Permalink
2134 lines (1777 sloc) 75.5 KB
"""
This module contains functions to:
- solve a single equation for a single variable, in any domain either real or complex.
- solve a system of linear equations with N variables and M equations.
- solve a system of Non Linear Equations with N variables and M equations
"""
from __future__ import print_function, division
from sympy.core.sympify import sympify
from sympy.core import S, Pow, Dummy, pi, Expr, Wild, Mul, Equality
from sympy.core.numbers import I, Number, Rational, oo
from sympy.core.function import (Lambda, expand, expand_complex)
from sympy.core.relational import Eq
from sympy.simplify.simplify import simplify, fraction, trigsimp
from sympy.core.symbol import Symbol
from sympy.functions import (log, Abs, tan, cot, sin, cos, sec, csc, exp,
acos, asin, acsc, asec, arg,
piecewise_fold)
from sympy.functions.elementary.trigonometric import (TrigonometricFunction,
HyperbolicFunction)
from sympy.functions.elementary.miscellaneous import real_root
from sympy.sets import (FiniteSet, EmptySet, imageset, Interval, Intersection,
Union, ConditionSet, ImageSet, Complement)
from sympy.matrices import Matrix
from sympy.polys import (roots, Poly, degree, together, PolynomialError,
RootOf)
from sympy.solvers.solvers import checksol, denoms, unrad, _simple_dens
from sympy.solvers.polysys import solve_poly_system
from sympy.solvers.inequalities import solve_univariate_inequality
from sympy.utilities import filldedent
from sympy.calculus.util import periodicity
from sympy.core.compatibility import ordered, default_sort_key
def _invert(f_x, y, x, domain=S.Complexes):
"""
Reduce the complex valued equation ``f(x) = y`` to a set of equations
``{g(x) = h_1(y), g(x) = h_2(y), ..., g(x) = h_n(y) }`` where ``g(x)`` is
a simpler function than ``f(x)``. The return value is a tuple ``(g(x),
set_h)``, where ``g(x)`` is a function of ``x`` and ``set_h`` is
the set of function ``{h_1(y), h_2(y), ..., h_n(y)}``.
Here, ``y`` is not necessarily a symbol.
The ``set_h`` contains the functions along with the information
about their domain in which they are valid, through set
operations. For instance, if ``y = Abs(x) - n``, is inverted
in the real domain, then, the ``set_h`` doesn't simply return
`{-n, n}`, as the nature of `n` is unknown; rather it will return:
`Intersection([0, oo) {n}) U Intersection((-oo, 0], {-n})`
By default, the complex domain is used but note that inverting even
seemingly simple functions like ``exp(x)`` can give very different
result in the complex domain than are obtained in the real domain.
(In the case of ``exp(x)``, the inversion via ``log`` is multi-valued
in the complex domain, having infinitely many branches.)
If you are working with real values only (or you are not sure which
function to use) you should probably use set the domain to
``S.Reals`` (or use `invert\_real` which does that automatically).
Examples
========
>>> from sympy.solvers.solveset import invert_complex, invert_real
>>> from sympy.abc import x, y
>>> from sympy import exp, log
When does exp(x) == y?
>>> invert_complex(exp(x), y, x)
(x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers()))
>>> invert_real(exp(x), y, x)
(x, Intersection((-oo, oo), {log(y)}))
When does exp(x) == 1?
>>> invert_complex(exp(x), 1, x)
(x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers()))
>>> invert_real(exp(x), 1, x)
(x, {0})
See Also
========
invert_real, invert_complex
"""
x = sympify(x)
if not x.is_Symbol:
raise ValueError("x must be a symbol")
f_x = sympify(f_x)
if not f_x.has(x):
raise ValueError("Inverse of constant function doesn't exist")
y = sympify(y)
if y.has(x):
raise ValueError("y should be independent of x ")
if domain.is_subset(S.Reals):
x, s = _invert_real(f_x, FiniteSet(y), x)
else:
x, s = _invert_complex(f_x, FiniteSet(y), x)
return x, s.intersection(domain) if isinstance(s, FiniteSet) else s
invert_complex = _invert
def invert_real(f_x, y, x, domain=S.Reals):
"""
Inverts a real-valued function. Same as _invert, but sets
the domain to ``S.Reals`` before inverting.
"""
return _invert(f_x, y, x, domain)
def _invert_real(f, g_ys, symbol):
"""Helper function for _invert."""
if f == symbol:
return (f, g_ys)
n = Dummy('n', real=True)
if hasattr(f, 'inverse') and not isinstance(f, (
TrigonometricFunction,
HyperbolicFunction,
)):
if len(f.args) > 1:
raise ValueError("Only functions with one argument are supported.")
return _invert_real(f.args[0],
imageset(Lambda(n, f.inverse()(n)), g_ys),
symbol)
if isinstance(f, Abs):
pos = Interval(0, S.Infinity)
neg = Interval(S.NegativeInfinity, 0)
return _invert_real(f.args[0],
Union(imageset(Lambda(n, n), g_ys).intersect(pos),
imageset(Lambda(n, -n), g_ys).intersect(neg)), symbol)
if f.is_Add:
# f = g + h
g, h = f.as_independent(symbol)
if g is not S.Zero:
return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol)
if f.is_Mul:
# f = g*h
g, h = f.as_independent(symbol)
if g is not S.One:
return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol)
if f.is_Pow:
base, expo = f.args
base_has_sym = base.has(symbol)
expo_has_sym = expo.has(symbol)
if not expo_has_sym:
res = imageset(Lambda(n, real_root(n, expo)), g_ys)
if expo.is_rational:
numer, denom = expo.as_numer_denom()
if numer == S.One or numer == - S.One:
return _invert_real(base, res, symbol)
else:
if numer % 2 == 0:
n = Dummy('n')
neg_res = imageset(Lambda(n, -n), res)
return _invert_real(base, res + neg_res, symbol)
else:
return _invert_real(base, res, symbol)
else:
if not base.is_positive:
raise ValueError("x**w where w is irrational is not "
"defined for negative x")
return _invert_real(base, res, symbol)
if not base_has_sym:
return _invert_real(expo,
imageset(Lambda(n, log(n)/log(base)), g_ys), symbol)
if isinstance(f, TrigonometricFunction):
if isinstance(g_ys, FiniteSet):
def inv(trig):
if isinstance(f, (sin, csc)):
F = asin if isinstance(f, sin) else acsc
return (lambda a: n*pi + (-1)**n*F(a),)
if isinstance(f, (cos, sec)):
F = acos if isinstance(f, cos) else asec
return (
lambda a: 2*n*pi + F(a),
lambda a: 2*n*pi - F(a),)
if isinstance(f, (tan, cot)):
return (lambda a: n*pi + f.inverse()(a),)
n = Dummy('n', integer=True)
invs = S.EmptySet
for L in inv(f):
invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys])
return _invert_real(f.args[0], invs, symbol)
return (f, g_ys)
def _invert_complex(f, g_ys, symbol):
"""Helper function for _invert."""
if f == symbol:
return (f, g_ys)
n = Dummy('n')
if f.is_Add:
# f = g + h
g, h = f.as_independent(symbol)
if g is not S.Zero:
return _invert_complex(h, imageset(Lambda(n, n - g), g_ys), symbol)
if f.is_Mul:
# f = g*h
g, h = f.as_independent(symbol)
if g is not S.One:
return _invert_complex(h, imageset(Lambda(n, n/g), g_ys), symbol)
if hasattr(f, 'inverse') and \
not isinstance(f, TrigonometricFunction) and \
not isinstance(f, exp):
if len(f.args) > 1:
raise ValueError("Only functions with one argument are supported.")
return _invert_complex(f.args[0],
imageset(Lambda(n, f.inverse()(n)), g_ys), symbol)
if isinstance(f, exp):
if isinstance(g_ys, FiniteSet):
exp_invs = Union(*[imageset(Lambda(n, I*(2*n*pi + arg(g_y)) +
log(Abs(g_y))), S.Integers)
for g_y in g_ys if g_y != 0])
return _invert_complex(f.args[0], exp_invs, symbol)
return (f, g_ys)
def domain_check(f, symbol, p):
"""Returns False if point p is infinite or any subexpression of f
is infinite or becomes so after replacing symbol with p. If none of
these conditions is met then True will be returned.
