Skip to content
Switch branches/tags

Latest commit


Git stats


Failed to load latest commit information.


Model definitions and pretrained weights for PyTorch and Tensorflow

PyTorch, unlike lua torch, has autograd in it's core, so using modular structure of torch.nn modules is not necessary, one can easily allocate needed Variables and write a function that utilizes them, which is sometimes more convenient. This repo contains model definitions in this functional way, with pretrained weights for some models.

Weights are serialized as a dict of arrays in hdf5, so should be easily loadable in other frameworks. Thanks to @edgarriba we have cpp_parser for loading weights in C++.

More models coming! We also plan to add definitions for other frameworks in future, probably tiny-dnn first. Contributions are welcome.

See also imagenet classification with PyTorch demo.ipynb


All models were validated to produce reported accuracy using script (depends on OpenCV python bindings).

To load weights in Python first do pip install hickle, then:

import hickle as hkl
weights = hkl.load('resnet-18-export.hkl')

Unfortunately, hickle py3 support is not yet ready, so the models will be resaved in torch pickle format with torch.utils.model_zoo.load_url support, e.g.:

weights = model_zoo.load_url('')

Also, make_dot was moved to a separate package: PyTorchViz


Models below have batch_norm parameters and statistics folded into convolutional layers for speed. It is not recommended to use them for finetuning.


model notebook val error download size
VGG-16 vgg-16.ipynb 30.09, 10.69 url coming 528 MB
NIN nin-export.ipynb 32.96, 12.29 url 33 MB
ResNet-18 (fb) resnet-18-export.ipynb 30.43, 10.76 url 42 MB
ResNet-18-AT resnet-18-at-export.ipynb 29.44, 10.12 url 44.1 MB
ResNet-34 (fb) resnet-34-export.ipynb 26.72, 8.74 url 78.3 MB
WRN-50-2 wide-resnet-50-2-export.ipynb 22.0, 6.05 url 246 MB

Fast Neural Style

Notebook: fast-neural-style.ipynb


model download size
candy.hkl url 7.1 MB
feathers.hkl url 7.1 MB
wave.hkl url 7.1 MB

Models with batch normalization