T””% U.S. DEPARTMENT OF

n.v A
@13:1c) ¢

™ BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

UPC++: A High-Performance
Communication Framework for
Asynchronous Computation

John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin
Amir Kamil, Dan Bonachea, Paul H. Hargrove, Hadia Ahmed

Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, California, USA

UPC++: a C++ PGAS Library

Global
address

Private
memory

* Global Address Space (PGAS)

- A portion of the physically distributed address space is visible
to all processes. Now generalized to handle GPU memory

* Partitioned (P)
- Global pointers to shared memory segments have an affinity to
a particular rank

- Explicitly managed by the programmer to optimize for locality

1 1
X: 5 /r_>
space p:/ :
> I
I
1: @ I
1
g: l
1

Rank 0 Rank 1 Rank 2 Rank 3

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Why is PGAS attractive?
* The overheads are low
Multithreading can’t speed up overheads

* Memory-per-core is dropping, requiring reduced
communication granularity

* Irregular applications exacerbate granularity problem
Asynchronous computations are critical

* Current and future HPC networks use one-sided
transfers at their lowest level and the PGAS model
matches this hardware with very little overhead

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

What does UPC++ offer?

* Asynchronous behavior based on futures/promises

- RMA: Low overhead, zero-copy one-sided communication.
Get/put to a remote location in another address space

- RPC: Remote Procedure Call: invoke a function remotely
A higher level of abstraction, though at a cost

* Design principles encourage performant program design
- All communication is syntactically explicit (unlike UPC)
- All communication is asynchronous: futures and promises

- Scalability
Remote procedure call
(RPC)
Global address space - .
(Shared segments) |
One sided communication

. Rank 0 Rank 1 Rank 2 Rank 3
Private memory

= A
rrrrrrr ""|
4 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov BERKELEY LAB

How does UPC++ deliver the PGAS model?

* A “Compiler-Free” approach
- Need only a standard C++ compiler, leverage C++ standards
- UPC++ is a C++ template library

* Relies on GASNet-EX for low overhead communication

- Efficiently utilizes the network, whatever that network may be,
including any special-purpose offload support

* Designed to allow interoperation with existing
programming systems
- 1-to-1 mapping between MPI and UPC++ ranks

- OpenMP and CUDA can be mixed with UPC++ in the same
way as MPI+X

5 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

A simple example of asynchronous execution

By default, all communication ops are split-phased

- Initiate operation

- Wait for completion
A future holds a value and a state: ready/not ready

Wait returns with result
when rget completes

global ptr<T> gptrl = . . .;
future<T> fl = rget(gptrl);
// unrelated work..

T tl = fl.wait();

Global address space

Start the get

Private memory Rank 0

Rank 3

Rank 1 Rank 2

> A
i
rrrrrrr

6 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov
BERKELEY LAB

Simple example of remote procedure call

Execute a function on another rank, sending arguments
and returning an optional result

1. Injects the RPC to the target rank

2. Executes fn(arg1, arg2) on target rank at some future time
determined at the target

3. Result becomes available to the caller via the future
Many invocations can run simultaneously, hiding data movement

@

upcxx::rpc(target, fn, arg1, arg2) Execute fn(arg1, arg2) on rank target

®

Result available via a future

Rank 0 Rank (target)

~
A
111
rrrrrrr

7 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov BERKELEY LAB

Asynchronous operations

- Build a DAG of futures, synchronize on the whole rather than on
the individual operations

- Attach a callback: .then(Foo)
- Foo is the completion handler, a function or A
- runs locally when the rget completes

" receives arguments containing result
associated with the future

double Foo(int x){ return sqrt(2*x); }

global ptr<int> gptrl;

// « gptrl initialized
future<int> fl = rget(gptrl);
future<double> f2 = fl.then(Foo0);
// DO SOMETHING ELSE

double y = f2.wait();

~ A
i
rrrrrrr

8 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov
BERKELEY LAB

A look under the hood of UPC++

- Relies on GASNet-EX to provide low-overhead communication

- Efficiently utilizes the network, whatever that network may be,
including any special-purpose support

- Get/put map directly onto the network hardware’s global address
support, when available

- RPC uses an active message (AM) to enqueue the function
handle remotely.

