
The Components Book
Version: 3.1

generated on July 29, 2016

The Components Book (3.1)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license. For any reuse or distribution, you must make clear to
others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

How to Install and Use the Symfony Components..4
The Asset Component...6
The BrowserKit Component..12
The Cache Component ...17
Cache Items..19
Cache Pools ..22
The ClassLoader Component ..27
The PSR-0 Class Loader ..29
Cache a Class Loader ..31
The Class Map Generator..33
Debugging a Class Loader ...36
MapClassLoader ...37
The PSR-4 Class Loader ..38
The Config Component ..40
Caching based on Resources..41
Defining and Processing Configuration Values ...43
Loading Resources ..55

PDF brought to you by

generated on July 29, 2016

Contents at a Glance | iii

http://sensiolabs.com

Listing 1-1

Chapter 1

How to Install and Use the Symfony
Components

If you're starting a new project (or already have a project) that will use one or more components, the
easiest way to integrate everything is with Composer1. Composer is smart enough to download the
component(s) that you need and take care of autoloading so that you can begin using the libraries
immediately.

This article will take you through using The Finder Component, though this applies to using any
component.

Using the Finder Component
1. If you're creating a new project, create a new empty directory for it.

2. Open a terminal and use Composer to grab the library.

1 $ composer require symfony/finder

The name symfony/finder is written at the top of the documentation for whatever component you
want.

Install composer2 if you don't have it already present on your system. Depending on how you install,
you may end up with a composer.phar file in your directory. In that case, no worries! Just run
php composer.phar require symfony/finder.

3. Write your code!

Once Composer has downloaded the component(s), all you need to do is include the vendor/
autoload.php file that was generated by Composer. This file takes care of autoloading all of the
libraries so that you can use them immediately:

1. https://getcomposer.org

2. https://getcomposer.org/download/

PDF brought to you by

generated on July 29, 2016

Chapter 1: How to Install and Use the Symfony Components | 4

http://sensiolabs.com

Listing 1-2

Listing 1-3

1
2
3
4
5
6
7
8
9
10
11
12

// File example: src/script.php

// update this to the path to the "vendor/"
// directory, relative to this file
require_once __DIR__.'/../vendor/autoload.php';

use Symfony\Component\Finder\Finder;

$finder = new Finder();
$finder->in('../data/');

// ...

Using all of the Components
If you want to use all of the Symfony Components, then instead of adding them one by one, you can
include the symfony/symfony package:

1 $ composer require symfony/symfony

This will also include the Bundle and Bridge libraries, which you may or may not actually need.

Now what?
Now that the component is installed and autoloaded, read the specific component's documentation to
find out more about how to use it.

And have fun!

PDF brought to you by

generated on July 29, 2016

Chapter 1: How to Install and Use the Symfony Components | 5

http://sensiolabs.com

Listing 2-1

Chapter 2

The Asset Component

The Asset component manages URL generation and versioning of web assets such as CSS
stylesheets, JavaScript files and image files.

In the past, it was common for web applications to hardcode URLs of web assets. For example:

1
2
3
4
5

<link rel="stylesheet" type="text/css" href="/css/main.css">

<!-- ... -->

This practice is no longer recommended unless the web application is extremely simple. Hardcoding
URLs can be a disadvantage because:

• Templates get verbose: you have to write the full path for each asset. When using the Asset
component, you can group assets in packages to avoid repeating the common part of their path;

• Versioning is difficult: it has to be custom managed for each application. Adding a version (e.g.
main.css?v=5) to the asset URLs is essential for some applications because it allows you to control how
the assets are cached. The Asset component allows you to define different versioning strategies for
each package;

• Moving assets location is cumbersome and error-prone: it requires you to carefully update the
URLs of all assets included in all templates. The Asset component allows to move assets effortlessly
just by changing the base path value associated with the package of assets;

• It's nearly impossible to use multiple CDNs: this technique requires you to change the URL of
the asset randomly for each request. The Asset component provides out-of-the-box support for any
number of multiple CDNs, both regular (http://) and secure (https://).

Installation
You can install the component in two different ways:

• Install it via Composer (symfony/asset on Packagist1);

PDF brought to you by

generated on July 29, 2016

Chapter 2: The Asset Component | 6

http://sensiolabs.com

Listing 2-2

Listing 2-3

• Use the official Git repository (https://github.com/symfony/asset).

Usage

Asset Packages

The Asset component manages assets through packages. A package groups all the assets which share
the same properties: versioning strategy, base path, CDN hosts, etc. In the following basic example, a
package is created to manage assets without any versioning:

1
2
3
4
5
6
7

use Symfony\Component\Asset\Package;
use Symfony\Component\Asset\VersionStrategy\EmptyVersionStrategy;

$package = new Package(new EmptyVersionStrategy());

echo $package->getUrl('/image.png');
// result: /image.png

Packages implement PackageInterface2, which defines the following two methods:
getVersion()getVersion()3

Returns the asset version for an asset.

getUrl()getUrl()4

Returns an absolute or root-relative public path.

With a package, you can:
1. version the assets;
2. set a common base path (e.g. /css) for the assets;
3. configure a CDN for the assets

Versioned Assets

One of the main features of the Asset component is the ability to manage the versioning of the
application's assets. Asset versions are commonly used to control how these assets are cached.

Instead of relying on a simple version mechanism, the Asset component allows you to define advanced
versioning strategies via PHP classes. The two built-in strategies are the EmptyVersionStrategy5,
which doesn't add any version to the asset and StaticVersionStrategy6, which allows you to set
the version with a format string.

In this example, the StaticVersionStrategy is used to append the v1 suffix to any asset path:

1
2
3
4
5
6
7

use Symfony\Component\Asset\Package;
use Symfony\Component\Asset\VersionStrategy\StaticVersionStrategy;

$package = new Package(new StaticVersionStrategy('v1'));

echo $package->getUrl('/image.png');
// result: /image.png?v1

In case you want to modify the version format, pass a sprintf-compatible format string as the second
argument of the StaticVersionStrategy constructor:

1. https://packagist.org/packages/symfony/asset

2. http://api.symfony.com/3.1/Symfony/Component/Asset/PackageInterface.html
3. http://api.symfony.com/3.1/Symfony/Component/Asset/PackageInterface.html#method_getVersionhttp://api.symfony.com/3.1/Symfony/Component/Asset/PackageInterface.html#method_getVersion
4. http://api.symfony.com/3.1/Symfony/Component/Asset/PackageInterface.html#method_getUrlhttp://api.symfony.com/3.1/Symfony/Component/Asset/PackageInterface.html#method_getUrl

5. http://api.symfony.com/3.1/Symfony/Component/Asset/VersionStrategy/EmptyVersionStrategy.html

6. http://api.symfony.com/3.1/Symfony/Component/Asset/VersionStrategy/StaticVersionStrategy.html

PDF brought to you by

generated on July 29, 2016

Chapter 2: The Asset Component | 7

https://github.com/symfony/asset
http://sensiolabs.com

Listing 2-4

Listing 2-5

Listing 2-6

Listing 2-7

1
2
3
4
5
6
7
8
9
10
11

// put the 'version' word before the version value
$package = new Package(new StaticVersionStrategy('v1', '%s?version=%s'));

echo $package->getUrl('/image.png');
// result: /image.png?version=v1

// put the asset version before its path
$package = new Package(new StaticVersionStrategy('v1', '%2$s/%1$s'));

echo $package->getUrl('/image.png');
// result: /v1/image.png

Custom Version Strategies

Use the VersionStrategyInterface7 to define your own versioning strategy. For example, your
application may need to append the current date to all its web assets in order to bust the cache every day:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

use Symfony\Component\Asset\VersionStrategy\VersionStrategyInterface;

class DateVersionStrategy implements VersionStrategyInterface
{

private $version;

public function __construct()
{

$this->version = date('Ymd');
}

public function getVersion($path)
{

return $this->version;
}

public function applyVersion($path)
{

return sprintf('%s?v=%s', $path, $this->getVersion($path));
}

}

Grouped Assets

Often, many assets live under a common path (e.g. /static/images). If that's your case, replace the
default Package8 class with PathPackage9 to avoid repeating that path over and over again:

1
2
3
4
5
6
7

use Symfony\Component\Asset\PathPackage;
// ...

$package = new PathPackage('/static/images', new StaticVersionStrategy('v1'));

echo $package->getUrl('/logo.png');
// result: /static/images/logo.png?v1

Request Context Aware Assets

If you are also using the HttpFoundation component in your project (for instance, in a Symfony
application), the PathPackage class can take into account the context of the current request:

7. http://api.symfony.com/3.1/Symfony/Component/Asset/VersionStrategy/VersionStrategyInterface.html

8. http://api.symfony.com/3.1/Symfony/Component/Asset/Package.html

9. http://api.symfony.com/3.1/Symfony/Component/Asset/PathPackage.html

PDF brought to you by

generated on July 29, 2016

Chapter 2: The Asset Component | 8

/var/www/symfony.com/bin/../var/docs/build/symfony/3.1/components/http_foundation.html
/var/www/symfony.com/bin/../var/docs/build/symfony/3.1/components/http_foundation.html
http://sensiolabs.com

Listing 2-8

Listing 2-9

Listing 2-10

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Asset\PathPackage;
use Symfony\Component\Asset\Context\RequestStackContext;
// ...

$package = new PathPackage(
'/static/images',
new StaticVersionStrategy('v1'),
new RequestStackContext($requestStack)

);

echo $package->getUrl('/logo.png');
// result: /somewhere/static/images/logo.png?v1

Now that the request context is set, the PathPackage will prepend the current request base URL.
So, for example, if your entire site is hosted under the /somewhere directory of your web server
root directory and the configured base path is /static/images, all paths will be prefixed with
/somewhere/static/images.