Examples
========
>>> from sympy import Mul, oo
>>> from sympy.abc import x
>>> from sympy.solvers.solveset import domain_check
>>> g = 1/(1 + (1/(x + 1))**2)
>>> domain_check(g, x, -1)
False
>>> domain_check(x**2, x, 0)
True
>>> domain_check(1/x, x, oo)
False
* The function relies on the assumption that the original form
of the equation has not been changed by automatic simplification.
>>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1
True
* To deal with automatic evaluations use evaluate=False:
>>> domain_check(Mul(x, 1/x, evaluate=False), x, 0)
False
"""
f, p = sympify(f), sympify(p)
if p.is_infinite:
return False
return _domain_check(f, symbol, p)
def _domain_check(f, symbol, p):
# helper for domain check
if f.is_Atom and f.is_finite:
return True
elif f.subs(symbol, p).is_infinite:
return False
else:
return all([_domain_check(g, symbol, p)
for g in f.args])
def _is_finite_with_finite_vars(f, domain=S.Complexes):
"""
Return True if the given expression is finite. For symbols that
don't assign a value for `complex` and/or `real`, the domain will
be used to assign a value; symbols that don't assign a value
for `finite` will be made finite. All other assumptions are
left unmodified.
"""
def assumptions(s):
A = s.assumptions0
if A.get('finite', None) is None:
A['finite'] = True
A.setdefault('complex', True)
A.setdefault('real', domain.is_subset(S.Reals))
return A
reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols}
return f.xreplace(reps).is_finite
def _is_function_class_equation(func_class, f, symbol):
""" Tests whether the equation is an equation of the given function class.
The given equation belongs to the given function class if it is
comprised of functions of the function class which are multiplied by
or added to expressions independent of the symbol. In addition, the
arguments of all such functions must be linear in the symbol as well.
Examples
========
>>> from sympy.solvers.solveset import _is_function_class_equation
>>> from sympy import tan, sin, tanh, sinh, exp
>>> from sympy.abc import x
>>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction,
... HyperbolicFunction)
>>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x)
False
>>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x)
True
>>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x)
False
>>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x)
True
>>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x)
True
"""
if f.is_Mul or f.is_Add:
return all(_is_function_class_equation(func_class, arg, symbol)
for arg in f.args)
if f.is_Pow:
if not f.exp.has(symbol):
return _is_function_class_equation(func_class, f.base, symbol)
else:
return False
if not f.has(symbol):
return True
if isinstance(f, func_class):
try:
g = Poly(f.args[0], symbol)
return g.degree() <= 1
except PolynomialError:
return False
else:
return False
def _solve_as_rational(f, symbol, domain):
""" solve rational functions"""
f = together(f, deep=True)
g, h = fraction(f)
if not h.has(symbol):
return _solve_as_poly(g, symbol, domain)
else:
valid_solns = _solveset(g, symbol, domain)
invalid_solns = _solveset(h, symbol, domain)
return valid_solns - invalid_solns
def _solve_trig(f, symbol, domain):
""" Helper to solve trigonometric equations """
f = trigsimp(f)
f_original = f
f = f.rewrite(exp)
f = together(f)
g, h = fraction(f)
y = Dummy('y')
g, h = g.expand(), h.expand()
g, h = g.subs(exp(I*symbol), y), h.subs(exp(I*symbol), y)
if g.has(symbol) or h.has(symbol):
return ConditionSet(symbol, Eq(f, 0), S.Reals)
solns = solveset_complex(g, y) - solveset_complex(h, y)
if isinstance(solns, FiniteSet):
result = Union(*[invert_complex(exp(I*symbol), s, symbol)[1]
for s in solns])
return Intersection(result, domain)
elif solns is S.EmptySet:
return S.EmptySet
else:
return ConditionSet(symbol, Eq(f_original, 0), S.Reals)
def _solve_as_poly(f, symbol, domain=S.Complexes):
"""
Solve the equation using polynomial techniques if it already is a
polynomial equation or, with a change of variables, can be made so.
"""
result = None
if f.is_polynomial(symbol):
solns = roots(f, symbol, cubics=True, quartics=True,
quintics=True, domain='EX')
num_roots = sum(solns.values())
if degree(f, symbol) <= num_roots:
result = FiniteSet(*solns.keys())
else:
poly = Poly(f, symbol)
solns = poly.all_roots()
if poly.degree() <= len(solns):
result = FiniteSet(*solns)
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
else:
poly = Poly(f)
if poly is None:
result = ConditionSet(symbol, Eq(f, 0), domain)
gens = [g for g in poly.gens if g.has(symbol)]
if len(gens) == 1:
poly = Poly(poly, gens[0])
gen = poly.gen
deg = poly.degree()
poly = Poly(poly.as_expr(), poly.gen, composite=True)
poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True,
quintics=True).keys())
if len(poly_solns) < deg:
result = ConditionSet(symbol, Eq(f, 0), domain)
if gen != symbol:
y = Dummy('y')
inverter = invert_real if domain.is_subset(S.Reals) else invert_complex
lhs, rhs_s = inverter(gen, y, symbol)
if lhs == symbol:
result = Union(*[rhs_s.subs(y, s) for s in poly_solns])
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
if result is not None:
if isinstance(result, FiniteSet):
# this is to simplify solutions like -sqrt(-I) to sqrt(2)/2
# - sqrt(2)*I/2. We are not expanding for solution with free
# variables because that makes the solution more complicated. For
# example expand_complex(a) returns re(a) + I*im(a)
if all([s.free_symbols == set() and not isinstance(s, RootOf)
for s in result]):
s = Dummy('s')
result = imageset(Lambda(s, expand_complex(s)), result)
if isinstance(result, FiniteSet):
result = result.intersection(domain)
return result
else:
return ConditionSet(symbol, Eq(f, 0), domain)
def _has_rational_power(expr, symbol):
"""
Returns (bool, den) where bool is True if the term has a
non-integer rational power and den is the denominator of the
expression's exponent.
Examples
========
>>> from sympy.solvers.solveset import _has_rational_power
>>> from sympy import sqrt
>>> from sympy.abc import x
>>> _has_rational_power(sqrt(x), x)
(True, 2)
>>> _has_rational_power(x**2, x)
(False, 1)
"""
a, p, q = Wild('a'), Wild('p'), Wild('q')
pattern_match = expr.match(a*p**q) or {}
if pattern_match.get(a, S.Zero) is S.Zero:
return (False, S.One)
elif p not in pattern_match.keys():
return (False, S.One)
elif isinstance(pattern_match[q], Rational) \
and pattern_match[p].has(symbol):
if not pattern_match[q].q == S.One:
return (True, pattern_match[q].q)
if not isinstance(pattern_match[a], Pow) \
or isinstance(pattern_match[a], Mul):
return (False, S.One)
else:
return _has_rational_power(pattern_match[a], symbol)
def _solve_radical(f, symbol, solveset_solver):
""" Helper function to solve equations with radicals """
eq, cov = unrad(f)
if not cov:
result = solveset_solver(eq, symbol) - \
Union(*[solveset_solver(g, symbol) for g in denoms(f, [symbol])])
else:
y, yeq = cov
if not solveset_solver(y - I, y):
yreal = Dummy('yreal', real=True)
yeq = yeq.xreplace({y: yreal})
eq = eq.xreplace({y: yreal})
y = yreal
g_y_s = solveset_solver(yeq, symbol)
f_y_sols = solveset_solver(eq, y)
result = Union(*[imageset(Lambda(y, g_y), f_y_sols)
for g_y in g_y_s])
if isinstance(result, Complement):
solution_set = result
else:
f_set = [] # solutions for FiniteSet
c_set = [] # solutions for ConditionSet
for s in result:
if checksol(f, symbol, s):
f_set.append(s)
else:
c_set.append(s)
solution_set = FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set))
return solution_set
def _solve_abs(f, symbol, domain):
""" Helper function to solve equation involving absolute value function """
if not domain.is_subset(S.Reals):
raise ValueError(filldedent('''
Absolute values cannot be inverted in the
complex domain.'''))
