
 UPC++: A High-Performance
Communication Framework for

Asynchronous Computation

John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin
Amir Kamil, Dan Bonachea, Paul H. Hargrove, Hadia Ahmed

Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, California, USA

UPC++: a C++ PGAS Library

• Global Address Space (PGAS)
– A portion of the physically distributed address space is visible

to all processes. Now generalized to handle GPU memory

• Partitioned (PGAS)
– Global pointers to shared memory segments have an affinity to

a particular rank
– Explicitly managed by the programmer to optimize for locality

2

Rank 0 Rank 1 Rank 2 Rank 3

Global
address space

Private
memory

x: 1
p:

x: 5
p:

x: 7
p:

l:

g:

l:

g:

l:

g:

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Why is PGAS attractive?

• The overheads are low
Multithreading can’t speed up overheads

• Memory-per-core is dropping, requiring reduced
communication granularity

• Irregular applications exacerbate granularity problem

Asynchronous computations are critical

• Current and future HPC networks use one-sided
transfers at their lowest level and the PGAS model
matches this hardware with very little overhead

3 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

What does UPC++ offer?

• Asynchronous behavior based on futures/promises
– RMA: Low overhead, zero-copy one-sided communication.

Get/put to a remote location in another address space
– RPC: Remote Procedure Call: invoke a function remotely

A higher level of abstraction, though at a cost
• Design principles encourage performant program design
– All communication is syntactically explicit (unlike UPC)
– All communication is asynchronous: futures and promises
– Scalability

Global address space
(Shared segments)

Private memory
Rank 0 Rank 1 Rank 2 Rank 3

Remote procedure call
 (RPC)

One sided communication

4 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

How does UPC++ deliver the PGAS model?

• A “Compiler-Free” approach
– Need only a standard C++ compiler, leverage C++ standards
– UPC++ is a C++ template library

• Relies on GASNet-EX for low overhead communication
– Efficiently utilizes the network, whatever that network may be,

including any special-purpose offload support

• Designed to allow interoperation with existing
programming systems
– 1-to-1 mapping between MPI and UPC++ ranks
– OpenMP and CUDA can be mixed with UPC++ in the same

way as MPI+X

5 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

A simple example of asynchronous execution

By default, all communication ops are split-phased
– Initiate operation
– Wait for completion

A future holds a value and a state: ready/not ready

Global address space

Private memory Rank 0 Rank 1 Rank 2 Rank 3

Start the get

global_ptr<T> gptr1 = . . .;

future<T> f1 = rget(gptr1);

// unrelated work..

T t1 = f1.wait();

Wait returns with result
when rget completes

6 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Execute a function on another rank, sending arguments
and returning an optional result
1. Injects the RPC to the target rank
2. Executes fn(arg1, arg2) on target rank at some future time

determined at the target
3. Result becomes available to the caller via the future
Many invocations can run simultaneously, hiding data movement

Simple example of remote procedure call

7

Rank 0 Rank (target)

upcxx::rpc(target, fn, arg1, arg2)

 ● ● ●

 Execute fn(arg1, arg2) on rank target

fn

1

future

2

Result available via a future

3

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Asynchronous operations

• Build a DAG of futures, synchronize on the whole rather than on
the individual operations
– Attach a callback: .then(Foo)
– Foo is the completion handler, a function or λ

 runs locally when the rget completes
 receives arguments containing result

associated with the future

double Foo(int x){ return sqrt(2*x); }

global_ptr<int> gptr1;
// … gptr1 initialized
future<int> f1 = rget(gptr1);
future<double> f2 = f1.then(Foo);
// DO SOMETHING ELSE
double y = f2.wait();

8 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

A look under the hood of UPC++
• Relies on GASNet-EX to provide low-overhead communication

– Efficiently utilizes the network, whatever that network may be,

including any special-purpose support

– Get/put map directly onto the network hardware’s global address

support, when available

• RPC uses an active message (AM) to enqueue the function
handle remotely.