Absolute Assets and CDNs

Applications that host their assets on different domains and CDNs (Content Delivery Networks) should
use the UrlPackage10 class to generate absolute URLs for their assets:

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Asset\UrlPackage;
// ...

$package = new UrlPackage(
'http://static.example.com/images/',
new StaticVersionStrategy('v1')

);

echo $package->getUrl('/logo.png');
// result: http://static.example.com/images/logo.png?v1

You can also pass a schema-agnostic URL:

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Asset\UrlPackage;
// ...

$package = new UrlPackage(
'//static.example.com/images/',
new StaticVersionStrategy('v1')

);

echo $package->getUrl('/logo.png');
// result: //static.example.com/images/logo.png?v1

This is useful because assets will automatically be requested via HTTPS if a visitor is viewing your site in
https. Just make sure that your CDN host supports https.

In case you serve assets from more than one domain to improve application performance, pass an array
of URLs as the first argument to the UrlPackage constructor:

1
2
3
4
5
6
7
8

use Symfony\Component\Asset\UrlPackage;
// ...

$urls = array(
'//static1.example.com/images/',
'//static2.example.com/images/',

);
$package = new UrlPackage($urls, new StaticVersionStrategy('v1'));

10. http://api.symfony.com/3.1/Symfony/Component/Asset/UrlPackage.html

PDF brought to you by

generated on July 29, 2016

Chapter 2: The Asset Component | 9

http://sensiolabs.com

Listing 2-11

Listing 2-12

9
10
11
12
13

echo $package->getUrl('/logo.png');
// result: http://static1.example.com/images/logo.png?v1
echo $package->getUrl('/icon.png');
// result: http://static2.example.com/images/icon.png?v1

For each asset, one of the URLs will be randomly used. But, the selection is deterministic, meaning that
each asset will be always served by the same domain. This behavior simplifies the management of HTTP
cache.

Request Context Aware Assets

Similarly to application-relative assets, absolute assets can also take into account the context of the
current request. In this case, only the request scheme is considered, in order to select the appropriate base
URL (HTTPs or protocol-relative URLs for HTTPs requests, any base URL for HTTP requests):

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\Asset\UrlPackage;
use Symfony\Component\Asset\Context\RequestStackContext;
// ...

$package = new UrlPackage(
array('http://example.com/', 'https://example.com/'),
new StaticVersionStrategy('v1'),
new RequestStackContext($requestStack)

);

echo $package->getUrl('/logo.png');
// assuming the RequestStackContext says that we are on a secure host
// result: https://example.com/logo.png?v1

Named Packages

Applications that manage lots of different assets may need to group them in packages with the same
versioning strategy and base path. The Asset component includes a Packages11 class to simplify
management of several packages.

In the following example, all packages use the same versioning strategy, but they all have different base
paths:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

use Symfony\Component\Asset\Package;
use Symfony\Component\Asset\PathPackage;
use Symfony\Component\Asset\UrlPackage;
use Symfony\Component\Asset\Packages;
// ...

$versionStrategy = new StaticVersionStrategy('v1');

$defaultPackage = new Package($versionStrategy);

$namedPackages = array(
'img' => new UrlPackage('http://img.example.com/', $versionStrategy),
'doc' => new PathPackage('/somewhere/deep/for/documents', $versionStrategy),

);

$packages = new Packages($defaultPackage, $namedPackages)

The Packages class allows to define a default package, which will be applied to assets that don't define
the name of package to use. In addition, this application defines a package named img to serve images
from an external domain and a doc package to avoid repeating long paths when linking to a document
inside a template:

11. http://api.symfony.com/3.1/Symfony/Component/Asset/Packages.html

PDF brought to you by

generated on July 29, 2016

Chapter 2: The Asset Component | 10

http://sensiolabs.com

Listing 2-13 1
2
3
4
5
6
7
8

echo $packages->getUrl('/main.css');
// result: /main.css?v1

echo $packages->getUrl('/logo.png', 'img');
// result: http://img.example.com/logo.png?v1

echo $packages->getUrl('/resume.pdf', 'doc');
// result: /somewhere/deep/for/documents/resume.pdf?v1

Learn more

PDF brought to you by

generated on July 29, 2016

Chapter 2: The Asset Component | 11

http://sensiolabs.com

Listing 3-1

Chapter 3

The BrowserKit Component

The BrowserKit component simulates the behavior of a web browser, allowing you to make requests,
click on links and submit forms programmatically.

Installation
You can install the component in two different ways:

• Install it via Composer (symfony/browser-kit on Packagist1);
• Use the official Git repository (https://github.com/symfony/browser-kit).

Basic Usage

Creating a Client

The component only provides an abstract client and does not provide any backend ready to use for the
HTTP layer.

To create your own client, you must extend the abstract Client class and implement the
doRequest()2 method. This method accepts a request and should return a response:

1
2
3
4
5
6
7
8

namespace Acme;

use Symfony\Component\BrowserKit\Client as BaseClient;
use Symfony\Component\BrowserKit\Response;

class Client extends BaseClient
{

protected function doRequest($request)

1. https://packagist.org/packages/symfony/browser-kit

2. http://api.symfony.com/3.1/Symfony/Component/BrowserKit/Client.html#method_doRequest

PDF brought to you by

generated on July 29, 2016

Chapter 3: The BrowserKit Component | 12

https://github.com/symfony/browser-kit
http://sensiolabs.com

Listing 3-2

Listing 3-3

Listing 3-4

9
10
11
12
13
14

{
// ... convert request into a response

return new Response($content, $status, $headers);
}

}

For a simple implementation of a browser based on the HTTP layer, have a look at Goutte3. For
an implementation based on HttpKernelInterface, have a look at the Client4 provided by the
HttpKernel component.

Making Requests

Use the request()5 method to make HTTP requests. The first two arguments are the HTTP method
and the requested URL:

use Acme\Client;

$client = new Client();
$crawler = $client->request('GET', 'http://symfony.com');

The value returned by the request() method is an instance of the Crawler6 class, provided by the
DomCrawler component, which allows accessing and traversing HTML elements programmatically.

Clicking Links

The Crawler object is capable of simulating link clicks. First, pass the text content of the link to the
selectLink() method, which returns a Link object. Then, pass this object to the click() method,
which performs the needed HTTP GET request to simulate the link click:

1
2
3
4
5
6

use Acme\Client;

$client = new Client();
$crawler = $client->request('GET', 'http://symfony.com');
$link = $crawler->selectLink('Go elsewhere...')->link();
$client->click($link);

Submitting Forms

The Crawler object is also capable of selecting forms. First, select any of the form's buttons with the
selectButton() method. Then, use the form() method to select the form which the button belongs
to.

After selecting the form, fill in its data and send it using the submit() method (which makes the needed
HTTP POST request to submit the form contents):

1
2
3
4
5
6
7

use Acme\Client;

// make a real request to an external site
$client = new Client();
$crawler = $client->request('GET', 'https://github.com/login');

// select the form and fill in some values

3. https://github.com/fabpot/Goutte

4. http://api.symfony.com/3.1/Symfony/Component/HttpKernel/Client.html

5. http://api.symfony.com/3.1/Symfony/Component/BrowserKit/Client.html#method_request

6. http://api.symfony.com/3.1/Symfony/Component/DomCrawler/Crawler.html

PDF brought to you by

generated on July 29, 2016

Chapter 3: The BrowserKit Component | 13

/var/www/symfony.com/bin/../var/docs/build/symfony/3.1/components/http_kernel.html
/var/www/symfony.com/bin/../var/docs/build/symfony/3.1/components/http_kernel.html
http://sensiolabs.com

Listing 3-5

Listing 3-6

8
9
10
11
12
13

$form = $crawler->selectButton('Log in')->form();
$form['login'] = 'symfonyfan';
$form['password'] = 'anypass';

// submit that form
$crawler = $client->submit($form);

Cookies

Retrieving Cookies

The Client implementation exposes cookies (if any) through a CookieJar7, which allows you to store
and retrieve any cookie while making requests with the client:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

use Acme\Client;

// Make a request
$client = new Client();
$crawler = $client->request('GET', 'http://symfony.com');

// Get the cookie Jar
$cookieJar = $client->getCookieJar();

// Get a cookie by name
$cookie = $cookieJar->get('name_of_the_cookie');

// Get cookie data
$name = $cookie->getName();
$value = $cookie->getValue();
$raw = $cookie->getRawValue();
$secure = $cookie->isSecure();
$isHttpOnly = $cookie->isHttpOnly();
$isExpired = $cookie->isExpired();
$expires = $cookie->getExpiresTime();
$path = $cookie->getPath();
$domain = $cookie->getDomain();

These methods only return cookies that have not expired.

Looping Through Cookies

1
2
3
4
5
6
7
8
9
10
11
12
13
14

use Acme\Client;

// Make a request
$client = new Client();
$crawler = $client->request('GET', 'http://symfony.com');

// Get the cookie Jar
$cookieJar = $client->getCookieJar();

// Get array with all cookies
$cookies = $cookieJar->all();
foreach ($cookies as $cookie) {

// ...
}

7. http://api.symfony.com/3.1/Symfony/Component/BrowserKit/CookieJar.html

PDF brought to you by

generated on July 29, 2016

Chapter 3: The BrowserKit Component | 14

http://sensiolabs.com

Listing 3-7

Listing 3-8

Listing 3-9

15
16
17
18
19
20
21
22
23
24
25
26

// Get all values
$values = $cookieJar->allValues('http://symfony.com');
foreach ($values as $value) {

// ...
}

// Get all raw values
$rawValues = $cookieJar->allRawValues('http://symfony.com');
foreach ($rawValues as $rawValue) {

// ...
}

Setting Cookies

You can also create cookies and add them to a cookie jar that can be injected into the client constructor:

1
2
3
4
5
6
7
8

use Acme\Client;

// create cookies and add to cookie jar
$cookieJar = new Cookie('flavor', 'chocolate', strtotime('+1 day'));

// create a client and set the cookies
$client = new Client(array(), array(), $cookieJar);
// ...