p, q, r = Wild('p'), Wild('q'), Wild('r')
pattern_match = f.match(p*Abs(q) + r) or {}
if not pattern_match.get(p, S.Zero).is_zero:
f_p, f_q, f_r = pattern_match[p], pattern_match[q], pattern_match[r]
q_pos_cond = solve_univariate_inequality(f_q >= 0, symbol,
relational=False)
q_neg_cond = solve_univariate_inequality(f_q < 0, symbol,
relational=False)
sols_q_pos = solveset_real(f_p*f_q + f_r,
symbol).intersect(q_pos_cond)
sols_q_neg = solveset_real(f_p*(-f_q) + f_r,
symbol).intersect(q_neg_cond)
return Union(sols_q_pos, sols_q_neg)
else:
return ConditionSet(symbol, Eq(f, 0), domain)
def solve_decomposition(f, symbol, domain):
"""
Function to solve equations via the principle of "Decomposition
and Rewriting".
Examples
========
>>> from sympy import exp, sin, Symbol, pprint, S
>>> from sympy.solvers.solveset import solve_decomposition as sd
>>> x = Symbol('x')
>>> f1 = exp(2*x) - 3*exp(x) + 2
>>> sd(f1, x, S.Reals)
{0, log(2)}
>>> f2 = sin(x)**2 + 2*sin(x) + 1
>>> pprint(sd(f2, x, S.Reals), use_unicode=False)
3*pi
{2*n*pi + ---- | n in Integers()}
2
>>> f3 = sin(x + 2)
>>> pprint(sd(f3, x, S.Reals), use_unicode=False)
{2*n*pi - 2 | n in Integers()} U {pi*(2*n + 1) - 2 | n in Integers()}
"""
from sympy.solvers.decompogen import decompogen
from sympy.calculus.util import function_range
# decompose the given function
g_s = decompogen(f, symbol)
# `y_s` represents the set of values for which the function `g` is to be
# solved.
# `solutions` represent the solutions of the equations `g = y_s` or
# `g = 0` depending on the type of `y_s`.
# As we are interested in solving the equation: f = 0
y_s = FiniteSet(0)
for g in g_s:
frange = function_range(g, symbol, domain)
y_s = Intersection(frange, y_s)
result = S.EmptySet
if isinstance(y_s, FiniteSet):
for y in y_s:
solutions = solveset(Eq(g, y), symbol, domain)
if not isinstance(solutions, ConditionSet):
result += solutions
else:
if isinstance(y_s, ImageSet):
iter_iset = (y_s,)
elif isinstance(y_s, Union):
iter_iset = y_s.args
for iset in iter_iset:
new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain)
dummy_var = tuple(iset.lamda.expr.free_symbols)[0]
base_set = iset.base_set
if isinstance(new_solutions, FiniteSet):
new_exprs = new_solutions
elif isinstance(new_solutions, Intersection):
if isinstance(new_solutions.args[1], FiniteSet):
new_exprs = new_solutions.args[1]
for new_expr in new_exprs:
result += ImageSet(Lambda(dummy_var, new_expr), base_set)
if result is S.EmptySet:
return ConditionSet(symbol, Eq(f, 0), domain)
y_s = result
return y_s
def _solveset(f, symbol, domain, _check=False):
"""Helper for solveset to return a result from an expression
that has already been sympify'ed and is known to contain the
given symbol."""
# _check controls whether the answer is checked or not
from sympy.simplify.simplify import signsimp
orig_f = f
f = together(f)
if f.is_Mul:
_, f = f.as_independent(symbol, as_Add=False)
if f.is_Add:
a, h = f.as_independent(symbol)
m, h = h.as_independent(symbol, as_Add=False)
f = a/m + h # XXX condition `m != 0` should be added to soln
f = piecewise_fold(f)
# assign the solvers to use
solver = lambda f, x, domain=domain: _solveset(f, x, domain)
if domain.is_subset(S.Reals):
inverter_func = invert_real
else:
inverter_func = invert_complex
inverter = lambda f, rhs, symbol: inverter_func(f, rhs, symbol, domain)
result = EmptySet()
if f.expand().is_zero:
return domain
elif not f.has(symbol):
return EmptySet()
elif f.is_Mul and all(_is_finite_with_finite_vars(m, domain)
for m in f.args):
# if f(x) and g(x) are both finite we can say that the solution of
# f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in
# general. g(x) can grow to infinitely large for the values where
# f(x) == 0. To be sure that we are not silently allowing any
# wrong solutions we are using this technique only if both f and g are
# finite for a finite input.
result = Union(*[solver(m, symbol) for m in f.args])
elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \
_is_function_class_equation(HyperbolicFunction, f, symbol):
result = _solve_trig(f, symbol, domain)
elif f.is_Piecewise:
dom = domain
result = EmptySet()
expr_set_pairs = f.as_expr_set_pairs()
for (expr, in_set) in expr_set_pairs:
if in_set.is_Relational:
in_set = in_set.as_set()
if in_set.is_Interval:
dom -= in_set
solns = solver(expr, symbol, in_set)
result += solns
else:
lhs, rhs_s = inverter(f, 0, symbol)
if lhs == symbol:
# do some very minimal simplification since
# repeated inversion may have left the result
# in a state that other solvers (e.g. poly)
# would have simplified; this is done here
# rather than in the inverter since here it
# is only done once whereas there it would
# be repeated for each step of the inversion
if isinstance(rhs_s, FiniteSet):
rhs_s = FiniteSet(*[Mul(*
signsimp(i).as_content_primitive())
for i in rhs_s])
result = rhs_s
elif isinstance(rhs_s, FiniteSet):
for equation in [lhs - rhs for rhs in rhs_s]:
if equation == f:
if any(_has_rational_power(g, symbol)[0]
for g in equation.args) or _has_rational_power(
equation, symbol)[0]:
result += _solve_radical(equation,
symbol,
solver)
elif equation.has(Abs):
result += _solve_abs(f, symbol, domain)
else:
result += _solve_as_rational(equation, symbol, domain)
else:
result += solver(equation, symbol)
elif rhs_s is not S.EmptySet:
result = ConditionSet(symbol, Eq(f, 0), domain)
if _check:
if isinstance(result, ConditionSet):
# it wasn't solved or has enumerated all conditions
# -- leave it alone
return result
# whittle away all but the symbol-containing core
# to use this for testing
fx = orig_f.as_independent(symbol, as_Add=True)[1]
fx = fx.as_independent(symbol, as_Add=False)[1]
if isinstance(result, FiniteSet):
# check the result for invalid solutions
result = FiniteSet(*[s for s in result
if isinstance(s, RootOf)
or domain_check(fx, symbol, s)])
return result
def solveset(f, symbol=None, domain=S.Complexes):
"""Solves a given inequality or equation with set as output
Parameters
==========
f : Expr or a relational.
The target equation or inequality
symbol : Symbol
The variable for which the equation is solved
domain : Set
The domain over which the equation is solved
Returns
=======
Set
A set of values for `symbol` for which `f` is True or is equal to
zero. An `EmptySet` is returned if `f` is False or nonzero.
A `ConditionSet` is returned as unsolved object if algorithms
to evaluate complete solution are not yet implemented.
