optimization
Merging trials between multiple studies
Cooperation between multiple studies
Meta-learning between multiple studies

3. New hyper-parameter optimization algorithm
Algorithm that can maximize use of StageTree
Algorithm that exploit multi-study use case

Do you have any troubles in hyper-parameter tuning?
Let us know J