History
The client stores all your requests allowing you to go back and forward in your history:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use Acme\Client;

// make a real request to an external site
$client = new Client();
$client->request('GET', 'http://symfony.com');

// select and click on a link
$link = $crawler->selectLink('Documentation')->link();
$client->click($link);

// go back to home page
$crawler = $client->back();

// go forward to documentation page
$crawler = $client->forward();

You can delete the client's history with the restart() method. This will also delete all the cookies:

1
2
3
4
5
6
7
8

use Acme\Client;

// make a real request to an external site
$client = new Client();
$client->request('GET', 'http://symfony.com');

// delete history
$client->restart();

Learn more
• Testing

PDF brought to you by

generated on July 29, 2016

Chapter 3: The BrowserKit Component | 15

http://sensiolabs.com

• The CssSelector Component
• The DomCrawler Component

PDF brought to you by

generated on July 29, 2016

Chapter 3: The BrowserKit Component | 16

http://sensiolabs.com

Chapter 4

The Cache Component

The Cache component provides a strict PSR-61 implementation for adding cache to your
applications. It is designed to have a low overhead and it ships with ready to use adapters for the
most common caching backends.

New in version 3.1: The Cache component was introduced in Symfony 3.1.

Installation
You can install the component in 2 different ways:

• Install it via Composer (symfony/cache on Packagist2);
• Use the official Git repository (https://github.com/symfony/cache).

Key Concepts
Before starting to use the Cache component, it's important that you learn the meaning of some key
concepts:
Item

A single unit of information stored as a key/value pair, where the key is the unique identifier of the
information and the value is its contents;

Pool
A logical repository of cache items. All cache operations (saving items, looking for items, etc.) are
performed through the pool. Applications can define as many pools as needed.

1. http://www.php-fig.org/psr/psr-6/

2. https://packagist.org/packages/symfony/cache

PDF brought to you by

generated on July 29, 2016

Chapter 4: The Cache Component | 17

https://github.com/symfony/cache
http://sensiolabs.com

Listing 4-1

Listing 4-2

Adapter
It implements the actual caching mechanism to store the information in the filesystem, in a
database, etc. The component provides several ready to use adapters for common caching backends
(Redis, APCu, etc.)

Basic Usage

This component is a strict implementation of PSR-63, which means that the API is the same as defined
in the standard. Before starting to cache information, create the cache pool using any of the built-in
adapters. For example, to create a filesystem-based cache, instantiate FilesystemAdapter4:

use Symfony\Component\Cache\Adapter\FilesystemAdapter;

$cache = new FilesystemAdapter();

Now you can create, retrieve, updated and delete items using this cache pool:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// create a new item by trying to get it from the cache
$numProducts = $cache->getItem('stats.num_products');

// assign a value to the item and save it
$numProducts->set(4711);
$cache->save($numProducts);

// retrieve the cache item
$numProducts = $cache->getItem('stats.num_products');
if (!$numProducts->isHit()) {

// ... item does not exists in the cache
}
// retrieve the value stored by the item
$total = $numProducts->get();

// remove the cache item
$cache->deleteItem('stats.num_products');

Advanced Usage
• Cache Items
• Cache Pools

3. http://www.php-fig.org/psr/psr-6/

4. http://api.symfony.com/3.1/Symfony/Component/Cache/Adapter/FilesystemAdapter.html

PDF brought to you by

generated on July 29, 2016

Chapter 4: The Cache Component | 18

http://sensiolabs.com

Listing 5-1

Listing 5-2

Chapter 5

Cache Items

Cache items are the information units stored in the cache as a key/value pair. In the Cache component
they are represented by the CacheItem1 class.

Cache Item Keys and Values
The key of a cache item is a UTF-8 encoded string which acts as its identifier, so it must be unique for
each cache pool. You can freely choose the keys, but they should only contain letters (A-Z, a-z), numbers
(0-9) and the _ and . symbols. Other common symbols (such as {, }, (,), /, \ and @) are reserved by
the PSR-6 standard for future uses.

The value of a cache item can be any data represented by a type which is serializable by PHP, such as
basic types (string, integer, float, boolean, null), arrays and objects.

Creating Cache Items

Cache items are created with the getItem($key) method of the cache pool. The argument is the key
of the item:

// $cache pool object was created before
$numProducts = $cache->getItem('stats.num_products');

Then, use the set()2 method to set the data stored in the cache item:

1
2
3
4
5
6
7
8

// storing a simple integer
$numProducts->set(4711);
$cache->save($numProducts);

// storing an array
$numProducts->set(array(

'category1' => 4711,
'category2' => 2387,

1. http://api.symfony.com/3.1/Symfony/Component/Cache/CacheItem.html

2. http://api.symfony.com/3.1/Psr/Cache/CacheItemInterface.html#method_set

PDF brought to you by

generated on July 29, 2016

Chapter 5: Cache Items | 19

http://sensiolabs.com

Listing 5-3

Listing 5-4

Listing 5-5

Listing 5-6

9
10

));
$cache->save($numProducts);

The key and the value of any given cache item can be obtained with the corresponding getter methods:

$cacheItem = $cache->getItem('exchange_rate');
// ...
$key = $cacheItem->getKey();
$value = $cacheItem->get();

Cache Item Expiration

By default cache items are stored permanently. In practice, this "permanent storage" can vary greatly
depending on the type of cache being used, as explained in the Cache Pools article.

However, in some applications it's common to use cache items with a shorter lifespan. Consider for
example an application which caches the latest news just for one minute. In those cases, use the
expiresAfter() method to set the number of seconds to cache the item:

1
2
3
4
5

$latestNews = $cache->getItem('latest_news');
$latestNews->expiresAfter(60); // 60 seconds = 1 minute

// this method also accepts \DateInterval instances
$latestNews->expiresAfter(DateInterval::createFromDateString('1 hour'));

Cache items define another related method called expiresAt() to set the exact date and time when the
item will expire:

$mostPopularNews = $cache->getItem('popular_news');
$mostPopularNews->expiresAt(new \DateTime('tomorrow'));

Cache Item Hits and Misses
Using a cache mechanism is important to improve the application performance, but it should not be
required to make the application work. In fact, the PSR-6 standard states that caching errors should not
result in application failures.

In practice this means that the getItem() method always returns an object which implements the
Psr\Cache\CacheItemInterface interface, even when the cache item doesn't exist. Therefore, you
don't have to deal with null return values and you can safely store in the cache values such as false
and null.

In order to decide if the returned object is correct or not, caches use the concept of hits and misses:

• Cache Hits occur when the requested item is found in the cache, its value is not corrupted or invalid
and it hasn't expired;

• Cache Misses are the opposite of hits, so they occur when the item is not found in the cache, its
value is corrupted or invalid for any reason or the item has expired.

Cache item objects define a boolean isHit() method which returns true for cache hits:

1
2
3
4
5
6
7

$latestNews = $cache->getItem('latest_news');

if (!$latestNews->isHit()) {
// do some heavy computation
$news = ...;
$cache->save($latestNews->set($news));

} else {

PDF brought to you by

generated on July 29, 2016

Chapter 5: Cache Items | 20

http://sensiolabs.com

8
9

$news = $latestNews->get();
}

PDF brought to you by

generated on July 29, 2016

Chapter 5: Cache Items | 21

http://sensiolabs.com

Listing 6-1

Listing 6-2

Chapter 6

Cache Pools

Cache Pools are the logical repositories of cache items. They perform all the common operations on
items, such as saving them or looking for them. Cache pools are independent from the actual cache
implementation. Therefore, applications can keep using the same cache pool even if the underlying cache
mechanism changes from a file system based cache to a Redis or database based cache.

Creating Cache Pools
Cache Pools are created through the cache adapters, which are classes that implement
AdapterInterface1. This component provides several adapters ready to use in your applications.

Array Cache Adapter

This adapter is only useful for testing purposes because contents are stored in memory and not persisted
in any way. Besides, some features explained later are not available, such as the deferred saves:

1
2
3
4
5
6
7
8
9

use Symfony\Component\Cache\Adapter\ArrayAdapter;

$cache = new ArrayAdapter(
// in seconds; applied to cache items that don't define their own lifetime
// 0 means to store the cache items indefinitely (i.e. until the current PHP process finishes)
$defaultLifetime = 0,
// if ``true``, the values saved in the cache are serialized before storing them
$storeSerialized = true

);

Filesystem Cache Adapter

This adapter is useful when you want to improve the application performance but can't install tools like
APC or Redis in the server. This adapter stores the contents as regular files in a set of directories on the
local file system:

1. http://api.symfony.com/3.1/Symfony/Component/Cache/Adapter/AdapterInterface.html

PDF brought to you by

generated on July 29, 2016

Chapter 6: Cache Pools | 22

http://sensiolabs.com

Listing 6-3

Listing 6-4

Listing 6-5

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Cache\Adapter\FilesystemAdapter;

$cache = new FilesystemAdapter(
// the subdirectory of the main cache directory where cache items are stored
$namespace = '',
// in seconds; applied to cache items that don't define their own lifetime
// 0 means to store the cache items indefinitely (i.e. until the files are deleted)
$defaultLifetime = 0,
// the main cache directory (the application needs read-write permissions on it)
// if none is specified, a directory is created inside the system temporary directory
$directory = null

);

APCu Cache Adapter

This adapter can increase the application performance very significantly, because contents are cached in
the shared memory of your server, which is much faster than the file system. It requires to have installed
and enabled the PHP APCu extension. It's not recommended to use it when performing lots of write and
delete operations because it produces fragmentation in the APCu memory that can degrade performance
significantly:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Cache\Adapter\ApcuAdapter;

$cache = new ApcuAdapter(
// the string prefixed to the keys of the items stored in this cache
$namespace = '',
// in seconds; applied to cache items that don't define their own lifetime
// 0 means to store the cache items indefinitely (i.e. until the APC memory is deleted)
$defaultLifetime = 0,
// if present, this string is added to the namespace to simplify the
// invalidation of the entire cache (e.g. when deploying the application)
$version = null

);

Redis Cache Adapter

This adapter stores the contents in the memory of the server. Unlike the APCu adapter, it's not limited to
the shared memory of the current server, so you can store contents in a cluster of servers if needed.

