
User manualPicPas 0.8.7

Modified: 06/12/2018

By: Tito Hinostroza

8 bit PIC

PicPas 0.8.7

USER MANUAL

Compiler for Microcontrollers

Machine Translated by Google

PicPas 0.8.7

18F, not yet supported.

PicPas is developed using the Object Pascal language, the Free compiler

* SynFacilUtils: https://github.com/t-edson/SynFacilUtils

* UtilsGrilla: https://github.com/t-edson/UtilsGrilla

Works with the Pascal/Modula-2 programming language in one version
adapted to handle devices with reduced memory. Only has

Pascal and the Lazarus development environment.

same application. These modules are designed to work together, not

PicPas is an open source, cross-platform, cross-compiler for

* ogEditGraf: https://github.com/t-edson/ogEditGraf

PicUtils: https://github.com/t-edson/PicUtils

8-bit PIC microcontrollers (the 10F, 12F, 16F and enhanced 16F series). The Serie

regardless.

Xpres: https://github.com/t-edson/t-Xpres

*

User manual

8-bit microcontrollers.

PicPas includes an IDE and a simulator, both integrated into the compiler in the

MisUtils: https://github.com/t-edson/
MisUtils * MiConfig: https://github.com/t-edson/MiConfig

PicPas uses the common components that come in the standard distribution of

implemented, some basic language features have been added

Lazarus and some additional libraries. These are:

*
*

some new ones, typical of bit management, which is very common in

1 Notes on PicPas

Machine Translated by Google

PicPas 0.8.7

Modula-2.

• Includes a code debugger and real-time simulator.

• Supports multiple editing windows. •
Includes editors with syntax highlighting, code folding, and word and block

highlighting, for the Pascal and ASM languages.
• Autocompletion is included, with code templates for structures, IF,

• It is a fairly fast compiler. Most operations are done in memory and compiling
1000 lines of code should take no more than 100 milliseconds on a typical
computer.

• Directly generate the *.HEX file, without the need for libraries, frameworks or
additional programs.

• The generated code is quite optimized, at the level of the best

separate.

• Only some basic operations are implemented for Word and DWord type.

• Uses the Pascal language, in a simplified version, and with features of

• Supports the insertion of assembly code, directly into the source code. •
Allows you to define hardware characteristics (this is how the various supported

microcontroller models are defined) through the use of directives.

DWord.

User manual

for Windows, Linux and Mac.
• The compiler is integrated into the IDE. Not provided by

• The language only handles the data types Bit, Boolean, Byte, Char, Word and

REPEAT, WHILE, …
• It has no dependencies on external programs.
• Allows you to see the assembly code and the use of
resources. • Allows you to
configure themes. • Allows code
navigation. • It detects syntax errors in real time. • It is
highly configurable. •
Includes translations into languages: English, Spanish, German, French, Russian and

commercial compilers.

Ukrainian.

• The compiler is cross-platform, as is the IDE. There are compiled versions

2 INTRODUCTION

2.1 Compiler Features

2.2 Characteristics of lDE

2.3 Compiler limitations

Machine Translated by Google

User manual

• Recursion is not supported, due to resource limitations in the

• Support for arrangements or registrations is not included.

low and mid-range devices. •
Floating point arithmetic is not included.

PicPas 0.8.7

Machine Translated by Google

PicPas 0.8.7

/devices16 -> It is the folder where the libraries (units) that

• PicPas-win32.exe for Windows-x86 •
PicPas-win64.exe for Windows-x64 •
PicPas-linux for Linux •
PicPas-Mac.dmg for Mac

SDI.

PicPas-win32 will also work on 64-bit Windows platforms.

Not all versions include executables for these three platforms (Windows, Linux
and Mac). To generate an executable for a missing platform, you must first generate
the executable from the source code, using the Lazarus programming environment
https://www.lazarus-ide.org/.

They define all supported PIC models, from the mid-range Core.

The program was designed to not require installation. All you have to do is
copy and unzip the folder that contains the program files.