`solveset` claims to be complete in the solution set that it returns.
Raises
======
NotImplementedError
The algorithms to solve inequalities in complex domain are
not yet implemented.
ValueError
The input is not valid.
RuntimeError
It is a bug, please report to the github issue tracker.
Notes
=====
Python interprets 0 and 1 as False and True, respectively, but
in this function they refer to solutions of an expression. So 0 and 1
return the Domain and EmptySet, respectively, while True and False
return the opposite (as they are assumed to be solutions of relational
expressions).
See Also
========
solveset_real: solver for real domain
solveset_complex: solver for complex domain
Examples
========
>>> from sympy import exp, sin, Symbol, pprint, S
>>> from sympy.solvers.solveset import solveset, solveset_real
* The default domain is complex. Not specifying a domain will lead
to the solving of the equation in the complex domain (and this
is not affected by the assumptions on the symbol):
>>> x = Symbol('x')
>>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
{2*n*I*pi | n in Integers()}
>>> x = Symbol('x', real=True)
>>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
{2*n*I*pi | n in Integers()}
* If you want to use `solveset` to solve the equation in the
real domain, provide a real domain. (Using `solveset\_real`
does this automatically.)
>>> R = S.Reals
>>> x = Symbol('x')
>>> solveset(exp(x) - 1, x, R)
{0}
>>> solveset_real(exp(x) - 1, x)
{0}
The solution is mostly unaffected by assumptions on the symbol,
but there may be some slight difference:
>>> pprint(solveset(sin(x)/x,x), use_unicode=False)
({2*n*pi | n in Integers()} \ {0}) U ({2*n*pi + pi | n in Integers()} \ {0})
>>> p = Symbol('p', positive=True)
>>> pprint(solveset(sin(p)/p, p), use_unicode=False)
{2*n*pi | n in Integers()} U {2*n*pi + pi | n in Integers()}
* Inequalities can be solved over the real domain only. Use of a complex
domain leads to a NotImplementedError.
>>> solveset(exp(x) > 1, x, R)
(0, oo)
"""
f = sympify(f)
if f is S.true:
return domain
if f is S.false:
return S.EmptySet
if not isinstance(f, (Expr, Number)):
raise ValueError("%s is not a valid SymPy expression" % (f))
free_symbols = f.free_symbols
if not free_symbols:
b = Eq(f, 0)
if b is S.true:
return domain
elif b is S.false:
return S.EmptySet
else:
raise NotImplementedError(filldedent('''
relationship between value and 0 is unknown: %s''' % b))
if symbol is None:
if len(free_symbols) == 1:
symbol = free_symbols.pop()
else:
raise ValueError(filldedent('''
The independent variable must be specified for a
multivariate equation.'''))
elif not getattr(symbol, 'is_Symbol', False):
raise ValueError('A Symbol must be given, not type %s: %s' %
(type(symbol), symbol))
if isinstance(f, Eq):
from sympy.core import Add
f = Add(f.lhs, - f.rhs, evaluate=False)
elif f.is_Relational:
if not domain.is_subset(S.Reals):
raise NotImplementedError(filldedent('''
Inequalities in the complex domain are
not supported. Try the real domain by
setting domain=S.Reals'''))
try:
result = solve_univariate_inequality(
f, symbol, relational=False) - _invalid_solutions(
f, symbol, domain)
except NotImplementedError:
result = ConditionSet(symbol, f, domain)
return result
return _solveset(f, symbol, domain, _check=True)
def _invalid_solutions(f, symbol, domain):
bad = S.EmptySet
for d in denoms(f):
bad += _solveset(d, symbol, domain, _check=False)
return bad
def solveset_real(f, symbol):
return solveset(f, symbol, S.Reals)
def solveset_complex(f, symbol):
return solveset(f, symbol, S.Complexes)
def solvify(f, symbol, domain):
"""Solves an equation using solveset and returns the solution in accordance
with the `solve` output API.
Returns
=======
We classify the output based on the type of solution returned by `solveset`.
Solution | Output
----------------------------------------
FiniteSet | list
ImageSet, | list (if `f` is periodic)
Union |
EmptySet | empty list
Others | None
Raises
======
NotImplementedError
A ConditionSet is the input.
Examples
========
>>> from sympy.solvers.solveset import solvify, solveset
>>> from sympy.abc import x
>>> from sympy import S, tan, sin, exp
>>> solvify(x**2 - 9, x, S.Reals)
[-3, 3]
>>> solvify(sin(x) - 1, x, S.Reals)
[pi/2]
>>> solvify(tan(x), x, S.Reals)
[0]
>>> solvify(exp(x) - 1, x, S.Complexes)
>>> solvify(exp(x) - 1, x, S.Reals)
[0]
"""
solution_set = solveset(f, symbol, domain)
result = None
if solution_set is S.EmptySet:
result = []
elif isinstance(solution_set, ConditionSet):
raise NotImplementedError('solveset is unable to solve this equation.')
elif isinstance(solution_set, FiniteSet):
result = list(solution_set)
else:
period = periodicity(f, symbol)
if period is not None:
solutions = S.EmptySet
if isinstance(solution_set, ImageSet):
iter_solutions = (solution_set,)
elif isinstance(solution_set, Union):
if all(isinstance(i, ImageSet) for i in solution_set.args):
iter_solutions = solution_set.args
for solution in iter_solutions:
solutions += solution.intersect(Interval(0, period, False, True))
if isinstance(solutions, FiniteSet):
result = list(solutions)
else:
solution = solution_set.intersect(domain)
if isinstance(solution, FiniteSet):
result += solution
return result
###############################################################################
################################ LINSOLVE #####################################
###############################################################################
def linear_eq_to_matrix(equations, *symbols):
r"""
Converts a given System of Equations into Matrix form.
Here `equations` must be a linear system of equations in
`symbols`. The order of symbols in input `symbols` will
determine the order of coefficients in the returned
Matrix.
The Matrix form corresponds to the augmented matrix form.
For example:
.. math:: 4x + 2y + 3z = 1
.. math:: 3x + y + z = -6
.. math:: 2x + 4y + 9z = 2
This system would return `A` & `b` as given below:
::
[ 4 2 3 ] [ 1 ]
A = [ 3 1 1 ] b = [-6 ]
[ 2 4 9 ] [ 2 ]
Examples
========
>>> from sympy import linear_eq_to_matrix, symbols
>>> x, y, z = symbols('x, y, z')
>>> eqns = [x + 2*y + 3*z - 1, 3*x + y + z + 6, 2*x + 4*y + 9*z - 2]
>>> A, b = linear_eq_to_matrix(eqns, [x, y, z])
>>> A
Matrix([
[1, 2, 3],
[3, 1, 1],
[2, 4, 9]])
>>> b
Matrix([
[ 1],
[-6],
[ 2]])
>>> eqns = [x + z - 1, y + z, x - y]
>>> A, b = linear_eq_to_matrix(eqns, [x, y, z])
>>> A
Matrix([
[1, 0, 1],
[0, 1, 1],
[1, -1, 0]])
>>> b
Matrix([
[1],
[0],
[0]])
* Symbolic coefficients are also supported
>>> a, b, c, d, e, f = symbols('a, b, c, d, e, f')
>>> eqns = [a*x + b*y - c, d*x + e*y - f]
>>> A, B = linear_eq_to_matrix(eqns, x, y)
>>> A
Matrix([
[a, b],
[d, e]])
>>> B
Matrix([
[c],
[f]])
"""
if not symbols:
raise ValueError('Symbols must be given, for which coefficients \
are to be found.')