– Any return result is also transmitted via an AM

• RPC callbacks are only executed inside a call to a UPC++
method (Also a distinguished progress() method)

– RPC execution is serialized at the target, and this attribute can be

used to avoid explicit synchronization

9 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

https://gasnet.lbl.gov

https://gasnet.lbl.gov/

Round-trip Put Latency (lower is better) Flood Put bandwidth (higher is better)

RMA microbenchmarks

10 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Experiments on NERSC Cori:
● Cray XC40 system

● Two processor partitions:
● Intel Haswell (2 x 16 cores per node)
● Intel KNL (1x68 cores per node)

Data collected on Cori Haswell

Distributed hash table – Productivity

•Uses Remote Procedure Call (RPC)

•RPC simplifies the distributed hash table design

•Store value in a distributed hash table, at a remote location

11

Rank 0 Rank get_target(key)

Hash table
partition: a
std::unordered
_map per rank

 ● ● ●

Private memory key

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

// C++ global variables correspond to rank-local state
std::unordered_map<string, string > local_map;
// insert a key-value pair and return a future
future<> dht_insert(const string & key, const string & val) {

return upcxx::rpc(get_target(key),
[](string key, string val) {

local_map.insert ({key ,val });
}, key, val);

}

• RPC+RMA implementation, higher performance (zero-copy)

• RPC inserts the key at target and obtains a landing zone pointer

• Once the RPC completes, an attached callback (.then) uses zero-
copy rput to store the associated data

• The returned future represents the whole operation

Distributed hash table – Performance

12

Rank 0 Rank get_target(key)

rpc(get_target(key), F, key, len)

Hash table
partition: a
std::unordered_
map per rank ● ● ●

F: Allocates landing zone for data of size len
Stores (key,gptr) in local hash table (remote to sender)
Returns a global pointer loc to landing zone

 rpc completes:
 fut.then(return rput(val.c_str(),
 loc,val.size()+1))

gptr <char> locGlobal address space

Private memory

F

1

future<gptr<char>> fut

2

3

key

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

The hash table code

13

// C++ global variables correspond to rank-local state
std::unordered_map<string, global_ptr<char> > local_map;
// insert a key-value pair and return a future
future<> dht_insert(const string & key, const string & val) {
 auto f1 = rpc(get_target(key), // RPC obtains location for the data

 [](string key, size_t len) -> global_ptr<char> {
 global_ptr<char> gptr = new_array<char>(len);
 local_map[key] = gptr; // insert in local map
 return gptr;

 }, key, val.size()+1);
 return f1.then(// callback executes when RPC completes

 [val](global_ptr<char> loc) -> future<> { // : RMA put
 return rput(val.c_str(), loc, val.size()+1); }
);
}

 𝛌 function

 𝛌 for callback

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Weak scaling of distributed hash table insertion

14 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

● Randomly distributed keys

● Excellent weak scaling up
to 32K cores

● RPC leads to simplified
and more efficient design

● RPC+RMA achieves high
performance at scale

NERSC Cori Haswell

Weak scaling of distributed hash table insertion

15 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

● Randomly distributed keys

● Excellent weak scaling up
to 32K cores

● RPC leads to simplified
and more efficient design

● RPC+RMA achieves high
performance at scale

NERSC Cori Haswell NERSC Cori KNL

UPC++ improves sparse solver performance
● Sparse matrix factorizations have low computational intensity and

irregular communication patterns

● Extend-add operation is an important building block for multifrontal
sparse solvers

● Sparse factors are organized as a
hierarchy of condensed matrices called
frontal matrices:

● 4 sub-matrices:

factors + contribution block

● Contribution blocks are accumulated
in parent

16 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

F11 F11

F11

F21 F21

F21

F12 F12

F12

F22

F22F22

Ip

IlC IrC

Parent

Left child Right child

Fig. 5: The e_add operation on a 2-by-3 process grid.

and the right child is distributed over the remaining four. The
number of processes will generally not be the same in the
parent and the children.