- Any return result is also transmitted via an AM

* RPC callbacks are only executed inside a call to a UPC++
method (Also a distinguished progress() method)

- RPC execution is serialized at the target, and this attribute can be
used to avoid explicit synchronization

https:/igasnet.Ibl.gov

9 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

~ A
i
rrrrrrr

BERKELEY LAB

https://gasnet.lbl.gov/

Latency (us)

RMA microbenchmarks

* Two processor partitions:
* Intel Haswell (2 x 16 cores per node)
* Intel KNL (1x68 cores per node)

Experiments on NERSC Cori:
* Cray XC40 system

2.5
' 107 4 MPIRMA ——==
] UPC++
2.0__ —~ 8_
O]
] Q
] L]
1.5 O 6-
. $ 4 M 5 i
] =,]
1.0 - =z 4]
1 °
] o]
] @ 5]
0.5 1] /'
| —— MPI RMA 1 |
_ UPC++ O- e,
0'024 2'6 2'8 2'10 12 2'4 2'6 2'8 2'10 2'12 2'14 2'16 2'18 2'20 2'22

Size (bytes) Size (bytes)

Round-trip Put Latency (lower is better) Flood Put bandwidth (higher is better)
Data collected on Cori Haswell

=~
A
1

rrrrrrr

10 Mathias Jacquelin / UPC++ / IPDPS 2019/ upcxx.Ibl.gov

BERKELEY LAB

Distributed hash table — Productivity

*‘Uses Remote Procedure Call (RPC)
*RPC simplifies the distributed hash table design
*Store value in a distributed hash table, at a remote location

Hash table
partition: a
std::unordered
Private memory Cfkegel—— _Map per rank

Rank 0 Rank get_target(key)

// C++ global variables correspond to rank-local state
std: :unordered map<string, string > local map;
// insert a key-value pair and return a future
future<> dht insert(const string & key, const string & val) {
return upcxx::rpc(get_ target (key),
[] (string key, string val) {
local map.insert ({key ,val });
}, key, val);

=
A
rrrrrrr ""|

1" Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov
BERKELEY LAB

Distributed hash table — Performance

* RPC+RMA implementation, higher performance (zero-copy)

* RPC inserts the key at target and obtains a landing zone pointer

* Once the RPC completes, an attached callback (.then) uses zero-
copy rput to store the associated data

* The returned future represents the whole operation

@ rpc(get_target(key), F, key, len)

Global address space
Private memory

12

@

F: Allocates landing zone for data of size len
Stores (key,gptr) in local hash table (remote to sender)

Returns a global pointer loc to landing zone

rpc completes:
fut.then(return rput (val.c_str(),
loc,val.size () +1))

gptr <char> loc

Hash table
partition: a
std::unordered _
map per rank

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

e

~
A
rrrrrrr ""|

BERKELEY LAB

The hash table code

// C++ global variables correspond to rank-local state
std: :unordered map<string, global ptr<char> > local map;
// insert a key-value pair and return a future
future<> dht insert(const string & key, const string & val) ({
auto f1 = rpc(get target(key), // RPC obtains location for the data

[] (string key, size_t len) -> global ptr<char> {

global ptr<char> gptr = new_array<char>(len) ;

return gptr;
}, key, val.size()+1);
return fl.then(// callback executes when RPC completes

[val] (global ptr<char> loc) -> future<> { // : RMA put
2& fOf' Ca”baCk -[return rput(val.c_str(), loc, val.size()+1l); }
);
}

~

13 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov ”/f—'>|
BERKELEY LAB

A
111

Weak scaling of distributed hash table insertion

Throughput GB/s

=

o
W

ul

Randomly distributed keys

o
N
ul

Excellent weak scaling up
to 32K cores

=

o
=

|

RPC leads to simplified
and more efficient design

=
o
o
i

Element size

10 T &x
—— o . .
= 550B RPC+RMA achieves high
—— 136B performance at scale
1072

20 2'2 2'4 2'6 2'8 > 10 5 12 514
Processes

NERSC Cori Haswell

=
A
111

rrrrrrr

14 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov
BERKELEY LAB

Weak scaling of distributed hash table insertion

Throughput GB/s

10° 5 » Randomly distributed keys
10? * Excellent weak scaling up
to 32K cores
10!
 RPC leads to simplified
100 1 and more efficient design
Element size
1071 T 8% : :
o t508 | * RPC+RMA achieves high
2 —— 1368 performance at scale
10~

20 22 >4 26 28 2l0 ol2 5l4
Processes

NERSC Cori KNL

15 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

UPC++ improves sparse solver performance

* Sparse matrix factorizations have low computational intensity and
iIrregular communication patterns

* Extend-add operation is an important building block for multifrontal
sparse solvers

* Sparse factors are organized as a Parent
hierarchy of condensed matrices called .
frontal matrices: / By Fiy

/
* 4 sub-matrices: A v
factors + contribution block / : ; L
* Contribution blocks are accumulated \ /,//7 \
in parent Ful\ |8/ Fy| | Fs
\ //
[(X J
oM e’ hic o) £,
Left child Right child

~ A
i
rrrrrrr

16 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov
BERKELEY LAB

UPC++ improves sparse solver performance
* Data is packed into per-destination contiguous buffers