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
M = Matrix([symbols])
# initialise Matrix with symbols + 1 columns
M = M.col_insert(len(symbols), Matrix([1]))
row_no = 1
for equation in equations:
f = sympify(equation)
if isinstance(f, Equality):
f = f.lhs - f.rhs
# Extract coeff of symbols
coeff_list = []
for symbol in symbols:
coeff_list.append(f.coeff(symbol))
# append constant term (term free from symbols)
coeff_list.append(-f.as_coeff_add(*symbols)[0])
# insert equations coeff's into rows
M = M.row_insert(row_no, Matrix([coeff_list]))
row_no += 1
# delete the initialised (Ist) trivial row
M.row_del(0)
A, b = M[:, :-1], M[:, -1:]
return A, b
def linsolve(system, *symbols):
r"""
Solve system of N linear equations with M variables, which
means both under - and overdetermined systems are supported.
The possible number of solutions is zero, one or infinite.
Zero solutions throws a ValueError, where as infinite
solutions are represented parametrically in terms of given
symbols. For unique solution a FiniteSet of ordered tuple
is returned.
All Standard input formats are supported:
For the given set of Equations, the respective input types
are given below:
.. math:: 3x + 2y - z = 1
.. math:: 2x - 2y + 4z = -2
.. math:: 2x - y + 2z = 0
* Augmented Matrix Form, `system` given below:
::
[3 2 -1 1]
system = [2 -2 4 -2]
[2 -1 2 0]
* List Of Equations Form
`system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]`
* Input A & b Matrix Form (from Ax = b) are given as below:
::
[3 2 -1 ] [ 1 ]
A = [2 -2 4 ] b = [ -2 ]
[2 -1 2 ] [ 0 ]
`system = (A, b)`
Symbols to solve for should be given as input in all the
cases either in an iterable or as comma separated arguments.
This is done to maintain consistency in returning solutions
in the form of variable input by the user.
The algorithm used here is Gauss-Jordan elimination, which
results, after elimination, in an row echelon form matrix.
Returns
=======
A FiniteSet of ordered tuple of values of `symbols` for which
the `system` has solution.
Please note that general FiniteSet is unordered, the solution
returned here is not simply a FiniteSet of solutions, rather
it is a FiniteSet of ordered tuple, i.e. the first & only
argument to FiniteSet is a tuple of solutions, which is ordered,
& hence the returned solution is ordered.
Also note that solution could also have been returned as an
ordered tuple, FiniteSet is just a wrapper `{}` around
the tuple. It has no other significance except for
the fact it is just used to maintain a consistent output
format throughout the solveset.
Returns EmptySet(), if the linear system is inconsistent.
Raises
======
ValueError
The input is not valid.
The symbols are not given.
Examples
========
>>> from sympy import Matrix, S, linsolve, symbols
>>> x, y, z = symbols("x, y, z")
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> b = Matrix([3, 6, 9])
>>> A
Matrix([
[1, 2, 3],
[4, 5, 6],
[7, 8, 10]])
>>> b
Matrix([
[3],
[6],
[9]])
>>> linsolve((A, b), [x, y, z])
{(-1, 2, 0)}
* Parametric Solution: In case the system is under determined, the function
will return parametric solution in terms of the given symbols.
Free symbols in the system are returned as it is. For e.g. in the system
below, `z` is returned as the solution for variable z, which means z is a
free symbol, i.e. it can take arbitrary values.
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> b = Matrix([3, 6, 9])
>>> linsolve((A, b), [x, y, z])
{(z - 1, -2*z + 2, z)}
* List of Equations as input
>>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + S(1)/2*y - z]
>>> linsolve(Eqns, x, y, z)
{(1, -2, -2)}
* Augmented Matrix as input
>>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]])
>>> aug
Matrix([
[2, 1, 3, 1],
[2, 6, 8, 3],
[6, 8, 18, 5]])
>>> linsolve(aug, x, y, z)
{(3/10, 2/5, 0)}
* Solve for symbolic coefficients
>>> a, b, c, d, e, f = symbols('a, b, c, d, e, f')
>>> eqns = [a*x + b*y - c, d*x + e*y - f]
>>> linsolve(eqns, x, y)
{((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))}
* A degenerate system returns solution as set of given
symbols.
>>> system = Matrix(([0,0,0], [0,0,0], [0,0,0]))
>>> linsolve(system, x, y)
{(x, y)}
* For an empty system linsolve returns empty set
>>> linsolve([ ], x)
EmptySet()
"""
if not system:
return S.EmptySet
if not symbols:
raise ValueError('Symbols must be given, for which solution of the '
'system is to be found.')
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
try:
sym = symbols[0].is_Symbol
except AttributeError:
sym = False
if not sym:
raise ValueError('Symbols or iterable of symbols must be given as '
'second argument, not type %s: %s' % (type(symbols[0]), symbols[0]))
# 1). Augmented Matrix input Form
if isinstance(system, Matrix):
A, b = system[:, :-1], system[:, -1:]
elif hasattr(system, '__iter__'):
# 2). A & b as input Form
if len(system) == 2 and system[0].is_Matrix:
A, b = system[0], system[1]
# 3). List of equations Form
if not system[0].is_Matrix:
A, b = linear_eq_to_matrix(system, symbols)
else:
raise ValueError("Invalid arguments")
# Solve using Gauss-Jordan elimination
try:
sol, params, free_syms = A.gauss_jordan_solve(b, freevar=True)
except ValueError:
# No solution
return EmptySet()
# Replace free parameters with free symbols
solution = []
if params:
for s in sol:
for k, v in enumerate(params):
s = s.xreplace({v: symbols[free_syms[k]]})
solution.append(simplify(s))
else:
for s in sol:
solution.append(simplify(s))
# Return solutions
solution = FiniteSet(tuple(solution))
return solution
##############################################################################
# ------------------------------nonlinsolve ---------------------------------#
##############################################################################
def _return_conditionset(eqs, symbols):
# return conditionset
condition_set = ConditionSet(
FiniteSet(*symbols),
FiniteSet(*eqs),
S.Complexes)
return condition_set
def substitution(system, symbols, result=[{}], known_symbols=[],
exclude=[], all_symbols=None):
r"""
Solves the `system` using substitution method. It is used in
`nonlinsolve`. This will be called from `nonlinsolve` when any
equation(s) is non polynomial equation.
Parameters
==========
system : list of equations
The target system of equations
symbols : list of symbols to be solved.
The variable(s) for which the system is solved
known_symbols : list of solved symbols
Values are known for these variable(s)
result : An empty list or list of dict
If No symbol values is known then empty list otherwise
symbol as keys and corresponding value in dict.
exclude : Set of expression.
Mostly denominator expression(s) of the equations of the system.
Final solution should not satisfy these expressions.
all_symbols : known_symbols + symbols(unsolved).
Returns
=======
A FiniteSet of ordered tuple of values of `all_symbols` for which the
`system` has solution. Order of values in the tuple is same as symbols
present in the parameter `all_symbols`. If parameter `all_symbols` is None
then same as symbols present in the parameter `symbols`.
Please note that general FiniteSet is unordered, the solution returned
here is not simply a FiniteSet of solutions, rather it is a FiniteSet of
ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of
solutions, which is ordered, & hence the returned solution is ordered.
Also note that solution could also have been returned as an ordered tuple,
FiniteSet is just a wrapper `{}` around the tuple. It has no other
significance except for the fact it is just used to maintain a consistent
output format throughout the solveset.
Raises
======
ValueError
The input is not valid.
The symbols are not given.
AttributeError
The input symbols are not `Symbol` type.