It requires to have installed Redis and have created a connection that implements the \Redis,
\RedisArray, \RedisCluster or \Predis classes:

1
2
3
4
5
6
7
8
9
10
11

use Symfony\Component\Cache\Adapter\RedisAdapter;

$cache = new RedisAdapter(
// the object that stores a valid connection to your Redis system
\Redis $redisConnection,
// the string prefixed to the keys of the items stored in this cache
$namespace = '',
// in seconds; applied to cache items that don't define their own lifetime
// 0 means to store the cache items indefinitely (i.e. until the Redis memory is deleted)
$defaultLifetime = 0

);

Chain Cache Adapter

This adapter allows to combine any number of the previous adapters. Cache items are fetched from the
first adapter which contains them. Besides, cache items are saved in all the given adapters, so this is a
simple way of creating a cache replication:

PDF brought to you by

generated on July 29, 2016

Chapter 6: Cache Pools | 23

http://sensiolabs.com

Listing 6-6

Listing 6-7

Listing 6-8

1
2
3
4
5
6
7
8

use Symfony\Component\Cache\Adapter\ApcuAdapter;
use Symfony\Component\Cache\Adapter\ChainAdapter;
use Symfony\Component\Cache\Adapter\FilesystemAdapter;

$apcCache = new ApcuAdapter();
$fileCache = new FilesystemAdapter();

$cache = new ChainAdapter(array($apcCache, $fileCache));

When an item is not found in the first adapters but is found in the next ones, the ChainAdapter ensures
that the fetched item is saved in all the adapters where it was missing. Since it's not possible to know
the expiry date and time of a cache item, the second optional argument of ChainAdapter is the default
lifetime applied to those cache items (by default it's 0).

Proxy Cache Adapter

This adapter is useful to integrate in your application cache pools not created with the Symfony Cache
component. As long as those cache pools implement the CacheItemPoolInterface interface, this
adapter allows you to get items from that external cache and save them in the Symfony cache of your
application:

use Symfony\Component\Cache\Adapter\ProxyAdapter;

// ... create $nonSymfonyCache somehow
$cache = new ProxyAdapter($nonSymfonyCache);

The adapter accepts two additional optional arguments: the namespace ('' by default) and the default
lifetime (0 by default).

Another use case for this adapter is to get statistics and metrics about the cache hits (getHits()) and
misses (getMisses()).

Doctrine Cache Adapter

This adapter wraps any Doctrine Cache2 provider so you can use them in your application as if they were
Symfony Cache adapters:

1
2
3
4
5

use Doctrine\Common\Cache\SQLite3Cache;
use Symfony\Component\Cache\Adapter\DoctrineAdapter;

$doctrineCache = new SQLite3Cache(__DIR__.'/cache/data.sqlite');
$symfonyCache = new DoctrineAdapter($doctrineCache);

This adapter also defines two optional arguments called namespace (default: '') and
defaultLifetime (default: 0) and adapts them to make them work in the underlying Doctrine cache.

Looking for Cache Items
Cache Pools define three methods to look for cache items. The most common method is
getItem($key), which returns the cache item identified by the given key:

use Symfony\Component\Cache\Adapter\FilesystemAdapter;

$cache = new FilesystemAdapter('app.cache')
$latestNews = $cache->getItem('latest_news');

2. https://github.com/doctrine/cache

PDF brought to you by

generated on July 29, 2016

Chapter 6: Cache Pools | 24

http://sensiolabs.com

Listing 6-9

Listing 6-10

Listing 6-11

Listing 6-12

If no item is defined for the given key, the method doesn't return a null value but an empty object which
implements the CacheItem3 class.

If you need to fetch several cache items simultaneously, use instead the getItems(array($key1,
$key2, ...)) method:

// ...
$stocks = $cache->getItems(array('AAPL', 'FB', 'GOOGL', 'MSFT'));

Again, if any of the keys doesn't represent a valid cache item, you won't get a null value but an empty
CacheItem object.

The last method related to fetching cache items is hasItem($key), which returns true if there is a
cache item identified by the given key:

// ...
$hasBadges = $cache->hasItem('user_'.$userId.'_badges');

Saving Cache Items

The most common method to save cache items is save()4, which stores the item in the cache
immediately (it returns true if the item was saved or false if some error occurred):

// ...
$userFriends = $cache->get('user_'.$userId.'_friends');
$userFriends->set($user->getFriends());
$isSaved = $cache->save($userFriends);

Sometimes you may prefer to not save the objects immediately in order to increase the application
performance. In those cases, use the saveDeferred()5 method to mark cache items as "ready to be
persisted" and then call to commit()6 method when you are ready to persist them all:

1
2
3
4
5
6
7
8

// ...
$isQueued = $cache->saveDeferred($userFriends);
// ...
$isQueued = $cache->saveDeferred($userPreferences);
// ...
$isQueued = $cache->saveDeferred($userRecentProducts);
// ...
$isSaved = $cache->commit();

The saveDeferred() method returns true when the cache item has been successfully added to the
"persist queue" and false otherwise. The commit() method returns true when all the pending items
are successfully saved or false otherwise.

Removing Cache Items
Cache Pools include methods to delete a cache item, some of them or all of them. The most common
is deleteItem()7, which deletes the cache item identified by the given key (it returns true when the
item is successfully deleted or doesn't exist and false otherwise):

3. http://api.symfony.com/3.1/Symfony/Component/Cache/CacheItem.html

4. http://api.symfony.com/3.1/Psr/Cache/CacheItemPoolInterface.html#method_save

5. http://api.symfony.com/3.1/Psr/Cache/CacheItemPoolInterface.html#method_saveDeferred

6. http://api.symfony.com/3.1/Psr/Cache/CacheItemPoolInterface.html#method_commit

7. http://api.symfony.com/3.1/Psr/Cache/CacheItemPoolInterface.html#method_deleteItem

PDF brought to you by

generated on July 29, 2016

Chapter 6: Cache Pools | 25

http://sensiolabs.com

Listing 6-13

Listing 6-14

Listing 6-15

// ...
$isDeleted = $cache->deleteItem('user_'.$userId);

Use the deleteItems()8 method to delete several cache items simultaneously (it returns true only if
all the items have been deleted, even when any or some of them don't exist):

// ...
$areDeleted = $cache->deleteItems(array('category1', 'category2'));

Finally, to remove all the cache items stored in the pool, use the clear()9 method (which returns true
when all items are successfully deleted):

// ...
$cacheIsEmpty = $cache->clear();

8. http://api.symfony.com/3.1/Psr/Cache/CacheItemPoolInterface.html#method_deleteItems

9. http://api.symfony.com/3.1/Psr/Cache/CacheItemPoolInterface.html#method_clear

PDF brought to you by

generated on July 29, 2016

Chapter 6: Cache Pools | 26

http://sensiolabs.com

Chapter 7

The ClassLoader Component

The ClassLoader component provides tools to autoload your classes and cache their locations for
performance.

Usage
Whenever you reference a class that has not been required or included yet, PHP uses the autoloading
mechanism1 to delegate the loading of a file defining the class. Symfony provides three autoloaders, which
are able to load your classes:

• The PSR-0 Class Loader: loads classes that follow the PSR-02 class naming standard;
• The PSR-4 Class Loader: loads classes that follow the PSR-43 class naming standard;
• MapClassLoader: loads classes using a static map from class name to file path.

Additionally, the Symfony ClassLoader component ships with a wrapper class which makes it possible to
cache the results of a class loader.

When using the Debug component, you can also use a special DebugClassLoader that eases debugging by
throwing more helpful exceptions when a class could not be found by a class loader.

Installation
You can install the component in 2 different ways:

• Install it via Composer (symfony/class-loader on Packagist4);
• Use the official Git repository (https://github.com/symfony/class-loader).

1. http://php.net/manual/en/language.oop5.autoload.php

2. http://www.php-fig.org/psr/psr-0/

3. http://www.php-fig.org/psr/psr-4/

4. https://packagist.org/packages/symfony/class-loader

PDF brought to you by

generated on July 29, 2016

Chapter 7: The ClassLoader Component | 27

https://github.com/symfony/class-loader
http://sensiolabs.com

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by
Composer. Otherwise, your application won't be able to find the classes of this Symfony component.

Learn More
• The PSR-0 Class Loader
• Cache a Class Loader
• The Class Map Generator
• Debugging a Class Loader
• MapClassLoader
• The PSR-4 Class Loader

PDF brought to you by

generated on July 29, 2016

Chapter 7: The ClassLoader Component | 28

http://sensiolabs.com

Listing 8-1

Listing 8-2

Chapter 8

The PSR-0 Class Loader

If your classes and third-party libraries follow the PSR-01 standard, you can use the ClassLoader2 class
to load all of your project's classes.