/devices10 -> It is the folder where the libraries (units) that must be

The name of the executable file varies, depending on the platform:

They define all supported PIC models, from the low range (Baseline Core).

Additionally, to save the configuration options, the <name>.xml file is used,
where “name” is the name of the executable file, according to the platform.

User manual

The folders used are:

/temp -> It is the folder where the editor's temporary files are created, when
they are not assigned a particular name. /

units -> It is the folder where the PicPas libraries (units) should be.

/devices17 -> It is the folder where the libraries (units) that define all the
supported PIC models of the Enhanced Mid-range should be.

To run the application correctly, you only need the executable and

/syntax -> It is the folder where the syntax definition files for the editors are
stored. /samples -> It is

the folder where some example programs are saved. /themes -> It is the folder
where

the color themes for the app are saved.

some folders and configuration files.

2.4 Installation

Machine Translated by Google

PicPas 0.8.7 User manual

By default, source files have the extension *.pas.

Machine Translated by Google

3.1 Code Explorer

top search:

Use of

You can search within this panel, using the search box.

User manual

Dashboard

procedures are represented graphically in this panel.

PicPas 0.8.7

Code explorer.

It is located on the left side of the interface. This panel shows the program

The various elements of the program, such as constants, variables or

assembly
code

The following image shows the parts of the main window:

fountain in a tree structure.

Editing windows

We call it IDE (Integrated Development Environment).

yes

graphics, which allows us to create programs, edit them and compile them, is what

message

PicPas has a visual interface that is similar on various platforms. To this interface

resources

3 THE INTERFACE

Machine Translated by Google

The view modes are:

PicPas 0.8.7

You can also select between two view modes using the control on the right
side.

You can also use the code explorer to find, in the code, the location where a
procedure or variable is declared, using the context menu, or by double-clicking
on the element.

View
selector

The code explorer also allows you to view important information, such as
the number of times a variable is used or the physical address assigned to a
variable, using the properties box, when an element is selected, in the code explorer:

The compilers currently available in PicPas are:

Search
window

• Grouped elements. •
Elements in the order of declaration (Not grouped).
• Disk Folders and Directories (Windows version only).

User manual

PicPas works internally with various compilers, each one for a specific family
of PICs.

3.2 Compiler Selection

Machine Translated by Google

CODE COMPILER

Enhanced
Mid-range Compiler

“Mid-Range”:

User manual

PIC17 Compiler for enhanced midrange

For example, the following program uses the PIC16F84A that belongs to the family

PicPas 0.8.7

Mid-range Compiler PIC16 Compiler for the mid-range of PIC
microcontrollers (Mid-range) that have 14-bit
instructions. In this group are the
models PIC12F675, PIC16F84, PIC16F877,
PIC16F628 and others.

of State:

appropriate form.

In this group are the models PIC10F200,
PIC10F222, PIC12F508, PIC16F54 and others.

PIC10 Compiler for low-end microcontrollers

At any time you can consult the current compiler by viewing the bar

It is necessary to choose the correct compiler so that the program compiles correctly.

PIC (Baseline) that have 12-bit instructions.

DESCRIPTION

tools:

Baseline Compiler

To select the working compiler, you must use the toolbar.

EITHER

PIC (Enhanced Mid-range) microcontrollers that
have 14-bit instructions. In this group are the
models PIC12F1840, PIC16F1454, PIC16F1619
and others.

program BlinkLed;
use PIC16F84A;

Machine Translated by Google

PicPas 0.8.7

The message panel is located at the bottom of the main window, and displays
information about the build process.

2. Warning Messages.
1. Information Messages.

Warning messages indicate some aspects in the source code that the compiler
detects as dangerous, but which are not errors. However, they must be taken into
account, to prevent logic errors or to improve the code. These errors can be, for
example: “Variable not used”.

Information messages are useful data generated by the compiler, such as the
compilation time, or the amount of memory used.

These messages show three types of messages:

Use of resources

/devices10 -> “Baseline” compiler units. /
devices16 -> “Mid-range” compiler units. /
devices17 -> “Enhanced Mid-range” compiler units.