Examples
========
>>> from sympy.core.symbol import symbols
>>> x, y = symbols('x, y', real=True)
>>> from sympy.solvers.solveset import substitution
>>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y])
{(-1, 1)}
* when you want soln should not satisfy eq `x + 1 = 0`
>>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x])
EmptySet()
>>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x])
{(1, -1)}
>>> substitution([x + y - 1, y - x**2 + 5], [x, y])
{(-3, 4), (2, -1)}
* Returns both real and complex solution
>>> x, y, z = symbols('x, y, z')
>>> from sympy import exp, sin
>>> substitution([exp(x) - sin(y), y**2 - 4], [x, y])
{(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) +
log(sin(2))), Integers()), -2), (ImageSet(Lambda(_n, 2*_n*I*pi +
Mod(log(sin(2)), 2*I*pi)), Integers()), 2)}
>>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)]
>>> substitution(eqs, [y, z])
{(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3)))),
(ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers()),
ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi +
Mod(-log(3), 2*I*pi)))), Integers())),
(ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers()),
ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi +
Mod(-log(3), 2*I*pi)))), Integers()))}
"""
from sympy import Complement
from sympy.core.compatibility import is_sequence
if not system:
return S.EmptySet
if not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise ValueError(filldedent(msg))
if not is_sequence(symbols):
msg = ('symbols should be given as a sequence, e.g. a list.'
'Not type %s: %s')
raise TypeError(filldedent(msg % (type(symbols), symbols)))
try:
sym = symbols[0].is_Symbol
except AttributeError:
sym = False
if not sym:
msg = ('Iterable of symbols must be given as '
'second argument, not type %s: %s')
raise ValueError(filldedent(msg % (type(symbols[0]), symbols[0])))
# By default `all_symbols` will be same as `symbols`
if all_symbols is None:
all_symbols = symbols
old_result = result
# storing complements and intersection for particular symbol
complements = {}
intersections = {}
# when total_solveset_call is equals to total_conditionset
# means solvest fail to solve all the eq.
total_conditionset = -1
total_solveset_call = -1
def _unsolved_syms(eq, sort=False):
"""Returns the unsolved symbol present
in the equation `eq`.
"""
free = eq.free_symbols
unsolved = (free - set(known_symbols)) & set(all_symbols)
if sort:
unsolved = list(unsolved)
unsolved.sort(key=default_sort_key)
return unsolved
# end of _unsolved_syms()
# sort such that equation with the fewest potential symbols is first.
# means eq with less number of variable first in the list.
eqs_in_better_order = list(
ordered(system, lambda _: len(_unsolved_syms(_))))
def add_intersection_complement(result, sym_set, **flags):
# If solveset have returned some intersection/complement
# for any symbol. It will be added in final solution.
final_result = []
for res in result:
res_copy = res
for key_res, value_res in res.items():
# Intersection/complement is in Interval or Set.
intersection_true = flags.get('Intersection', True)
complements_true = flags.get('Complement', True)
for key_sym, value_sym in sym_set.items():
if key_sym == key_res:
if intersection_true:
# testcase is not added for this line(intersection)
new_value = \
Intersection(FiniteSet(value_res), value_sym)
if new_value is not S.EmptySet:
res_copy[key_res] = new_value
if complements_true:
new_value = \
Complement(FiniteSet(value_res), value_sym)
if new_value is not S.EmptySet:
res_copy[key_res] = new_value
final_result.append(res_copy)
return final_result
# end of def add_intersection_complement()
def _extract_main_soln(sol, soln_imageset):
"""separate the Complements, Intersections, ImageSet lambda expr
and it's base_set.
"""
# if there is union, then need to check
# Complement, Intersection, Imageset.
# Order should not be changed.
if isinstance(sol, Complement):
# extract solution and complement
complements[sym] = sol.args[1]
sol = sol.args[0]
# complement will be added at the end
# using `add_intersection_complement` method
if isinstance(sol, Intersection):
# Interval/Set will be at 0th index always
if sol.args[0] != Interval(-oo, oo):
# sometimes solveset returns soln
# with intersection `S.Reals`, to confirm that
# soln is in `domain=S.Reals` or not. We don't consider
# that intersecton.
intersections[sym] = sol.args[0]
sol = sol.args[1]
# after intersection and complement Imageset should
# be checked.
if isinstance(sol, ImageSet):
soln_imagest = sol
expr2 = sol.lamda.expr
sol = FiniteSet(expr2)
soln_imageset[expr2] = soln_imagest
# if there is union of Imageset or other in soln.
# no testcase is written for this if block
if isinstance(sol, Union):
sol_args = sol.args
sol = S.EmptySet
# We need in sequence so append finteset elements
# and then imageset or other.
for sol_arg2 in sol_args:
if isinstance(sol_arg2, FiniteSet):
sol += sol_arg2
else:
# ImageSet, Intersection, complement then
# append them directly
sol += FiniteSet(sol_arg2)
if not isinstance(sol, FiniteSet):
sol = FiniteSet(sol)
return sol, soln_imageset
# end of def _extract_main_soln()
# helper function for _append_new_soln
def _check_exclude(rnew, imgset_yes):
rnew_ = rnew
if imgset_yes:
# replace all dummy variables (Imageset lambda variables)
# with zero before `checksol`. Considering fundamental soln
# for `checksol`.
rnew_copy = rnew.copy()
dummy_n = imgset_yes[0]
for key_res, value_res in rnew_copy.items():
rnew_copy[key_res] = value_res.subs(dummy_n, 0)
rnew_ = rnew_copy
# satisfy_exclude == true if it satisfies the expr of `exclude` list.
try:
# something like : `Mod(-log(3), 2*I*pi)` can't be
# simplified right now, so `checksol` returns `TypeError`.
# when this issue is fixed this try block should be
# removed. Mod(-log(3), 2*I*pi) == -log(3)
satisfy_exclude = any(
checksol(d, rnew_) for d in exclude)
except TypeError:
satisfy_exclude = None
return satisfy_exclude
# end of def _check_exclude()
# helper function for _append_new_soln
def _restore_imgset(rnew, original_imageset, newresult):
restore_sym = set(rnew.keys()) & \
set(original_imageset.keys())
for key_sym in restore_sym:
img = original_imageset[key_sym]
rnew[key_sym] = img
if rnew not in newresult:
newresult.append(rnew)
# end of def _restore_imgset()
def _append_eq(eq, result, res, delete_soln, n=None):
u = Dummy('u')
if n:
eq = eq.subs(n, 0)
satisfy = checksol(u, u, eq, minimal=True)
if satisfy is False:
delete_soln = True
res = {}
else:
result.append(res)
return result, res, delete_soln
def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset,
original_imageset, newresult, eq=None):
"""If `rnew` (A dict <symbol: soln>) contains valid soln
append it to `newresult` list.
`imgset_yes` is (base, dummy_var) if there was imageset in previously
calculated result(otherwise empty tuple). `original_imageset` is dict
of imageset expr and imageset from this result.
`soln_imageset` dict of imageset expr and imageset of new soln.
"""
satisfy_exclude = _check_exclude(rnew, imgset_yes)
delete_soln = False
# soln should not satisfy expr present in `exclude` list.
if not satisfy_exclude:
local_n = None
# if it is imageset
if imgset_yes:
local_n = imgset_yes[0]
base = imgset_yes[1]
if sym and sol:
# when `sym` and `sol` is `None` means no new
# soln. In that case we will append rnew directly after
# substituting original imagesets in rnew values if present
# (second last line of this function using _restore_imgset)
dummy_list = list(sol.atoms(Dummy))
# use one dummy `n` which is in
# previous imageset
local_n_list = [
local_n for i in range(
0, len(dummy_list))]
dummy_zip = zip(dummy_list, local_n_list)
lam = Lambda(local_n, sol.subs(dummy_zip))
rnew[sym] = ImageSet(lam, base)
if eq is not None:
newresult, rnew, delete_soln = _append_eq(
eq, newresult, rnew, delete_soln, local_n)
elif eq is not None:
newresult, rnew, delete_soln = _append_eq(
eq, newresult, rnew, delete_soln)
elif soln_imageset:
rnew[sym] = soln_imageset[sol]
# restore original imageset
_restore_imgset(rnew, original_imageset, newresult)
else:
newresult.append(rnew)
elif satisfy_exclude:
delete_soln = True
rnew = {}
_restore_imgset(rnew, original_imageset, newresult)
return newresult, delete_soln
# end of def _append_new_soln()
def _new_order_result(result, eq):
# separate first, second priority. `res` that makes `eq` value equals
# to zero, should be used first then other result(second priority).
# If it is not done then we may miss some soln.
first_priority = []
second_priority = []
for res in result:
if not any(isinstance(val, ImageSet) for val in res.values()):
if eq.subs(res) == 0:
first_priority.append(res)
else:
second_priority.append(res)
if first_priority or second_priority:
return first_priority + second_priority
return result
def _solve_using_known_values(result, solver):
"""Solves the system using already known solution
(result contains the dict <symbol: value>).
solver is `solveset_complex` or `solveset_real`.
