
symPACK: A GPU-Capable Fan-Out Sparse
Cholesky Solver

Julian Bellavita1, Mathias Jacquelin2, Esmond G. Ng1, Dan Bonachea1, Johnny Corbino1, and Paul H.
Hargrove1

1Lawrence Berkeley National Laboratory
2Cerebas Systems

5/3/23 1

https://doi.org/10.25344/S49P45
https://upcxx.lbl.gov
https://gasnet.lbl.gov
https://sc23.conference-program.com/presentation/?id=ws_pawatm105&sess=sess449
https://go.lbl.gov/class

Introduction

● Sparse symmetric positive-definite systems of equations are ubiquitous
● Sparse direct solvers use Cholesky Factorization to efficiently solve such

systems
● Parallel sparse Cholesky codes are essential
● But, modern HPC is heterogeneous

○ Codes need to exploit CPUs and GPUs

2

Introduction

symPACK is a parallel sparse Cholesky solver that effectively utilizes
heterogeneous processing units and employs a novel one-sided

communication algorithm

3

https://go.lbl.gov/sympack

https://go.lbl.gov/sympack

Cholesky Basics

● Goal: Solve Ax=b, where A is spd
● Factorize step: A = LLT

○ Proceed one column at a time
○ Compute each column of L using column of A
○ Update trailing lower triangular region of A

● Solve step: Solve Ly=b for y, then solve LTx=y for x
○ Forward/Backward substitution

4

Sparse Cholesky

● Group contiguous columns of A into
“supernodes”

○ Group rows into dense blocks
○ Lets you use dense matrix operations

● Derive an elimination tree from the
supernodes

○ This gives you a de-facto task graph
● Factorize each supernode according to

the elimination tree
● Fill-in: nonzeros in L that were zero in A

○ Reduce fill-in this by reordering A with
permutation matrices P, PT

5

Parallel Cholesky

● Assign supernodes in the elimination tree to processors
● Elimination tree exposes needed communication between supernodes
● Three families of algorithms

○ Fan-in: compute update to remote supernode locally, then send the update to the remote
supernode

○ Fan-out: send local supernode to remote processor, and compute the update on the remote
processor

○ Fan-both: use both strategies
● symPACK is fan-out

6

symPACK Implementation

7

symPACK Task Formulation

● Formulate Cholesky factorization as tasks that operate on dense blocks of A
○ Supernode partitioning, then block partitioning
○ Computation is done using BLAS 3/LAPACK operations to achieve superior performance

● Three kinds of tasks
○ Diagonal Factorize Dj: Factorize diagonal block in supernode j
○ Factorize Fi,j: Factorize block i in supernode j
○ Update Ui,j,k: Update block i in supernode k using the factorized block i in supernode j (j < k)

8

Task Dependencies

● A diagonal block must be factorized
before other blocks in the supernode
can be factorized

● A block must be factorized before it
can be used to update other blocks

● All updates must be applied to a
block before it can be factorized

9

Task Scheduling

● Each processor has two task queues
○ Local task queue (LTQ): All tasks mapped to this processor
○ Ready task queue (RTQ): Tasks mapped to this processor that can be scheduled

● Tasks can be executed if all of their dependencies have been satisfied

● Tasks have a dependency counter

● Tasks are popped from the RTQ and executed, then they produce data used
to satisfy dependencies between tasks

○ Once a task’s dependency counter hits zero, it is moved from the LTQ to the RTQ

10

Parallel Algorithm

● Individual blocks are mapped to processors using a 2D block-cyclic mapping
● All tasks involving a block are mapped to the processor owning that block

● 2 kinds of messages
○ Diagonal factorized blocks need to be sent to remote processors for factorize tasks
○ Off-diagonal factorized blocks need to be sent to remote processors for update tasks

● Communication is handled with one-sided RMA operations and remote
procedure calls provided by UPC++

11

Communication Paradigm

● Four UPC++ constructs are important here
○ global address space: region of memory that each

processor owns a region of
■ Processors can access regions of the global

address space owned by other processors
○ rget: reads data located in a remote processor’s global

address space using a global pointer
○ Remote procedure call: local processor enqueues a

procedure on a remote processor
○ progress: advances internal UPC++ state, executes

enqueued RPCs

● Example: Task T1 produced data task T2 needs
● Psource owns T1, Ptarget owns T2

12

Communication Paradigm

● Step 1: Enqueue RPC to
signal() on Ptarget

● One argument to signal() is a
global pointer to the data T2 needs

13

Communication Paradigm

● Step 2: call poll() function on
Ptarget, which dispatches a call to
upcxx::progress()

14

Communication Paradigm

● Step 3: upcxx::progress()
executes the RPC on Ptarget

15

Communication Paradigm

● Step 4: signal() enqueues global
pointer in a list of global pointers
local to processor owning T2

16

Communication Paradigm

● Step 5: Iterate through list of global
pointers, call upcxx::rget() on
each one

● This actually satisfies the data
dependency

17

Communication Paradigm

● Step 6: Decrement T2 dependency
counter, push on RTQ if all
dependencies are satisfied

18

symPACK GPU Functionality

19

GPU Functionality

● symPACK’s GPU functionality is built with UPC++ memory kinds
○ Extends the global address space to include device memory
○ Allocate memory on devices with upcxx::device_allocator
○ Returns a global pointer to device memory

● upcxx::copy() moves data between any combination of hosts and devices
○ Local host <--> Remote device
○ Local device <--> Remote host
○ Local device <--> Remote device
○ Local Host <--> Remote host

20

GPU Functionality

● It’s best to use the GPU only for tasks that have a high arithmetic intensity
○ This translates to tasks that operate on large blocks
○ Inevitable overheads mean computation has to be much faster to justify overhead

● For each BLAS/LAPACK operation, define a size threshold that determines
whether we map the task to the GPU or the CPU

○ cuBLAS/cuSolver handles local computation

21

● Observation: If a block is large enough, all tasks involving the block will
happen on the GPU

● Naive approach: fetch data from remote host onto local host, then copy it to
local device

● Superior approach: fetch data from remote host directly to local device
○ Memory kinds enable the superior approach through GASNet-EX’s support for GPUDirect

RDMA (GDR)

Optimizing GPU Communication with Memory Kinds

22

Performance Evaluation

23

Performance Evaluation

● All experiments were run on NERSC Perlmutter GPU nodes
○ 1 AMD EPYC 7763 “Milan” CPU with 64 cores
○ 4 NVIDIA A100 “Ampere” GPUs
○ 4 HPE Slingshot 11 “Cassini” 200Gbps network cards

● Benchmarked GPU mode of symPACK using GPU mode of PaStiX as a
baseline

○ Matrices are from SuiteSparse matrix collection
○ symPACK and PaStiX both use the Scotch ordering library

24

Performance Evaluation

● Impact of memory kinds

● Bandwidth vs message size for MPI
one sided get, native
upcxx::copy(), and reference
upcxx::copy()

25

Up is good

Performance Evaluation

26

Down is good

Future Work

● Develop a more sophisticated task scheduling policy

● Autotuning for GPU thresholds

● Supernode coalescing

27

Acknowledgements

This research was supported by the Exascale Computing Project (17- SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security Administration, and by the U.S. Department of
Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) program under Contract No.
DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

28

Thank you!

29

https://go.lbl.gov/sympack

https://go.lbl.gov/sympack