To see the units supported by each compiler, you can see the folders:

3. Error messages.

User manual

Message filter

If you tried to compile this program by selecting the “Baseline” compiler, you
would get an error message indicating that the PIC16F84A unit cannot be found,
since the compiler will look for the PIC16F84A.pas unit in a path where only the units
supported by the compiler are found. .

var

pin: bit absolute PORTB.7; begin pin :=

not pin;
end.

{$FREQUENCY 8 MHZ }

3.3 Message panel

Machine Translated by Google

PicPas 0.8.7

2. Use of ROM memory (or Flash EEPROM). Indicates how much of the
total program memory is being occupied. All available space is
considered, across all memory pages.

message board.

1. RAM memory usage.- Indicates how much of the device's total RAM
memory is being used by the program. Either through the program's
own variables or through internal variables that the compiler uses. The
memory space in all RAM banks is taken into account.

Messages can be filtered using the controls on the left side of the page.

There are 3 parameters that are shown:

is being compiled.

Error messages are generated when the compiler detects syntax errors or
lack of resources in the program. Errors stop the compilation process and must be
corrected to get the program to compile.

User manual

3. Use of the stack (STACK). Indicates how many levels of the call stack
are being used by the program. The use of the stack is due to the
number of nested routines that the program has. For the low range it
is 2 levels and 8 levels for the mid range.

The right side shows the microcontroller resource usage for which

Machine Translated by Google

PicPas 0.8.7

It is also possible to configure the colors and attributes of the editor's lexical
elements, using the configuration window:

It is intended to work with Pascal files, but can edit other files as well.

Some of the editor's features can be activated or deactivated from the
configuration window:

This window is where the source code or program is written. It is an editor
with special functions to make writing code easier.

• Line numbering. •
Undo, redo. •
Highlighting parentheses, braces or brackets.
• Highlighting of the current
word. • Highlighting of the
current line. • Syntax
highlighting. • Code
folding • Context menu and code
autocompletion. • Selection and editing
in column mode. • Editing with
multiple cursors. • Location of variables, constants and procedures.

The editor features are:

User manual

file types (such as *.C or *.ASM files), with limited options.

3.4 Edit Window

Machine Translated by Google

3.4.1 Code folding

PicPas 0.8.7

The code folding option is controlled through the right sidebar,

These boxes allow you to expand or collapse blocks of code.

<Ctrl>+<Tab> , to move to the next tab.

However, it can also be folded and unfolded using keyboard shortcuts:

To move between tabs, you can use the combinations:

Folding
control

<Alt> + F4

To close the current editing window, you can use the tab's context menu or
use the combination:

The editing window supports multiple text windows, as tabs.

User manual

where some boxes with the “+” or “-” symbol appear.

<Ctrl>+<Tab>+<Shift>, to go to the previous window.

Machine Translated by Google

3.4.2 Multiple Cursors

3.4.3 Text Markers

PicPas 0.8.7

Normally the editor will only work with a cursor. To activate additional
cursors, hold down the <Shift> and <Ctrl> keys and click somewhere else in the
text. In the same way, more cursors can be added, which will perform the same
editing action.

<Shift>, while we lower or raise the cursor with the arrow keys.

<Alt>+<Shift>+ “0” Displays the code of the entire editor.

To activate this mode, just hold down the <Alt> and

The IDE editors support the management of multiple cursors to edit at
various points in the code.

<Alt>+<Shift>+ “-” Folds the code to the current position.

Multiple cursors also allow editing of contiguous lines, in the
same column.

SHORTCUT FUNCTION

<Alt>+<Shift>+ “+” Displays the code at the current position.

User manual

To exit multiple cursor mode, simply click the mouse at any position in the
text.

<Alt>+<Shift>+ “1” Folds the code throughout the editor.

Machine Translated by Google

3.4.4 Synchronized Editing

To quickly access special locations in an editor window, bookmarks can be
defined.

Then if you want to access one of the bookmarks, just use the corresponding
combination:

Each combination generates a marker. Only 10 markers can be defined.