2) Extend-add Implementation: In many multifrontal
solvers, the update operation is implemented in three steps:
(1) processes working on a child compute the locations, in
the coordinate system of the parent, where values of their
respective chunk of the contribution block need to be accumu-
lated in the parent; (2) values are communicated between all
processes assigned to the parent; and (3) the received values
are accumulated by the owner of local chunks of the parent
frontal matrix. The communication step (2) can be performed
either using an all-to-all collective communication or a non-
blocking point-to-point strategy. State-of-the-art solvers like
STRUMPACK [17] implement this step using the former
approach while solvers such as MUMPS [18] use the latter.

Our UPC++ implementation is similar to the point-to-point
strategy. It issues an RPC to every process in the parent,
and the input data to these RPCs (i.e. numerical values to
accumulate on a given process) are serialized by the UPC++
framework and sent over the network using UPC++ views [2].
A view is a mechanism that enables an RPC to serialize a
sequence accessed via a user-provided iterator. After the RPC
arrives at the target process, it is executed to accumulate data
into the parent frontal matrix. Fig. 6 depicts the operation. The
magenta process in the left child (1) packs the data going to
each remote process, (2) issues three RPCs to the red, yellow,
and gray processes to transfer the data, and (3) RPCs are
executed on the target processes to accumulate received data
into the locations indicated by the red arrows. This corresponds
to finding the locations of indices i1, i2, i3, and i4 from IlC
in the parent index set Ip.

We now demonstrate in detail how these three steps can be
carried out using UPC++. The implementation defines a class
FMat that includes several fields important to this discussion:
• lChild and rChild: pointers to left and right children
• row_indices: a vector containing the global indices of

the frontal matrix in the sparse matrix (corresponding to Ip,
IlC and IrC in Fig 5)

• front_team: a upcxx::team object (similar in func-
tionality to an MPI communicator) representing the pro-
cesses onto which this frontal matrix is mapped

• pack: a utility function that compares row_indices of
the child and the parent, determines which numerical values
are to be sent to a given process in the parent, and bins them
into appropriate buffers

• e_add_prom: a upcxx::promise initialized with the
number of incoming RPCs expected by the current pro-
cess; this promise acts as a counter and has an associated
upcxx::future which becomes ready when the counter
reaches zero
The top-level code is shown in Fig 7. The e_add func-

tion iterates over both children of the process and calls the
eadd_send helper function (at lines 7-10), which packs the
data to be sent and calls upcxx::make_view to create a
serializable upcxx::view object, v, of the data destined
for each process of the parent frontal matrix (line 26). The
actual serialization is done by the RPC injection call, which
eventually results in remote invocation of the accum function.
The accum callback (not shown) traverses the data packed
in the upcxx::view argument (a non-owning view into
the incoming network buffer), accumulates each element into
one of the local factor matrices (F11, F21, F12, F22), and
calls e_add_prom.fulfill_anonymous(1), signaling
the e_add() function that the expected incoming RPC has
been processed. The RPC injection returns a future, fut,
that is used to track acknowledgment (at line 28). The
returned future objects are conjoined into a single future,
f_conj, via the upcxx::when_all function (line 29).

F11

F11

F21

F21

F12

F12

F22

1

2

3

F22

RPC RPC RPC

communication
i1
i2

i3
i4

i1 i4i3i2

i1

i2

i3
i4

i1 i2 i3 i4

Fig. 6: e_add operation implemented with UPC++ using
RPCs on a 2-by-3 process grid.

7

UPC++ improves sparse solver performance
● Data is packed into per-destination contiguous buffers

● Traditional MPI implementation uses MPI_Alltoallv

✚ Variants: MPI_Isend/MPI_Irecv + MPI_Waitall /
MPI_Waitany

● UPC++ Implementation:

✚ RPC sends child
contributions to the parent

✚ RPC compare indices and
accumulate contributions on
the target

17 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

F11 F11

F11

F21 F21

F21

F12 F12

F12

F22

F22F22

Ip

IlC IrC

Parent

Left child Right child

Fig. 5: The e_add operation on a 2-by-3 process grid.

and the right child is distributed over the remaining four. The
number of processes will generally not be the same in the
parent and the children.