You can use both the ApcClassLoader and the XcacheClassLoader to cache a ClassLoader
instance.

Usage

Registering the ClassLoader3 autoloader is straightforward:

1
2
3
4
5
6
7
8
9
10
11
12

require_once '/path/to/src/Symfony/Component/ClassLoader/ClassLoader.php';

use Symfony\Component\ClassLoader\ClassLoader;

$loader = new ClassLoader();

// to enable searching the include path (eg. for PEAR packages)
$loader->setUseIncludePath(true);

// ... register namespaces and prefixes here - see below

$loader->register();

Use addPrefix()4 or addPrefixes()5 to register your classes:

1
2
3

// register a single namespaces
$loader->addPrefix('Symfony', __DIR__.'/vendor/symfony/symfony/src');

1. http://www.php-fig.org/psr/psr-0/

2. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/ClassLoader.html

3. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/ClassLoader.html

4. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/ClassLoader.html#method_addPrefix

5. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/ClassLoader.html#method_addPrefixes

PDF brought to you by

generated on July 29, 2016

Chapter 8: The PSR-0 Class Loader | 29

http://sensiolabs.com

Listing 8-3

4
5
6
7
8
9
10
11
12
13
14
15
16

// register several namespaces at once
$loader->addPrefixes(array(

'Symfony' => __DIR__.'/../vendor/symfony/symfony/src',
'Monolog' => __DIR__.'/../vendor/monolog/monolog/src',

));

// register a prefix for a class following the PEAR naming conventions
$loader->addPrefix('Twig_', __DIR__.'/vendor/twig/twig/lib');

$loader->addPrefixes(array(
'Swift_' => __DIR__.'/vendor/swiftmailer/swiftmailer/lib/classes',
'Twig_' => __DIR__.'/vendor/twig/twig/lib',

));

Classes from a sub-namespace or a sub-hierarchy of PEAR6 classes can be looked for in a location list to
ease the vendoring of a sub-set of classes for large projects:

1
2
3
4
5
6

$loader->addPrefixes(array(
'Doctrine\\Common' => __DIR__.'/vendor/doctrine/common/lib',
'Doctrine\\DBAL\\Migrations' => __DIR__.'/vendor/doctrine/migrations/lib',
'Doctrine\\DBAL' => __DIR__.'/vendor/doctrine/dbal/lib',
'Doctrine' => __DIR__.'/vendor/doctrine/orm/lib',

));

In this example, if you try to use a class in the Doctrine\Common namespace or one of its children, the
autoloader will first look for the class under the doctrine-common directory. If not found, it will then
fallback to the default Doctrine directory (the last one configured) before giving up. The order of the
prefix registrations is significant in this case.

6. http://pear.php.net/manual/en/standards.naming.php

PDF brought to you by

generated on July 29, 2016

Chapter 8: The PSR-0 Class Loader | 30

http://sensiolabs.com

Listing 9-1

Chapter 9

Cache a Class Loader

Finding the file for a particular class can be an expensive task. Luckily, the ClassLoader component
comes with two classes to cache the mapping from a class to its containing file. Both the
ApcClassLoader1 and the XcacheClassLoader2 wrap around an object which implements a
findFile() method to find the file for a class.

Both the ApcClassLoader and the XcacheClassLoader can be used to cache Composer's
autoloader3.

ApcClassLoader

ApcClassLoader wraps an existing class loader and caches calls to its findFile() method using
APC4:

1
2
3
4
5
6
7
8
9
10
11
12
13

require_once '/path/to/src/Symfony/Component/ClassLoader/ApcClassLoader.php';

// instance of a class that implements a findFile() method, like the ClassLoader
$loader = ...;

// sha1(__FILE__) generates an APC namespace prefix
$cachedLoader = new ApcClassLoader(sha1(__FILE__), $loader);

// register the cached class loader
$cachedLoader->register();

// deactivate the original, non-cached loader if it was registered previously
$loader->unregister();

1. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/ApcClassLoader.html

2. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/XcacheClassLoader.html

3. https://getcomposer.org/doc/01-basic-usage.md#autoloading

4. http://php.net/manual/en/book.apc.php

PDF brought to you by

generated on July 29, 2016

Chapter 9: Cache a Class Loader | 31

http://sensiolabs.com

Listing 9-2

XcacheClassLoader

XcacheClassLoader uses XCache5 to cache a class loader. Registering it is straightforward:

1
2
3
4
5
6
7
8
9
10
11
12
13

require_once '/path/to/src/Symfony/Component/ClassLoader/XcacheClassLoader.php';

// instance of a class that implements a findFile() method, like the ClassLoader
$loader = ...;

// sha1(__FILE__) generates an XCache namespace prefix
$cachedLoader = new XcacheClassLoader(sha1(__FILE__), $loader);

// register the cached class loader
$cachedLoader->register();

// deactivate the original, non-cached loader if it was registered previously
$loader->unregister();

5. http://xcache.lighttpd.net

PDF brought to you by

generated on July 29, 2016

Chapter 9: Cache a Class Loader | 32

http://sensiolabs.com

Listing 10-1

Chapter 10

The Class Map Generator

Loading a class usually is an easy task given the PSR-01 and PSR-42 standards. Thanks to the Symfony
ClassLoader component or the autoloading mechanism provided by Composer, you don't have to map
your class names to actual PHP files manually. Nowadays, PHP libraries usually come with autoloading
support through Composer.

But from time to time you may have to use a third-party library that comes without any autoloading
support and therefore forces you to load each class manually. For example, imagine a library with the
following directory structure:

1
2
3
4
5
6
7
8
9

library/
├── bar/
│ ├── baz/
│ │ └── Boo.php
│ └── Foo.php
└── foo/

├── bar/
│ └── Foo.php
└── Bar.php

These files contain the following classes:

File Class Name

library/bar/baz/Boo.php Acme\Bar\Baz

library/bar/Foo.php Acme\Bar

library/foo/bar/Foo.php Acme\Foo\Bar

library/foo/Bar.php Acme\Foo

To make your life easier, the ClassLoader component comes with a ClassMapGenerator3 class that
makes it possible to create a map of class names to files.

1. http://www.php-fig.org/psr/psr-0

2. http://www.php-fig.org/psr/psr-4

3. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/ClassMapGenerator.html

PDF brought to you by

generated on July 29, 2016

Chapter 10: The Class Map Generator | 33

http://sensiolabs.com

Listing 10-2

Listing 10-3

Listing 10-4

Listing 10-5

Listing 10-6

Generating a Class Map

To generate the class map, simply pass the root directory of your class files to the createMap()4

method:

use Symfony\Component\ClassLoader\ClassMapGenerator;

var_dump(ClassMapGenerator::createMap(__DIR__.'/library'));

Given the files and class from the table above, you should see an output like this:

1
2
3
4
5
6
7

Array
(

[Acme\Foo] => /var/www/library/foo/Bar.php
[Acme\Foo\Bar] => /var/www/library/foo/bar/Foo.php
[Acme\Bar\Baz] => /var/www/library/bar/baz/Boo.php
[Acme\Bar] => /var/www/library/bar/Foo.php

)

Dumping the Class Map
Writing the class map to the console output is not really sufficient when it comes to autoloading.
Luckily, the ClassMapGenerator provides the dump()5 method to save the generated class map to the
filesystem:

use Symfony\Component\ClassLoader\ClassMapGenerator;

ClassMapGenerator::dump(__DIR__.'/library', __DIR__.'/class_map.php');

This call to dump() generates the class map and writes it to the class_map.php file in the same
directory with the following contents:

1
2
3
4
5
6

<?php return array (
'Acme\\Foo' => '/var/www/library/foo/Bar.php',
'Acme\\Foo\\Bar' => '/var/www/library/foo/bar/Foo.php',
'Acme\\Bar\\Baz' => '/var/www/library/bar/baz/Boo.php',
'Acme\\Bar' => '/var/www/library/bar/Foo.php',
);

Instead of loading each file manually, you'll only have to register the generated class map with, for
example, the MapClassLoader6:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\ClassLoader\MapClassLoader;

$mapping = include __DIR__.'/class_map.php';
$loader = new MapClassLoader($mapping);
$loader->register();

// you can now use the classes:
use Acme\Foo;

$foo = new Foo();

// ...

4. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/ClassMapGenerator.html#method_createMap

5. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/ClassMapGenerator.html#method_dump

6. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/MapClassLoader.html

PDF brought to you by

generated on July 29, 2016

Chapter 10: The Class Map Generator | 34

http://sensiolabs.com

Listing 10-7

The example assumes that you already have autoloading working (e.g. through Composer7 or one of
the other class loaders from the ClassLoader component.

Besides dumping the class map for one directory, you can also pass an array of directories for which to
generate the class map (the result actually is the same as in the example above):

1
2
3
4
5
6

use Symfony\Component\ClassLoader\ClassMapGenerator;

ClassMapGenerator::dump(
array(__DIR__.'/library/bar', __DIR__.'/library/foo'),
__DIR__.'/class_map.php'

);

7. https://getcomposer.org

PDF brought to you by

generated on July 29, 2016

Chapter 10: The Class Map Generator | 35

http://sensiolabs.com

Chapter 11

Debugging a Class Loader

The DebugClassLoader from the ClassLoader component was deprecated in Symfony 2.5 and
removed in Symfony 3.0. Use the DebugClassLoader provided by the Debug component.

