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Introduction

● Sparse symmetric positive-definite systems of equations are ubiquitous
● Sparse direct solvers use Cholesky Factorization to efficiently solve such 

systems
● Parallel sparse Cholesky codes are essential
● But, modern HPC is heterogeneous

○ Codes need to exploit CPUs and GPUs
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Introduction

symPACK is a parallel sparse Cholesky solver that effectively utilizes 
heterogeneous processing units and employs a novel one-sided 

communication algorithm
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Cholesky Basics

● Goal: Solve Ax=b, where A is spd
● Factorize step: A = LLT

○ Proceed one column at a time
○ Compute each column of L using column of A
○ Update trailing lower triangular region of A

● Solve step: Solve Ly=b for y, then solve LTx=y for x
○ Forward/Backward substitution
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Sparse Cholesky

● Group contiguous columns of A into 
“supernodes”

○ Group rows into dense blocks
○ Lets you use dense matrix operations

● Derive an elimination tree from the 
supernodes

○ This gives you a de-facto task graph
● Factorize each supernode according to 

the elimination tree
● Fill-in: nonzeros in L that were zero in A

○ Reduce fill-in this by reordering A with 
permutation matrices P, PT
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Parallel Cholesky

● Assign supernodes in the elimination tree to processors
● Elimination tree exposes needed communication between supernodes
● Three families of algorithms

○ Fan-in: compute update to remote supernode locally, then send the update to the remote 
supernode

○ Fan-out: send local supernode to remote processor, and compute the update on the remote 
processor

○ Fan-both: use both strategies
● symPACK is fan-out
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symPACK Implementation
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symPACK Task Formulation

● Formulate Cholesky factorization as tasks that operate on dense blocks of A
○ Supernode partitioning, then block partitioning
○ Computation is done using BLAS 3/LAPACK operations to achieve superior performance

● Three kinds of tasks
○ Diagonal Factorize Dj: Factorize diagonal block in supernode j
○ Factorize Fi,j: Factorize block i in supernode j
○ Update Ui,j,k: Update block i in supernode k using the factorized block i in supernode j ( j < k )
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Task Dependencies

● A diagonal block must be factorized 
before other blocks in the supernode 
can be factorized

● A block must be factorized before it 
can be used to update other blocks

● All updates must be applied to a 
block before it can be factorized 
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Task Scheduling

● Each processor has two task queues
○ Local task queue (LTQ): All tasks mapped to this processor
○ Ready task queue (RTQ): Tasks mapped to this processor that can be scheduled

● Tasks can be executed if all of their dependencies have been satisfied

● Tasks have a dependency counter

● Tasks are popped from the RTQ and executed, then they produce data used 
to satisfy dependencies between tasks

○ Once a task’s dependency counter hits zero, it is moved from the LTQ to the RTQ
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Parallel Algorithm

● Individual blocks are mapped to processors using a 2D block-cyclic mapping
● All tasks involving a block are mapped to the processor owning that block

● 2 kinds of messages
○ Diagonal factorized blocks need to be sent to remote processors for factorize tasks
○ Off-diagonal factorized blocks need to be sent to remote processors for update tasks

● Communication is handled with one-sided RMA operations and remote 
procedure calls provided by UPC++
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Communication Paradigm

● Four UPC++ constructs are important here
○ global address space: region of memory that each 

processor owns a region of 
■ Processors can access regions of the global 

address space owned by other processors
○ rget: reads data located in a remote processor’s global 

address space using a global pointer
○ Remote procedure call: local processor enqueues a 

procedure on a remote processor 
○ progress: advances internal UPC++ state, executes 

enqueued RPCs

● Example: Task T1 produced data task T2 needs
● Psource owns T1, Ptarget owns T2
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Communication Paradigm

● Step 1: Enqueue RPC to 
signal() on Ptarget

● One argument to signal() is a 
global pointer to the data T2 needs
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Communication Paradigm

● Step 2: call poll() function on 
Ptarget, which dispatches a call to 
upcxx::progress()
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Communication Paradigm

● Step 3: upcxx::progress() 
executes the RPC on Ptarget
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Communication Paradigm

● Step 4: signal() enqueues global 
pointer in a list of global pointers 
local to processor owning T2 
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Communication Paradigm

● Step 5: Iterate through list of global 
pointers, call upcxx::rget() on 
each one

● This actually satisfies the data 
dependency
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Communication Paradigm

● Step 6: Decrement T2 dependency 
counter, push on RTQ if all 
dependencies are satisfied
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symPACK GPU Functionality
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GPU Functionality

● symPACK’s GPU functionality is built with UPC++ memory kinds
○ Extends the global address space to include device memory
○ Allocate memory on devices with upcxx::device_allocator
○ Returns a global pointer to device memory

● upcxx::copy() moves data between any combination of hosts and devices
○ Local host <--> Remote device
○ Local device <--> Remote host
○ Local device <--> Remote device
○ Local Host <--> Remote host
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GPU Functionality

● It’s best to use the GPU only for tasks that have a high arithmetic intensity
○ This translates to tasks that operate on large blocks
○ Inevitable overheads mean computation has to be much faster to justify overhead

● For each BLAS/LAPACK operation, define a size threshold that determines 
whether we map the task to the GPU or the CPU

○ cuBLAS/cuSolver handles local computation
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● Observation: If a block is large enough, all tasks involving the block will 
happen on the GPU

● Naive approach: fetch data from remote host onto local host, then copy it to 
local device

● Superior approach: fetch data from remote host directly to local device
○ Memory kinds enable the superior approach through GASNet-EX’s support for GPUDirect 

RDMA (GDR)

Optimizing GPU Communication with Memory Kinds
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Performance Evaluation
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Performance Evaluation

● All experiments were run on NERSC Perlmutter GPU nodes
○ 1 AMD EPYC 7763 “Milan” CPU with 64 cores 
○ 4 NVIDIA A100 “Ampere” GPUs 
○ 4 HPE Slingshot 11 “Cassini” 200Gbps network cards 

● Benchmarked GPU mode of symPACK using GPU mode of PaStiX as a 
baseline

○ Matrices are from SuiteSparse matrix collection
○ symPACK and PaStiX both use the Scotch ordering library
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Performance Evaluation

● Impact of memory kinds

● Bandwidth vs message size for MPI 
one sided get, native 
upcxx::copy(), and reference 
upcxx::copy()
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Performance Evaluation
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Down is good



Future Work

● Develop a more sophisticated task scheduling policy

● Autotuning for GPU thresholds 

● Supernode coalescing
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Thank you!
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