2) Extend-add Implementation: In many multifrontal
solvers, the update operation is implemented in three steps:
(1) processes working on a child compute the locations, in
the coordinate system of the parent, where values of their
respective chunk of the contribution block need to be accumu-
lated in the parent; (2) values are communicated between all
processes assigned to the parent; and (3) the received values
are accumulated by the owner of local chunks of the parent
frontal matrix. The communication step (2) can be performed
either using an all-to-all collective communication or a non-
blocking point-to-point strategy. State-of-the-art solvers like
STRUMPACK [17] implement this step using the former
approach while solvers such as MUMPS [18] use the latter.

Our UPC++ implementation is similar to the point-to-point
strategy. It issues an RPC to every process in the parent,
and the input data to these RPCs (i.e. numerical values to
accumulate on a given process) are serialized by the UPC++
framework and sent over the network using UPC++ views [2].
A view is a mechanism that enables an RPC to serialize a
sequence accessed via a user-provided iterator. After the RPC
arrives at the target process, it is executed to accumulate data
into the parent frontal matrix. Fig. 6 depicts the operation. The
magenta process in the left child (1) packs the data going to
each remote process, (2) issues three RPCs to the red, yellow,
and gray processes to transfer the data, and (3) RPCs are
executed on the target processes to accumulate received data
into the locations indicated by the red arrows. This corresponds
to finding the locations of indices i1, i2, i3, and i4 from IlC
in the parent index set Ip.

We now demonstrate in detail how these three steps can be
carried out using UPC++. The implementation defines a class
FMat that includes several fields important to this discussion:
• lChild and rChild: pointers to left and right children
• row_indices: a vector containing the global indices of

the frontal matrix in the sparse matrix (corresponding to Ip,
IlC and IrC in Fig 5)

• front_team: a upcxx::team object (similar in func-
tionality to an MPI communicator) representing the pro-
cesses onto which this frontal matrix is mapped

• pack: a utility function that compares row_indices of
the child and the parent, determines which numerical values
are to be sent to a given process in the parent, and bins them
into appropriate buffers

• e_add_prom: a upcxx::promise initialized with the
number of incoming RPCs expected by the current pro-
cess; this promise acts as a counter and has an associated
upcxx::future which becomes ready when the counter
reaches zero
The top-level code is shown in Fig 7. The e_add func-

tion iterates over both children of the process and calls the
eadd_send helper function (at lines 7-10), which packs the
data to be sent and calls upcxx::make_view to create a
serializable upcxx::view object, v, of the data destined
for each process of the parent frontal matrix (line 26). The
actual serialization is done by the RPC injection call, which
eventually results in remote invocation of the accum function.
The accum callback (not shown) traverses the data packed
in the upcxx::view argument (a non-owning view into
the incoming network buffer), accumulates each element into
one of the local factor matrices (F11, F21, F12, F22), and
calls e_add_prom.fulfill_anonymous(1), signaling
the e_add() function that the expected incoming RPC has
been processed. The RPC injection returns a future, fut,
that is used to track acknowledgment (at line 28). The
returned future objects are conjoined into a single future,
f_conj, via the upcxx::when_all function (line 29).

F11

F11

F21

F21

F12

F12

F22

1

2

3

F22

RPC RPC RPC

communication
i1
i2

i3
i4

i1 i4i3i2

i1

i2

i3
i4

i1 i2 i3 i4

Fig. 6: e_add operation implemented with UPC++ using
RPCs on a 2-by-3 process grid.