"""
# stores imageset <expr: imageset(Lambda(n, expr), base)>.
soln_imageset = {}
total_solvest_call = 0
total_conditionst = 0
# sort such that equation with the fewest potential symbols is first.
# means eq with less variable first
for index, eq in enumerate(eqs_in_better_order):
newresult = []
original_imageset = {}
# if imageset expr is used to solve other symbol
imgset_yes = False
result = _new_order_result(result, eq)
for res in result:
got_symbol = set() # symbols solved in one iteration
if soln_imageset:
# find the imageset and use its expr.
for key_res, value_res in res.items():
if isinstance(value_res, ImageSet):
res[key_res] = value_res.lamda.expr
original_imageset[key_res] = value_res
dummy_n = value_res.lamda.expr.atoms(Dummy).pop()
base = value_res.base_set
imgset_yes = (dummy_n, base)
# update eq with everything that is known so far
eq2 = eq.subs(res)
unsolved_syms = _unsolved_syms(eq2, sort=True)
if not unsolved_syms:
if res:
newresult, delete_res = _append_new_soln(
res, None, None, imgset_yes, soln_imageset,
original_imageset, newresult, eq2)
if delete_res:
# `delete_res` is true, means substituting `res` in
# eq2 doesn't return `zero` or deleting the `res`
# (a soln) since it staisfies expr of `exclude`
# list.
result.remove(res)
continue # skip as it's independent of desired symbols
depen = eq2.as_independent(unsolved_syms)[0]
if depen.has(Abs) and solver == solveset_complex:
# Absolute values cannot be inverted in the
# complex domain
continue
soln_imageset = {}
for sym in unsolved_syms:
not_solvable = False
try:
soln = solver(eq2, sym)
total_solvest_call += 1
soln_new = S.EmptySet
if isinstance(soln, Complement):
# separate solution and complement
complements[sym] = soln.args[1]
soln = soln.args[0]
# complement will be added at the end
if isinstance(soln, Intersection):
# Interval will be at 0th index always
if soln.args[0] != Interval(-oo, oo):
# sometimes solveset returns soln
# with intersection S.Reals, to confirm that
# soln is in domain=S.Reals
intersections[sym] = soln.args[0]
soln_new += soln.args[1]
soln = soln_new if soln_new else soln
if index > 0 and solver == solveset_real:
# one symbol's real soln , another symbol may have
# corresponding complex soln.
if not isinstance(soln, (ImageSet, ConditionSet)):
soln += solveset_complex(eq2, sym)
except NotImplementedError:
# If sovleset is not able to solve equation `eq2`. Next
# time we may get soln using next equation `eq2`
continue
if isinstance(soln, ConditionSet):
soln = S.EmptySet
# don't do `continue` we may get soln
# in terms of other symbol(s)
not_solvable = True
total_conditionst += 1
if soln is not S.EmptySet:
soln, soln_imageset = _extract_main_soln(
soln, soln_imageset)
for sol in soln:
# sol is not a `Union` since we checked it
# before this loop
sol, soln_imageset = _extract_main_soln(
sol, soln_imageset)
sol = set(sol).pop()
free = sol.free_symbols
if got_symbol and any([
ss in free for ss in got_symbol
]):
# sol depends on previously solved symbols
# then continue
continue
rnew = res.copy()
# put each solution in res and append the new result
# in the new result list (solution for symbol `s`)
# along with old results.
for k, v in res.items():
if isinstance(v, Expr):
# if any unsolved symbol is present
# Then subs known value
rnew[k] = v.subs(sym, sol)
# and add this new solution
if soln_imageset:
# replace all lambda variables with 0.
imgst = soln_imageset[sol]
rnew[sym] = imgst.lamda(
*[0 for i in range(0, len(
imgst.lamda.variables))])
else:
rnew[sym] = sol
newresult, delete_res = _append_new_soln(
rnew, sym, sol, imgset_yes, soln_imageset,
original_imageset, newresult)
if delete_res:
# deleting the `res` (a soln) since it staisfies
# eq of `exclude` list
result.remove(res)
# solution got for sym
if not not_solvable:
got_symbol.add(sym)
# next time use this new soln
if newresult:
result = newresult
return result, total_solvest_call, total_conditionst
# end def _solve_using_know_values()
new_result_real, solve_call1, cnd_call1 = _solve_using_known_values(
old_result, solveset_real)
new_result_complex, solve_call2, cnd_call2 = _solve_using_known_values(
old_result, solveset_complex)
# when `total_solveset_call` is equals to `total_conditionset`
# means solvest fails to solve all the eq.
# return conditionset in this case
total_conditionset += (cnd_call1 + cnd_call2)
total_solveset_call += (solve_call1 + solve_call2)
if total_conditionset == total_solveset_call and total_solveset_call != -1:
return _return_conditionset(eqs_in_better_order, all_symbols)
# overall result
result = new_result_real + new_result_complex
result_all_variables = []
result_infinite = []
for res in result:
if not res:
# means {None : None}
continue
# If length < len(all_symbols) means infinite soln.
# Some or all the soln is dependent on 1 symbol.
# eg. {x: y+2} then final soln {x: y+2, y: y}
if len(res) < len(all_symbols):
solved_symbols = res.keys()
unsolved = list(filter(
lambda x: x not in solved_symbols, all_symbols))
for unsolved_sym in unsolved:
res[unsolved_sym] = unsolved_sym
result_infinite.append(res)
if res not in result_all_variables:
result_all_variables.append(res)
if result_infinite:
# we have general soln
# eg : [{x: -1, y : 1}, {x : -y , y: y}] then
# return [{x : -y, y : y}]
result_all_variables = result_infinite
if intersections and complements:
# no testcase is added for this block
result_all_variables = add_intersection_complement(
result_all_variables, intersections,
Intersection=True, Complement=True)
elif intersections:
result_all_variables = add_intersection_complement(
result_all_variables, intersections, Intersection=True)
elif complements:
result_all_variables = add_intersection_complement(
result_all_variables, complements, Complement=True)
# convert to ordered tuple
result = S.EmptySet
for r in result_all_variables:
temp = [r[symb] for symb in all_symbols]
result += FiniteSet(tuple(temp))
return result
# end of def substitution()
def _solveset_work(system, symbols):
soln = solveset(system[0], symbols[0])
if isinstance(soln, FiniteSet):
_soln = FiniteSet(*[tuple((s,)) for s in soln])
return _soln
else:
return FiniteSet(tuple(FiniteSet(soln)))
def _handle_positive_dimensional(polys, symbols, denominators):
from sympy.polys.polytools import groebner
# substitution method where new system is groebner basis of the system
_symbols = list(symbols)
_symbols.sort(key=default_sort_key)
basis = groebner(polys, _symbols, polys=True)
new_system = []
for poly_eq in basis:
new_system.append(poly_eq.as_expr())
result = [{}]
result = substitution(
new_system, symbols, result, [],
denominators)
return result
# end of def _handle_positive_dimensional()
def _handle_zero_dimensional(polys, symbols, system):
# solve 0 dimensional poly system using `solve_poly_system`
result = solve_poly_system(polys, *symbols)