* Traditional MPIl implementation uses MPI_Alltoallv

+ Variants: MPI_Isend/MPI_Irecv + MPI_Waitall /
MPI1_Waitany

11 o 13 14
* UPC++ Implementation: =
ir-fefi fo ol o
+ RPC sends child fu || [Fe
contributions to the parent 22. , ______ ; /,
+ RPC compare indices and il ol e (ole |
accumulate contributions on TN

o /@@
iyl 9 23 24 3 C.R.T.C.) R.Pg

R i e 2

commﬁcatioﬁn
\ |o oo ole oo o
> 1

Z' .'. .’..
CEny __Fbs:
(2 I I P

17 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

UPC++ improves sparse solver performance

Run times for audikw_1

=@= mpi_alltoallv
== mpi_p2p
== UPCXX_IpC
10
&]
Q
S
I_
100‘:
N ™ 1% g) © V ™ ")
RN RN Iy

Processes

Assembly trees / Frontal matrices extracted from STRUMPACK

=
A
rrrrrrr ""|

18 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov
BERKELEY LAB

UPC++ improves sparse solver performance

Run times for audikw_1

=@®= mpi_alltoallv
== mpi_p2p
102 == UPCXX_rpc

100‘:

\rl b‘l ’1/] b‘l Cbl <ol ’Ll b‘l Cbl
O N A AN S A
Processes

Assembly trees / Frontal matrices extracted from STRUMPACK

A

19 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

BERKELEY LAB

UPC++ = Productivity + Performance
Productivity

- UPC++ does not prescribe solutions for implementing distributed
irregular data structures: it provides building blocks

* Interoperates with MPIl, OpenMP and CUDA
- Develop incrementally, enhance selected parts of the code

Reduced communication costs

Embraces communication networks that use one-sided transfers at
their lowest level

Low overhead reduces the cost of fine-grained communication
Overlap communication via asynchrony and futures
High-performance distributed hash table

Increased efficiency in the extend-add operation (sparse solvers)

More advanced constructs (not discussed)

Remote atomics, distributed objects, teams and collectives
Promises, end points, generalized completion

Serialization, non-contiguous transfers

20 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

~ A
i
rrrrrrr

BERKELEY LAB

The Pagoda Team

* Scott B. Baden (Pl)
* Paul H. Hargrove (co-Pl)
* John Bachan

* Dan Bonachea

* Mathias Jacquelin
* Amir Kamil

* Hadia Ahmed

* Alumni:
Brian van Straalen,
Steven Hofmeyr, Khaled lbrahim

Code and documentation at http://upcxx.lbl.qgov

Examples and extras available at the end of May

21 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Acknowledgements

Early work with UPC++ involved Yili Zheng, Amir Kamil, Kathy Yelick,
and others [IPDPS ‘14]

This research was supported in part by the Exascale Computing
Project (17-SC-20-SC), funded by the U.S. Department of Energy

ECP collaborators: Kathy Yelick, Sherry Li, Pieter Ghysels, John Bell
and Tan Nguyen (Lawrence Berkeley National Laboratory)

Academic collaborators: Alex Poppl and Michael Bader (TUM) ,
Niclas Jansson and Johann Hoffman (KTH),
Sergio Martin (ETH-Zurich),

Phuong Ha (Arctic Univ. of Norway)

http://upcxx.lbl.gov

.S. DEPARTMENT OF

EEEEEEEEEEEEEEEEEEEEEEEE

Figure courtesy Alexander Pdppl

22 Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

http://upcxx.lbl.gov/

Additional information

Related work on PGAS

* UPC, Fortran 2008 coarrays, OpenSHMEM, Titanium
* Fork-join model: X10, Chapel

- DASH / DART (over MPI-3 RMA backend)

* Coarray C++

* Task-based models: HPX, Phalanx, Charm++,
HabaneroUPC++

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

Differences with legacy UPC++ v0.1

* Both implement PGAS model
* Different APls:

— Current version avoids:
* Implicit communication

* Non-scalable data structures
— Current version based on futures/promises (similar to C++11)

— Leg. version uses async/finish syntax (like X10,Habanero-C)

* New functionalities:
— Futures encapsulate values, events do not
— Futures allow to attach callbacks
— Easier to manage future’s lifetime vs. event

— RPCs can return a value, asyncs cannot

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

UPC++ v1.0 vs. v0.1 performance

=@= UPC++ V0.1
== UPC++ V1.0
—~ 10!
2
()
£
|_
™ © V > © 2 Y
N (b \Ql (g-) 63\ \Q%

Processes

* SYymPACK, supernodal solver for symmetric sparse matrices
» Implementation based on RPC & RMA
* Outperforms state-of-the-art solvers implemented using MPI

Mathias Jacquelin / UPC++ / IPDPS 2019/ upcxx.Ibl.gov

BERKELEY LAB

Where does message passing overhead
come from?
* Matching sends to receives

- Messages have an associated context that needs to be
matched to handle incoming messages correctly

- Data movement and synchronization are coupled

* Ordering guarantees are not semantically matched to
the hardware

« UPC++ avoids these factors that increase the
overhead
- No matching overhead between source and target

- Executes fewer instructions to perform a transfer

A

@

Mathias Jacquelin / UPC++ / IPDPS 2019 / upcxx.lbl.gov