7

UPC++ improves sparse solver performance

18 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Assembly trees / Frontal matrices extracted from STRUMPACK

UPC++ improves sparse solver performance

19 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Assembly trees / Frontal matrices extracted from STRUMPACK

UPC++ = Productivity + Performance
Productivity

• UPC++ does not prescribe solutions for implementing distributed
irregular data structures: it provides building blocks

• Interoperates with MPI, OpenMP and CUDA

• Develop incrementally, enhance selected parts of the code

Reduced communication costs
• Embraces communication networks that use one-sided transfers at

their lowest level

• Low overhead reduces the cost of fine-grained communication

• Overlap communication via asynchrony and futures

• High-performance distributed hash table

• Increased efficiency in the extend-add operation (sparse solvers)

More advanced constructs (not discussed)
• Remote atomics, distributed objects, teams and collectives
• Promises, end points, generalized completion

• Serialization, non-contiguous transfers
20 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

The Pagoda Team

• Scott B. Baden (PI)

• Paul H. Hargrove (co-PI)

• John Bachan

• Dan Bonachea

• Mathias Jacquelin

• Amir Kamil

• Hadia Ahmed

• Alumni:
Brian van Straalen,
Steven Hofmeyr, Khaled Ibrahim

Code and documentation at http://upcxx.lbl.gov

Examples and extras available at the end of May
21 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Acknowledgements

Early work with UPC++ involved Yili Zheng, Amir Kamil, Kathy Yelick,
and others [IPDPS ‘14]

This research was supported in part by the Exascale Computing
Project (17-SC-20-SC), funded by the U.S. Department of Energy

ECP collaborators: Kathy Yelick, Sherry Li, Pieter Ghysels, John Bell
and Tan Nguyen (Lawrence Berkeley National Laboratory)

Academic collaborators: Alex Pöppl and Michael Bader (TUM) ,
 Niclas Jansson and Johann Hoffman (KTH),
 Sergio Martin (ETH-Zurich),

 Phuong Ha (Arctic Univ. of Norway)

22

http://upcxx.lbl.gov

Figure courtesy Alexander Pöppl

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

http://upcxx.lbl.gov/

Additional information

Related work on PGAS

• UPC, Fortran 2008 coarrays, OpenSHMEM, Titanium

• Fork-join model: X10, Chapel

• DASH / DART (over MPI-3 RMA backend)

• Coarray C++

• Task-based models: HPX, Phalanx, Charm++,
HabaneroUPC++

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Differences with legacy UPC++ v0.1
● Both implement PGAS model

● Different APIs:

– Current version avoids:
● Implicit communication
● Non-scalable data structures

– Current version based on futures/promises (similar to C++11)

– Leg. version uses async/finish syntax (like X10,Habanero-C)

● New functionalities:

– Futures encapsulate values, events do not

– Futures allow to attach callbacks

– Easier to manage future’s lifetime vs. event

– RPCs can return a value, asyncs cannot
Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

4
1
6

3
2

1
2
8

2
5
6

5
1
2

1
0
2
4

Processes

101

T
im

e
(s

)

symPACK time for Flan 1565 on Cori Haswell

UPC++ v0.1

UPC++ v1.0

Fig. 9: Strong scaling comparison of symPACK using UPC++
v0.1 and v1.0 on Cori Haswell.

collection and reporting the mean time for 10 runs at each
data point. Results depicted in Fig 9 show the performance
of the two implementations to be nearly identical; the average
difference in performance across all job sizes is 0.7%, with
the UPC++ v1.0 variant providing up to a 7.2% advantage
at 256 processes. This demonstrates that the new UPC++
framework does not incur any measurable added overheads
for this application.

V. RELATED WORK

A. Comparison to Predecessor UPC++ v0.1
The version of UPC++ presented in this paper differs

considerably from the predecessor developed by Zheng et
al [4]. Both are libraries supporting the PGAS model and
use GASNet [21] as the underlying communication layer,
but the APIs are quite different. In the current version, the
principles of making communication explicit and avoiding
non-scalable data structures means that we’ve dropped support
for implicit dereference of global pointers, shared scalars and
shared arrays. Furthermore, the API for expressing asynchrony
in our current version is based on the abstraction of futures
and promises, as introduced in C++11 [7], rather than the
async/finish interface in the predecessor version and other
models such as X10 [22] and Habanero-C [23]. The new
model improves composability of asynchronous operations,
and it enables additional flexibility in the expression of data
movement and synchronization.