PDF brought to you by

generated on July 29, 2016

Chapter 11: Debugging a Class Loader | 36

http://sensiolabs.com

Listing 12-1

Chapter 12

MapClassLoader

The MapClassLoader1 allows you to autoload files via a static map from classes to files. This is useful
if you use third-party libraries which don't follow the PSR-02 standards and so can't use the PSR-0 class
loader.

The MapClassLoader can be used along with the PSR-0 class loader by configuring and calling the
register() method on both.

The default behavior is to append the MapClassLoader on the autoload stack. If you want to use
it as the first autoloader, pass true when calling the register() method. Your class loader will
then be prepended on the autoload stack.

Usage
Using it is as easy as passing your mapping to its constructor when creating an instance of the
MapClassLoader class:

1
2
3
4
5
6
7
8
9
10

require_once '/path/to/src/Symfony/Component/ClassLoader/MapClassLoader.php';

$mapping = array(
'Foo' => '/path/to/Foo',
'Bar' => '/path/to/Bar',

);

$loader = new MapClassLoader($mapping);

$loader->register();

1. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/MapClassLoader.html

2. http://www.php-fig.org/psr/psr-0/

PDF brought to you by

generated on July 29, 2016

Chapter 12: MapClassLoader | 37

http://sensiolabs.com

Listing 13-1

Listing 13-2

Chapter 13

The PSR-4 Class Loader

Libraries that follow the PSR-41 standard can be loaded with the Psr4ClassLoader.

If you manage your dependencies via Composer, you get a PSR-4 compatible autoloader out of the
box. Use this loader in environments where Composer is not available.

All Symfony components follow PSR-4.

Usage

The following example demonstrates how you can use the Psr4ClassLoader2 autoloader to use
Symfony's Yaml component. Imagine, you downloaded both the ClassLoader and Yaml component as
ZIP packages and unpacked them to a libs directory. The directory structure will look like this:

1
2
3
4
5
6
7
8
9

libs/
ClassLoader/

Psr4ClassLoader.php
...

Yaml/
Yaml.php
...

config.yml
demo.php

In demo.php you are going to parse the config.yml file. To do that, you first need to configure the
Psr4ClassLoader:

1. http://www.php-fig.org/psr/psr-4/

2. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/Psr4ClassLoader.html

PDF brought to you by

generated on July 29, 2016

Chapter 13: The PSR-4 Class Loader | 38

http://sensiolabs.com

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\ClassLoader\Psr4ClassLoader;
use Symfony\Component\Yaml\Yaml;

require __DIR__.'/lib/ClassLoader/Psr4ClassLoader.php';

$loader = new Psr4ClassLoader();
$loader->addPrefix('Symfony\\Component\\Yaml\\', __DIR__.'/lib/Yaml');
$loader->register();

$data = Yaml::parse(file_get_contents(__DIR__.'/config.yml'));

First of all, the class loader is loaded manually using a require statement, since there is no autoload
mechanism yet. With the addPrefix()3 call, you tell the class loader where to look for classes with the
Symfony\Component\Yaml\ namespace prefix. After registering the autoloader, the Yaml component
is ready to be used.

3. http://api.symfony.com/3.1/Symfony/Component/ClassLoader/Psr4ClassLoader.html#method_addPrefix

PDF brought to you by

generated on July 29, 2016

Chapter 13: The PSR-4 Class Loader | 39

http://sensiolabs.com

Chapter 14

The Config Component

The Config component provides several classes to help you find, load, combine, autofill and validate
configuration values of any kind, whatever their source may be (YAML, XML, INI files, or for
instance a database).

Installation
You can install the component in 2 different ways:

• Install it via Composer (symfony/config on Packagist1);
• Use the official Git repository (https://github.com/symfony/config).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by
Composer. Otherwise, your application won't be able to find the classes of this Symfony component.

Learn More
• Caching based on Resources
• Defining and Processing Configuration Values
• Loading Resources
• How to Create Friendly Configuration for a Bundle
• How to Load Service Configuration inside a Bundle
• How to Simplify Configuration of multiple Bundles

1. https://packagist.org/packages/symfony/config

PDF brought to you by

generated on July 29, 2016

Chapter 14: The Config Component | 40

https://github.com/symfony/config
http://sensiolabs.com

Listing 15-1

Chapter 15

Caching based on Resources

When all configuration resources are loaded, you may want to process the configuration values and
combine them all in one file. This file acts like a cache. Its contents don’t have to be regenerated every
time the application runs – only when the configuration resources are modified.

For example, the Symfony Routing component allows you to load all routes, and then dump a URL
matcher or a URL generator based on these routes. In this case, when one of the resources is modified
(and you are working in a development environment), the generated file should be invalidated and
regenerated. This can be accomplished by making use of the ConfigCache1 class.

The example below shows you how to collect resources, then generate some code based on the resources
that were loaded and write this code to the cache. The cache also receives the collection of resources that
were used for generating the code. By looking at the "last modified" timestamp of these resources, the
cache can tell if it is still fresh or that its contents should be regenerated:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

use Symfony\Component\Config\ConfigCache;
use Symfony\Component\Config\Resource\FileResource;

$cachePath = __DIR__.'/cache/appUserMatcher.php';

// the second argument indicates whether or not you want to use debug mode
$userMatcherCache = new ConfigCache($cachePath, true);

if (!$userMatcherCache->isFresh()) {
// fill this with an array of 'users.yml' file paths
$yamlUserFiles = ...;

$resources = array();

foreach ($yamlUserFiles as $yamlUserFile) {
// see the previous article "Loading resources" to
// see where $delegatingLoader comes from
$delegatingLoader->load($yamlUserFile);
$resources[] = new FileResource($yamlUserFile);

}

// the code for the UserMatcher is generated elsewhere
$code = ...;

$userMatcherCache->write($code, $resources);

1. http://api.symfony.com/3.1/Symfony/Component/Config/ConfigCache.html

PDF brought to you by

generated on July 29, 2016

Chapter 15: Caching based on Resources | 41

http://sensiolabs.com

26
27
28
29

}

// you may want to require the cached code:
require $cachePath;

In debug mode, a .meta file will be created in the same directory as the cache file itself. This .meta file
contains the serialized resources, whose timestamps are used to determine if the cache is still fresh. When
not in debug mode, the cache is considered to be "fresh" as soon as it exists, and therefore no .meta file
will be generated.

PDF brought to you by

generated on July 29, 2016

Chapter 15: Caching based on Resources | 42

http://sensiolabs.com

Listing 16-1

Chapter 16

Defining and Processing Configuration Values

Validating Configuration Values
After loading configuration values from all kinds of resources, the values and their structure can be
validated using the "Definition" part of the Config Component. Configuration values are usually
expected to show some kind of hierarchy. Also, values should be of a certain type, be restricted in number
or be one of a given set of values. For example, the following configuration (in YAML) shows a clear
hierarchy and some validation rules that should be applied to it (like: "the value for auto_connect
must be a boolean value"):

1
2
3
4
5
6
7
8
9
10
11
12
13
14

auto_connect: true
default_connection: mysql
connections:

mysql:
host: localhost
driver: mysql
username: user
password: pass

sqlite:
host: localhost
driver: sqlite
memory: true
username: user
password: pass

When loading multiple configuration files, it should be possible to merge and overwrite some values.
Other values should not be merged and stay as they are when first encountered. Also, some keys are only
available when another key has a specific value (in the sample configuration above: the memory key only
makes sense when the driver is sqlite).

Defining a Hierarchy of Configuration Values Using the TreeBuilder

All the rules concerning configuration values can be defined using the TreeBuilder1.

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 43

http://sensiolabs.com

Listing 16-2

Listing 16-3

A TreeBuilder2 instance should be returned from a custom Configuration class which implements
the ConfigurationInterface3:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

namespace Acme\DatabaseConfiguration;

use Symfony\Component\Config\Definition\ConfigurationInterface;
use Symfony\Component\Config\Definition\Builder\TreeBuilder;

class DatabaseConfiguration implements ConfigurationInterface
{

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('database');

// ... add node definitions to the root of the tree

return $treeBuilder;
}

}

Adding Node Definitions to the Tree

Variable Nodes

A tree contains node definitions which can be laid out in a semantic way. This means, using indentation
and the fluent notation, it is possible to reflect the real structure of the configuration values:

1
2
3
4
5
6
7
8
9
10

$rootNode
->children()

->booleanNode('auto_connect')
->defaultTrue()

->end()
->scalarNode('default_connection')

->defaultValue('default')
->end()

->end()
;

The root node itself is an array node, and has children, like the boolean node auto_connect and the
scalar node default_connection. In general: after defining a node, a call to end() takes you one
step up in the hierarchy.

Node Type

It is possible to validate the type of a provided value by using the appropriate node definition. Node types
are available for:

• scalar (generic type that includes booleans, strings, integers, floats and null)
• boolean
• integer
• float
• enum (similar to scalar, but it only allows a finite set of values)
• array
• variable (no validation)

1. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Builder/TreeBuilder.html

2. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Builder/TreeBuilder.html

3. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/ConfigurationInterface.html

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 44

http://sensiolabs.com

Listing 16-4

Listing 16-5

Listing 16-6

Listing 16-7

and are created with node($name, $type) or their associated shortcut xxxxNode($name) method.

Numeric Node Constraints

Numeric nodes (float and integer) provide two extra constraints - min()4 and max()5 - allowing to
validate the value:

1
2
3
4
5
6
7
8
9
10
11
12
13

$rootNode
->children()

->integerNode('positive_value')
->min(0)

->end()
->floatNode('big_value')

->max(5E45)
->end()
->integerNode('value_inside_a_range')

->min(-50)->max(50)
->end()

->end()
;

Enum Nodes

Enum nodes provide a constraint to match the given input against a set of values:

1
2
3
4
5
6
7

$rootNode
->children()

->enumNode('gender')
->values(array('male', 'female'))

->end()
->end()

;

This will restrict the gender option to be either male or female.