# May be some extra soln is added because
# we used `unrad` in `_separate_poly_nonpoly`, so
# need to check and remove if it is not a soln.
result_update = S.EmptySet
for res in result:
dict_sym_value = dict(list(zip(symbols, res)))
if all(checksol(eq, dict_sym_value) for eq in system):
result_update += FiniteSet(res)
return result_update
# end of def _handle_zero_dimensional()
def _separate_poly_nonpoly(system, symbols):
polys = []
polys_expr = []
nonpolys = []
denominators = set()
poly = None
for eq in system:
# Store denom expression if it contains symbol
denominators.update(_simple_dens(eq, symbols))
# try to remove sqrt and rational power
without_radicals = unrad(simplify(eq))
if without_radicals:
eq_unrad, cov = without_radicals
if not cov:
eq = eq_unrad
if isinstance(eq, Expr):
eq = eq.as_numer_denom()[0]
poly = eq.as_poly(*symbols, extension=True)
elif simplify(eq).is_number:
continue
if poly is not None:
polys.append(poly)
polys_expr.append(poly.as_expr())
else:
nonpolys.append(eq)
return polys, polys_expr, nonpolys, denominators
# end of def _separate_poly_nonpoly()
def nonlinsolve(system, *symbols):
r"""
Solve system of N non linear equations with M variables, which means both
under and overdetermined systems are supported. Positive dimensional
system is also supported (A system with infinitely many solutions is said
to be positive-dimensional). In Positive dimensional system solution will
be dependent on at least one symbol. Returns both real solution
and complex solution(If system have). The possible number of solutions
is zero, one or infinite.
Parameters
==========
system : list of equations
The target system of equations
symbols : list of Symbols
symbols should be given as a sequence eg. list
Returns
=======
A FiniteSet of ordered tuple of values of `symbols` for which the `system`
has solution. Order of values in the tuple is same as symbols present in
the parameter `symbols`.
Please note that general FiniteSet is unordered, the solution returned
here is not simply a FiniteSet of solutions, rather it is a FiniteSet of
ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of
solutions, which is ordered, & hence the returned solution is ordered.
Also note that solution could also have been returned as an ordered tuple,
FiniteSet is just a wrapper `{}` around the tuple. It has no other
significance except for the fact it is just used to maintain a consistent
output format throughout the solveset.
For the given set of Equations, the respective input types
are given below:
.. math:: x*y - 1 = 0
.. math:: 4*x**2 + y**2 - 5 = 0
`system = [x*y - 1, 4*x**2 + y**2 - 5]`
`symbols = [x, y]`
Raises
======
ValueError
The input is not valid.
The symbols are not given.
AttributeError
The input symbols are not `Symbol` type.
Examples
========
>>> from sympy.core.symbol import symbols
>>> from sympy.solvers.solveset import nonlinsolve
>>> x, y, z = symbols('x, y, z', real=True)
>>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y])
{(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)}
1. Positive dimensional system and complements:
>>> from sympy import pprint
>>> from sympy.polys.polytools import is_zero_dimensional
>>> a, b, c, d = symbols('a, b, c, d', real=True)
>>> eq1 = a + b + c + d
>>> eq2 = a*b + b*c + c*d + d*a
>>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b
>>> eq4 = a*b*c*d - 1
>>> system = [eq1, eq2, eq3, eq4]
>>> is_zero_dimensional(system)
False
>>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False)
-1 1 1 -1
{(---, -d, -, {d} \ {0}), (-, -d, ---, {d} \ {0})}
d d d d
>>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y])
{(-y + 2, y)}
2. If some of the equations are non polynomial equation then `nonlinsolve`
will call `substitution` function and returns real and complex solutions,
if present.
>>> from sympy import exp, sin
>>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y])
{(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) +
log(sin(2))), Integers()), -2), (ImageSet(Lambda(_n, 2*_n*I*pi +
Mod(log(sin(2)), 2*I*pi)), Integers()), 2)}
3. If system is Non linear polynomial zero dimensional then it returns
both solution (real and complex solutions, if present using
`solve_poly_system`):
>>> from sympy import sqrt
>>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y])
{(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)}
4. `nonlinsolve` can solve some linear(zero or positive dimensional)
system (because it is using `groebner` function to get the
groebner basis and then `substitution` function basis as the new `system`).
But it is not recommended to solve linear system using `nonlinsolve`,
because `linsolve` is better for all kind of linear system.
>>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9 , y + z - 4], [x, y, z])
{(3*z - 5, -z + 4, z)}
5. System having polynomial equations and only real solution is present
(will be solved using `solve_poly_system`):
>>> e1 = sqrt(x**2 + y**2) - 10
>>> e2 = sqrt(y**2 + (-x + 10)**2) - 3
>>> nonlinsolve((e1, e2), (x, y))
{(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)}
>>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y])
{(1, 2), (1 + sqrt(5), -sqrt(5) + 2), (-sqrt(5) + 1, 2 + sqrt(5))}
>>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x])
{(2, 1), (2 + sqrt(5), -sqrt(5) + 1), (-sqrt(5) + 2, 1 + sqrt(5))}
6. It is better to use symbols instead of Trigonometric Function or
Function (e.g. replace `sin(x)` with symbol, replace `f(x)` with symbol
and so on. Get soln from `nonlinsolve` and then using `solveset` get
the value of `x`)
How nonlinsolve is better than old solver `_solve_system` :
===========================================================
1. A positive dimensional system solver : nonlinsolve can return
solution for positive dimensional system. It finds the
Groebner Basis of the positive dimensional system(calling it as
basis) then we can start solving equation(having least number of
variable first in the basis) using solveset and substituting that
solved solutions into other equation(of basis) to get solution in
terms of minimum variables. Here the important thing is how we
are substituting the known values and in which equations.
2. Real and Complex both solutions : nonlinsolve returns both real
and complex solution. If all the equations in the system are polynomial
then using `solve_poly_system` both real and complex solution is returned.
If all the equations in the system are not polynomial equation then goes to
`substitution` method with this polynomial and non polynomial equation(s),
to solve for unsolved variables. Here to solve for particular variable
solveset_real and solveset_complex is used. For both real and complex
solution function `_solve_using_know_values` is used inside `substitution`
function.(`substitution` function will be called when there is any non
polynomial equation(s) is present). When solution is valid then add its
general solution in the final result.
3. Complement and Intersection will be added if any : nonlinsolve maintains
dict for complements and Intersections. If solveset find complements or/and
Intersection with any Interval or set during the execution of
`substitution` function ,then complement or/and Intersection for that
variable is added before returning final solution.
"""
from sympy.polys.polytools import is_zero_dimensional
if not system:
return S.EmptySet
if not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise ValueError(filldedent(msg))
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
try:
sym = symbols[0].is_Symbol
except AttributeError:
sym = False
except IndexError:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise IndexError(filldedent(msg))
if not sym:
msg = ('Symbols or iterable of symbols must be given as '
'second argument, not type %s: %s')
raise ValueError(filldedent(msg % (type(symbols[0]), symbols[0])))
if len(system) == 1 and len(symbols) == 1:
return _solveset_work(system, symbols)
# main code of def nonlinsolve() starts from here
polys, polys_expr, nonpolys, denominators = _separate_poly_nonpoly(
system, symbols)
if len(symbols) == len(polys):
# If all the equations in the system is poly
if is_zero_dimensional(polys, symbols):
# finite number of soln (Zero dimensional system)
try:
return _handle_zero_dimensional(polys, symbols, system)
except NotImplementedError:
# Right now it doesn't fail for any polynomial system of
# equation. If `solve_poly_system` fails then `substitution`
# method will handle it.
result = substitution(
polys_expr, symbols, exclude=denominators)
return result
# positive dimensional system
return _handle_positive_dimensional(polys, symbols, denominators)
else:
# If alll the equations are not polynomial.
# Use `substitution` method for the system
result = substitution(
polys_expr + nonpolys, symbols, exclude=denominators)
return result