Our new version of UPC++ provides substantial new ca-
pabilities that are absent from its predecessor. The future
abstraction encapsulates both data values as well as readiness
information, as opposed to events in the old version that carry
readiness information only. This semantic binding enables
asynchronous operations that return values; as such, the new
version’s RPCs are permitted to return a value, while the old
version’s asyncs could not. The future abstraction also frees
the programmer from the burden of explicitly managing event-
object lifetime, which can be challenging in algorithms with

highly asynchronous and irregular communication patterns.
RMA operations in the predecessor UPC++ were also very
limited – they did not support events, and there was no mech-
anism to attach a local or remote operation to the completion of
an RMA. The ability to attach an operation which effectively
serves as a completion handler is semantically elegant, and
it leads to more compact code. As a result of the limitations
of the predecessor, a hash-table insertion operation similar to
the one presented in section IV-C requires 50% more lines
of code in old UPC++, and it incurs both a blocking remote
allocation and a blocking RMA, which negatively impact
latency performance and overlap potential. Our improvements
to asynchrony support directly enable the simpler, streamlined,
and fully asynchronous implementation of distributed hash
table that scales beyond thousands of cores.

In addition to the incomplete support for asynchrony, the old
version of UPC++ lacked several important design features
introduced by the new version, such as atomics and view-
based serialization of RPC arguments. Finally, the new version
of UPC++ has a more formal and rigorous specification,
compared to the incomplete documentation and specification
of its predecessor.

B. Other Programming Models

Several recent and older programming systems support the
PGAS model, including UPC [5, 24], Fortran 2008 coar-
rays [25], OpenSHMEM [9], and Titanium [26, 27]. While
X10 and Chapel [28] both support remote task execution, their
execution model is rooted in forking and joining tasks, plac-
ing less emphasis on PGAS-style RMA operations. UPC++
supports the SPMD execution model provided by traditional
PGAS systems, but augments it with remote procedure calls.

The implementation of UPC++ notably takes a template-
metaprogramming approach rather than relying upon a custom
compiler, resulting in a lightweight and sustainable implemen-
tation that leverages existing C++ compilers and simplifies
interoperability with other C++ libraries. There are a number
of programming systems that take a compiler-free, C++-
library approach toward parallel programming on distributed
machines. DASH [29] is a PGAS library implemented over
DART [30], which has an MPI-3 RMA backend. Like UPC++,
DASH provides global pointers, but unlike UPC++, it lacks
support for RPCs or any form of code shipping and it
includes implicit communication via dereference. STAPL [31]
is another parallel programming library, based on an Adaptive
Remote Method Invocation (ARMI) layer. It does not expose
a true PGAS API, but instead abstracts the details of the
data distribution and parallelism into elementary patterns (e.g.
map, map-reduce, scan, zip). Another PGAS library is Coarray
C++ [32], which focuses on distributed data structures such as
coarrays. It assumes the existence of a symmetric shared heap,
an implementation detail that UPC++ has deliberately avoided
because it can result in non-scalable data structures and is
incompatible with subset teams. Like UPC++, Coarray C++
provides asynchrony, but in the form of cofutures. There exist

9

● SymPACK, supernodal solver for symmetric sparse matrices
● Implementation based on RPC & RMA
● Outperforms state-of-the-art solvers implemented using MPI

UPC++ v1.0 vs. v0.1 performance

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Where does message passing overhead
come from?
• Matching sends to receives
– Messages have an associated context that needs to be

matched to handle incoming messages correctly
– Data movement and synchronization are coupled

• Ordering guarantees are not semantically matched to
the hardware

• UPC++ avoids these factors that increase the
overhead
– No matching overhead between source and target

– Executes fewer instructions to perform a transfer

ABC

A
B
C

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