Array Nodes

It is possible to add a deeper level to the hierarchy, by adding an array node. The array node itself, may
have a pre-defined set of variable nodes:

1
2
3
4
5
6
7
8
9
10
11
12

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')->end()
->scalarNode('host')->end()
->scalarNode('username')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
;

Or you may define a prototype for each node inside an array node:

1
2
3
4

$rootNode
->children()

->arrayNode('connections')
->prototype('array')

4. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Builder/IntegerNodeDefinition.html#method_min

5. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Builder/IntegerNodeDefinition.html#method_max

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 45

http://sensiolabs.com

Listing 16-8

Listing 16-9

Listing 16-10

Listing 16-11

5
6
7
8
9
10
11
12
13
14

->children()
->scalarNode('driver')->end()
->scalarNode('host')->end()
->scalarNode('username')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
->end()

;

A prototype can be used to add a definition which may be repeated many times inside the current node.
According to the prototype definition in the example above, it is possible to have multiple connection
arrays (containing a driver, host, etc.).

Array Node Options

Before defining the children of an array node, you can provide options like:
useAttributeAsKey()useAttributeAsKey()

Provide the name of a child node, whose value should be used as the key in the resulting array. This
method also defines the way config array keys are treated, as explained in the following example.

requiresAtLeastOneElement()requiresAtLeastOneElement()

There should be at least one element in the array (works only when isRequired() is also called).

addDefaultsIfNotSet()addDefaultsIfNotSet()

If any child nodes have default values, use them if explicit values haven't been provided.

normalizeKeys(false)normalizeKeys(false)

If called (with false), keys with dashes are not normalized to underscores. It is recommended to
use this with prototype nodes where the user will define a key-value map, to avoid an unnecessary
transformation.

A basic prototyped array configuration can be defined as follows:

1
2
3
4
5
6
7
8

$node
->fixXmlConfig('driver')
->children()

->arrayNode('drivers')
->prototype('scalar')->end()

->end()
->end()

;

When using the following YAML configuration:

1 drivers: ['mysql', 'sqlite']

Or the following XML configuration:

1
2

<driver>mysql</driver>
<driver>sqlite</driver>

The processed configuration is:

Array(
[0] => 'mysql'
[1] => 'sqlite'

)

A more complex example would be to define a prototyped array with children:

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 46

http://sensiolabs.com

Listing 16-12

Listing 16-13

Listing 16-14

Listing 16-15

Listing 16-16

1
2
3
4
5
6
7
8
9
10
11
12
13
14

$node
->fixXmlConfig('connection')
->children()

->arrayNode('connections')
->prototype('array')

->children()
->scalarNode('table')->end()
->scalarNode('user')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
->end()

;

When using the following YAML configuration:

1
2
3

connections:
- { table: symfony, user: root, password: ~ }
- { table: foo, user: root, password: pa$$ }

Or the following XML configuration:

1
2

<connection table="symfony" user="root" password="null" />
<connection table="foo" user="root" password="pa$$" />

The processed configuration is:

1
2
3
4
5
6
7
8
9
10
11
12

Array(
[0] => Array(

[table] => 'symfony'
[user] => 'root'
[password] => null

)
[1] => Array(

[table] => 'foo'
[user] => 'root'
[password] => 'pa$$'

)
)

The previous output matches the expected result. However, given the configuration tree, when using the
following YAML configuration:

1
2
3
4
5
6
7
8
9

connections:
sf_connection:

table: symfony
user: root
password: ~

default:
table: foo
user: root
password: pa$$

The output configuration will be exactly the same as before. In other words, the sf_connection and
default configuration keys are lost. The reason is that the Symfony Config component treats arrays as
lists by default.

As of writing this, there is an inconsistency: if only one file provides the configuration in question,
the keys (i.e. sf_connection and default) are not lost. But if more than one file provides the
configuration, the keys are lost as described above.

In order to maintain the array keys use the useAttributeAsKey() method:

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 47

http://sensiolabs.com

Listing 16-17

Listing 16-18

Listing 16-19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

$node
->fixXmlConfig('connection')
->children()

->arrayNode('connections')
->useAttributeAsKey('name')
->prototype('array')

->children()
->scalarNode('table')->end()
->scalarNode('user')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
->end()

;

The argument of this method (name in the example above) defines the name of the attribute added to
each XML node to differentiate them. Now you can use the same YAML configuration shown before or
the following XML configuration:

1
2
3
4

<connection name="sf_connection"
table="symfony" user="root" password="null" />

<connection name="default"
table="foo" user="root" password="pa$$" />

In both cases, the processed configuration maintains the sf_connection and default keys:

1
2
3
4
5
6
7
8
9
10
11
12

Array(
[sf_connection] => Array(

[table] => 'symfony'
[user] => 'root'
[password] => null

)
[default] => Array(

[table] => 'foo'
[user] => 'root'
[password] => 'pa$$'

)
)

Default and Required Values
For all node types, it is possible to define default values and replacement values in case a node has a
certain value:
defaultValue()defaultValue()

Set a default value

isRequired()isRequired()

Must be defined (but may be empty)

cannotBeEmpty()cannotBeEmpty()

May not contain an empty value

default*()default*()

(null, true, false), shortcut for defaultValue()

treat*Like()treat*Like()

(null, true, false), provide a replacement value in case the value is *.

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 48

http://sensiolabs.com

Listing 16-20

Listing 16-21

Listing 16-22

Listing 16-23

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')
->isRequired()
->cannotBeEmpty()

->end()
->scalarNode('host')

->defaultValue('localhost')
->end()
->scalarNode('username')->end()
->scalarNode('password')->end()
->booleanNode('memory')

->defaultFalse()
->end()

->end()
->end()
->arrayNode('settings')

->addDefaultsIfNotSet()
->children()

->scalarNode('name')
->isRequired()
->cannotBeEmpty()
->defaultValue('value')

->end()
->end()

->end()
->end()

;

Documenting the Option

All options can be documented using the info()6 method.

1
2
3
4
5
6
7
8

$rootNode
->children()

->integerNode('entries_per_page')
->info('This value is only used for the search results page.')
->defaultValue(25)

->end()
->end()

;

The info will be printed as a comment when dumping the configuration tree with the config:dump-
reference command.

In YAML you may have:

1
2

This value is only used for the search results page.
entries_per_page: 25

and in XML:

1
2

<!-- entries-per-page: This value is only used for the search results page. -->
<config entries-per-page="25" />

6. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Builder/NodeDefinition.html#method_info

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 49

http://sensiolabs.com

Listing 16-24

Listing 16-25

Optional Sections
If you have entire sections which are optional and can be enabled/disabled, you can take advantage of
the shortcut canBeEnabled()7 and canBeDisabled()8 methods:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

$arrayNode
->canBeEnabled()

;

// is equivalent to

$arrayNode
->treatFalseLike(array('enabled' => false))
->treatTrueLike(array('enabled' => true))
->treatNullLike(array('enabled' => true))
->children()

->booleanNode('enabled')
->defaultFalse()

;

The canBeDisabled method looks about the same except that the section would be enabled by default.

Merging Options
Extra options concerning the merge process may be provided. For arrays:
performNoDeepMerging()performNoDeepMerging()

When the value is also defined in a second configuration array, don't try to merge an array, but
overwrite it entirely

For all nodes:
cannotBeOverwritten()cannotBeOverwritten()

don't let other configuration arrays overwrite an existing value for this node

Appending Sections
If you have a complex configuration to validate then the tree can grow to be large and you may want to
split it up into sections. You can do this by making a section a separate node and then appending it into
the main tree with append():

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('database');

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')
->isRequired()
->cannotBeEmpty()

->end()
->scalarNode('host')

->defaultValue('localhost')
->end()
->scalarNode('username')->end()

7. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Builder/ArrayNodeDefinition.html#method_canBeEnabled

8. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Builder/ArrayNodeDefinition.html#method_canBeDisabled

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 50

http://sensiolabs.com

Listing 16-26

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

->scalarNode('password')->end()
->booleanNode('memory')

->defaultFalse()
->end()

->end()
->append($this->addParametersNode())

->end()
->end()

;

return $treeBuilder;
}

public function addParametersNode()
{

$builder = new TreeBuilder();
$node = $builder->root('parameters');

$node
->isRequired()
->requiresAtLeastOneElement()
->useAttributeAsKey('name')
->prototype('array')

->children()
->scalarNode('value')->isRequired()->end()

->end()
->end()

;

return $node;
}

This is also useful to help you avoid repeating yourself if you have sections of the config that are repeated
in different places.

The example results in the following:

1
2
3
4
5
6
7
8
9
10
11
12

database:
connection:

driver: ~ # Required
host: localhost
username: ~
password: ~
memory: false
parameters: # Required

Prototype
name:

value: ~ # Required

Normalization
When the config files are processed they are first normalized, then merged and finally the tree is used
to validate the resulting array. The normalization process is used to remove some of the differences that
result from different configuration formats, mainly the differences between YAML and XML.

The separator used in keys is typically _ in YAML and - in XML. For example, auto_connect in YAML
and auto-connect in XML. The normalization would make both of these auto_connect.

The target key will not be altered if it's mixed like foo-bar_moo or if it already exists.

