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1. Schrédinger 72 The Schrodinger equation ihdy/0t = Hy @ REEHRT B AERIR T
can only describe spinless particles (@ AJUEIRA EREMILT, REFERIELHM H. can
describe particles with spin, as long as a suitable H is available.

2. —/MEFFRIJEXKE The Hermiticity of an operator () RIK# FHAFAIF3. only depends
on the form of the operator. @ BT 5EFHIERE R, thikE TIHTEFAZME. depends
on both the operator itself and the space it acts on.

3. Z[FM%[E2E The principle for identical particles @ RiER TR F4A2N Bose FHER
Fermi FHIZFITVE A, is applicable to many-body systems whose particles are all bosons
or all fermions. @ FER FENEE Bose T Fermi FHILH FIER. is applicable to
many-body systems consisting of both bosons and fermions.

4. FIFEBF V(z) = az? + by? + c2® FiEF), HP a. by ¢ BHE, WEEFLHESESHAE
542 5% ¥7F For a particle moving in the potential V(x) = az? + by? + cz?, where a, b and
c are constants, the motion of the center of its wave packet (@ #H[E. is always the same as
a classical particle. @ A—EHE, K3 a,b,c > 0 B4 4H[E. is the same as a classical
particle only when a,b,c > 0.

5. WA¥E F 28 t B [FH| # 0, BEE#R indF/ot + [F,H] = 0, W F EfE—Z*h
#)F#3{E A dynamical variable F depends on t explicitly and [F, H] # 0, but it satisfies
ih@F /ot + [F, H] = 0, then the mean value of F in an arbitrary state (@ AFEEHAZEL. does
not vary with time. @ — £ HERT ()25 4L, in general varies with time.

6. N IFHIAIE(EIE The spectrum of eigenvalues for an angular momentum (@) RiE
BFsul AR, BREMAZIEURZENMNIES. is only applicable to orbit angular momentum,
spin or their coupling. @ ER TS MENRIIT AT FR XS 5 X RBBEITE. is applicable
to any vector operator that satisfies the same commutation relations as an angular momentum.
7. —/AMFEE RGP EDUA A two-body system has the Hamiltonian H = p?/2m, + p3/2ma+
Lywird + jmawir] + V([ — o). ERATEMFFE: It possesses the following symmetries:
@ Z6°F#. space translation. @ ZE[A3F). space rotation. @ ERF#E. both of the
above.

8. E3MEIFHHH) Schrodinger A2/ The Schrédinger equation in an electromagnetic field is
ihaw /ot = —(h2/2u) (V — igA/h)? ¢ + g, ¥ Y(x, t) —ITTAR. Let ¥(x,t) be a solution

1



of it. 4 %t[Al— MR, BUK Y Now for the same electromagnetic ficld, take the new vector
potential ¢ =, A, = Az +cyz, A, = A, +caz, A, = A, +cy, ¥ a. by c RHLL. where
a, b and c are constants. NFTHIMF ¥/ (2, t) 5 o(x,t) 937 R Then the relation between the
new solution 9'(x, t) and the old one ¥(zx,1) is
9. —RIFIEINGIIZS), HALEA E, = poe, Kb ¢ BEH, po BIF n PRB(FAL). B
B RHCFH AR, MFELLFHIIESNS, A particle moving in an external field has the energy
levels E,, = pne, where ¢ is a constant, and p, is the nth prime number. Assume that the wave
packet of the initial state is square integrable. At later times, @ EARMENRSTREK. the
width of the wave packet cannot go to infinity. @ AR RS TR AR FHAHHAME
7%3\. whether the width will become inﬁr{ity depends on the specific form of the initial state.
10. T ERSRR & RINRA R B RIEAZEE? Which system with the following Hamil-
tonian possess time-reversal invariance? (@ H = p*/2m+V(r)+£(r)L-S @ H =-—pS-B
@ H = (pz +qBy)*/2u + p}/2u + p2/2p

Z\ i HERZ— Analysis and calculation 1 (8 20 43.)

W—ERIZPIEFER T RAMHE A particle moving in a one-dimensional potential has the
Hamiltonian H = p?/2u — pw?z?/2. ¥ z F p FEVIHFEFHEDHIN 20 F1 po, WK HE
fI17E ¢ B ZIG 34, 24E z(t) 0 5(t), A o, po 7 ¢t BIERFKIR. Assume that the mean
values of z and p in the initial state are respectively o and po, find their mean values at time
t, denoted by Z(t) and p(t), expressed as explicit functions of zo, pp and ¢. R HALTF (BB
B0 RNEFHETCFTIEAIZKE. Find the condition under which the particle (or center of the
wave packet) never arrives at infinity.

=\ iEZ = Analysis and calculation 2 (3t 4 /NEH, BNEHEHORS 5 5\ 5 9\ 12
4r\ 8 43, 3£ 30 &)

B4 A, B 3128, A and B are dynamical variables, [A, B] =iK.

1. EH AA. AB 5 (K) FiilRHOAHEXRRZ AL EH#EFIEE. Give the uncertainty
relation among AA, AB and (K). You are not required to prove it.

2. ¥ A= L., B=L,, BHMANHTHERR, HF L, FRNUASBEFNSR. Give the

uncertainty relation when A = L;, B = L, where L, etc are components of the orbit angular

momentuin.

3. % (L% L.} AR [Im) #, #HLATHEXRT HRGOEE, BIEFREXR.
HFLEH |, ALAL, FETIAHRMI? S THEX I AHR? In the simultancous
eigenstate |lm) of {L? L.}, calculate all quantities appearing in the above uncertainty relation
and verify it. For a given [, when does AL;AL, attain the smallest value? What is the
uncertainty relation in this case?

4. JF Lk AL AL, BAFR/MARZ, RURELITRRLP IR L. For the above states
where AL,AL, attains the smallest value, find their wave functions in the coordinate repre-

sentation.
WHEF AR Formulae that may be useful:

Li|lm) = /(I Fm)(l £m + )kll(m £ 1)).
PO d e 3] i =i s
L, =ih (bm qb% + cot0cosqﬁa¢> y Ly =—ih (cos 26~ cot.03md>%) y L= —-lﬁ;%»