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 51

http://sensiolabs.com

Listing 16-27

Listing 16-28

Listing 16-29

Listing 16-30

Listing 16-31

Listing 16-32

Listing 16-33

Listing 16-34

Another difference between YAML and XML is in the way arrays of values may be represented. In YAML
you may have:

1
2

twig:
extensions: ['twig.extension.foo', 'twig.extension.bar']

and in XML:

1
2
3
4

<twig:config>
<twig:extension>twig.extension.foo</twig:extension>
<twig:extension>twig.extension.bar</twig:extension>

</twig:config>

This difference can be removed in normalization by pluralizing the key used in XML. You can specify
that you want a key to be pluralized in this way with fixXmlConfig():

1
2
3
4
5
6
7
8

$rootNode
->fixXmlConfig('extension')
->children()

->arrayNode('extensions')
->prototype('scalar')->end()

->end()
->end()

;

If it is an irregular pluralization you can specify the plural to use as a second argument:

1
2
3
4
5
6
7
8

$rootNode
->fixXmlConfig('child', 'children')
->children()

->arrayNode('children')
// ...

->end()
->end()

;

As well as fixing this, fixXmlConfig ensures that single XML elements are still turned into an array. So
you may have:

1
2

<connection>default</connection>
<connection>extra</connection>

and sometimes only:

1 <connection>default</connection>

By default connection would be an array in the first case and a string in the second making it difficult
to validate. You can ensure it is always an array with fixXmlConfig.

You can further control the normalization process if you need to. For example, you may want to allow a
string to be set and used as a particular key or several keys to be set explicitly. So that, if everything apart
from name is optional in this config:

1
2
3
4
5
6

connection:
name: my_mysql_connection
host: localhost
driver: mysql
username: user
password: pass

you can allow the following as well:

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 52

http://sensiolabs.com

Listing 16-35

Listing 16-36

1 connection: my_mysql_connection

By changing a string value into an associative array with name as the key:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

$rootNode
->children()

->arrayNode('connection')
->beforeNormalization()

->ifString()
->then(function ($v) { return array('name' => $v); })

->end()
->children()

->scalarNode('name')->isRequired()
// ...

->end()
->end()

->end()
;

Validation Rules

More advanced validation rules can be provided using the ExprBuilder9. This builder implements a
fluent interface for a well-known control structure. The builder is used for adding advanced validation
rules to node definitions, like:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')
->isRequired()
->validate()
->ifNotInArray(array('mysql', 'sqlite', 'mssql'))

->thenInvalid('Invalid database driver "%s"')
->end()

->end()
->end()

->end()
->end()

;

A validation rule always has an "if" part. You can specify this part in the following ways:

• ifTrue()

• ifString()

• ifNull()

• ifArray()

• ifInArray()

• ifNotInArray()

• always()

A validation rule also requires a "then" part:

• then()

• thenEmptyArray()

• thenInvalid()

• thenUnset()

9. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Builder/ExprBuilder.html

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 53

http://sensiolabs.com

Listing 16-37

Usually, "then" is a closure. Its return value will be used as a new value for the node, instead of the node's
original value.

Processing Configuration Values

The Processor10 uses the tree as it was built using the TreeBuilder11 to process multiple arrays of
configuration values that should be merged. If any value is not of the expected type, is mandatory and
yet undefined, or could not be validated in some other way, an exception will be thrown. Otherwise the
result is a clean array of configuration values:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

use Symfony\Component\Yaml\Yaml;
use Symfony\Component\Config\Definition\Processor;
use Acme\DatabaseConfiguration;

$config1 = Yaml::parse(
file_get_contents(__DIR__.'/src/Matthias/config/config.yml')

);
$config2 = Yaml::parse(

file_get_contents(__DIR__.'/src/Matthias/config/config_extra.yml')
);

$configs = array($config1, $config2);

$processor = new Processor();
$configuration = new DatabaseConfiguration();
$processedConfiguration = $processor->processConfiguration(

$configuration,
$configs

);

10. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Processor.html

11. http://api.symfony.com/3.1/Symfony/Component/Config/Definition/Builder/TreeBuilder.html

PDF brought to you by

generated on July 29, 2016

Chapter 16: Defining and Processing Configuration Values | 54

http://sensiolabs.com

Listing 17-1

Chapter 17

Loading Resources

The IniFileLoader parses the file contents using the parse_ini_file1 function. Therefore,
you can only set parameters to string values. To set parameters to other data types (e.g. boolean,
integer, etc), the other loaders are recommended.

Locating Resources
Loading the configuration normally starts with a search for resources, mostly files. This can be done with
the FileLocator2:

1
2
3
4
5
6

use Symfony\Component\Config\FileLocator;

$configDirectories = array(__DIR__.'/app/config');

$locator = new FileLocator($configDirectories);
$yamlUserFiles = $locator->locate('users.yml', null, false);

The locator receives a collection of locations where it should look for files. The first argument of
locate() is the name of the file to look for. The second argument may be the current path and when
supplied, the locator will look in this directory first. The third argument indicates whether or not the
locator should return the first file it has found or an array containing all matches.

Resource Loaders
For each type of resource (YAML, XML, annotation, etc.) a loader must be defined. Each loader should
implement LoaderInterface3 or extend the abstract FileLoader4 class, which allows for recursively
importing other resources:

1. http://php.net/manual/en/function.parse-ini-file.php

2. http://api.symfony.com/3.1/Symfony/Component/Config/FileLocator.html

3. http://api.symfony.com/3.1/Symfony/Component/Config/Loader/LoaderInterface.html

4. http://api.symfony.com/3.1/Symfony/Component/Config/Loader/FileLoader.html

PDF brought to you by

generated on July 29, 2016

Chapter 17: Loading Resources | 55

http://sensiolabs.com

Listing 17-2

Listing 17-3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

use Symfony\Component\Config\Loader\FileLoader;
use Symfony\Component\Yaml\Yaml;

class YamlUserLoader extends FileLoader
{

public function load($resource, $type = null)
{

$configValues = Yaml::parse(file_get_contents($resource));

// ... handle the config values

// maybe import some other resource:

// $this->import('extra_users.yml');
}

public function supports($resource, $type = null)
{

return is_string($resource) && 'yml' === pathinfo(
$resource,
PATHINFO_EXTENSION

);
}

}

Finding the Right Loader

The LoaderResolver5 receives as its first constructor argument a collection of loaders. When a
resource (for instance an XML file) should be loaded, it loops through this collection of loaders and
returns the loader which supports this particular resource type.

The DelegatingLoader6 makes use of the LoaderResolver7. When it is asked to load a resource, it
delegates this question to the LoaderResolver8. In case the resolver has found a suitable loader, this
loader will be asked to load the resource:

1
2
3
4
5
6
7
8
9
10
11

use Symfony\Component\Config\Loader\LoaderResolver;
use Symfony\Component\Config\Loader\DelegatingLoader;

$loaderResolver = new LoaderResolver(array(new YamlUserLoader($locator)));
$delegatingLoader = new DelegatingLoader($loaderResolver);

$delegatingLoader->load(__DIR__.'/users.yml');
/*
The YamlUserLoader will be used to load this resource,
since it supports files with a "yml" extension
*/

5. http://api.symfony.com/3.1/Symfony/Component/Config/Loader/LoaderResolver.html

6. http://api.symfony.com/3.1/Symfony/Component/Config/Loader/DelegatingLoader.html

7. http://api.symfony.com/3.1/Symfony/Component/Config/Loader/LoaderResolver.html

8. http://api.symfony.com/3.1/Symfony/Component/Config/Loader/LoaderResolver.html

PDF brought to you by

generated on July 29, 2016

Chapter 17: Loading Resources | 56

http://sensiolabs.com

	The Components Book Version: 3.1 generated on July 29, 2016
	

	Contents at a Glance
	How to Install and Use the Symfony Components
	Using the Finder Component
	Using all of the Components
	Now what?

	The Asset Component
	Installation
	Usage
	Asset Packages
	Versioned Assets
	Custom Version Strategies

	Grouped Assets
	Request Context Aware Assets

	Absolute Assets and CDNs
	Request Context Aware Assets

	Named Packages

	Learn more

	The BrowserKit Component
	Installation
	Basic Usage
	Creating a Client
	Making Requests
	Clicking Links
	Submitting Forms

	Cookies
	Retrieving Cookies
	Looping Through Cookies
	Setting Cookies

	History
	Learn more

	The Cache Component
	Installation
	Key Concepts
	Basic Usage
	Advanced Usage

	Cache Items
	Cache Item Keys and Values
	Creating Cache Items
	Cache Item Expiration

	Cache Item Hits and Misses

	Cache Pools
	Creating Cache Pools
	Array Cache Adapter
	Filesystem Cache Adapter
	APCu Cache Adapter
	Redis Cache Adapter
	Chain Cache Adapter
	Proxy Cache Adapter
	Doctrine Cache Adapter

	Looking for Cache Items
	Saving Cache Items
	Removing Cache Items

	The ClassLoader Component
	Usage
	Installation
	Learn More

	The PSR-0 Class Loader
	Usage

	Cache a Class Loader
	ApcClassLoader
	XcacheClassLoader

	The Class Map Generator
	Generating a Class Map
	Dumping the Class Map

	Debugging a Class Loader
	MapClassLoader
	Usage

	The PSR-4 Class Loader
	Usage

	The Config Component
	Installation
	Learn More

	Caching based on Resources
	Defining and Processing Configuration Values
	Validating Configuration Values
	Defining a Hierarchy of Configuration Values Using the TreeBuilder
	Adding Node Definitions to the Tree
	Variable Nodes
	Node Type
	Numeric Node Constraints
	Enum Nodes
	Array Nodes
	Array Node Options

	Default and Required Values
	Documenting the Option
	Optional Sections
	Merging Options
	Appending Sections
	Normalization
	Validation Rules
	Processing Configuration Values

	Loading Resources
	Locating Resources
	Resource Loaders
	Finding the Right Loader