User manual

If, for example, you want to edit the name of all identifiers in a selection range,
you must select the text, starting with the first occurrence of the identifier:

PicPas 0.8.7

<Shift>+<Ctrl>+9

This functionality is useful for refactoring source code.

...

<Shift>+<Ctrl>+0

<Ctrl>+9

Synchronized editing consists of editing the same identifier at various points
in the editor, but without the need to manually edit each occurrence of the identifier.

<Shift>+<Ctrl>+1

you want to dial, and then use one of the following key combinations:

...

Markers are defined by placing the cursor at the position of the text, which is

<Ctrl>+1

Bookmarks are indicated by an icon, with the bookmark number, in the left
margin of the editor:

<Ctrl>+0

Machine Translated by Google

3.4.5 Declaration Search

User manual

Synchronous editing can only be used with identifiers, including those

To do this, just place the cursor on the element we want to locate, and use
the key combination <Alt>+<Up arrow>. At that moment, the cursor will move to
the point where the declaration of the chosen element is made.

PicPas 0.8.7

Allowing you to edit all the identifiers that are within the selection at the
same time.

This functionality can also be accessed using the context menu of the

variable, constant or procedure, is declared.

Then, press the combination <Ctrl>+J, and various cursors will appear at the
points where the identifier appears within the selection.

PicPas offers the possibility of finding the part of the code, in which a

editor and choosing the “Go to declaration” option:

are found within the comments. It cannot be applied to symbols or spaces.

Machine Translated by Google

3.4.6 Automatic syntax checking

To facilitate the automatic detection of syntax errors (without the need to
compile the program or unit), the “Automatic Verification of Syntax” option is included.

PicPas 0.8.7

after each modification made to the current file.

For the location function to work, the current file needs to be able to compile
without errors.

When you activate this option, a syntax check will be done, for a few moments

If the declaration is located in another file, that file will be opened in the
editor to locate the declaration.

Syntax”, in the configuration window:

User manual

Machine Translated by Google

The error messages detected (and warnings) will appear in the message
window as the source code is modified. This way you avoid having to constantly
compile to find syntax errors.

User manual

Automatic error checking performs a process similar to compilation, but
without linking, so that syntax errors are checked, but “Memory full” type errors,
which are detected when compiling completely, will not be detected. the code.

The element (or elements) where the compiler assumes the error is occurring
will also be marked in the editor:

PicPas 0.8.7

If the code explorer window is visible, it will also be displayed.
will update automatically, after automatic syntax checking.

Machine Translated by Google

The entire compilation, assembly, and linking process is carried out by

With the shortcut F9, or with the toolbar button:

The build can be started from the main menu:

User manual

The product of this entire process is a file called: <name>.hex, where
<name> is the name of the program that is being compiled.

PicPas 0.8.7

mistake:

PicPas internally, in a single step and without requiring any additional software.

If an error occurs in the compilation, a message is displayed and the process
is stopped. In that case, the cursor is left on the file, where the

3.5 Compilation

Machine Translated by Google

This partial compilation consists of

It is possible to disable the dialog box with the error message from the
configuration window.

The position where the compiler detects the error does not always coincide
with the actual position of the error, but should be taken as a reference or clue,
rather than as an absolute position.

PicPas 0.8.7

The compilation process is not only done when the compile option is chosen.

User manual

Partial compilation1 can also occur , automatically, in the following situations:

Partial compilation consists of performing only the first stage of compilation,
which does not include linking, generation of the *.hex file, or updating the
assembler window.

The units do not generate *.hex files because they are not complete
programs, but rather they are libraries that help in the creation of programs.

This form of compilation is used in some situations (See next section) in
which only a quick syntax check is required, or when the generation of *.hex files
is not applied, as is the case with units.

1

3.5.2 Automatic Compilation

3.5.1 Partial Compilation

Machine Translated by Google

It is accessed through the “Tools” menu or through the F12 key. Has the

The microcontroller, whose map is shown, is the one defined when compiling a program.

Generally, the compilation process is done in a few milliseconds, and the partial compilation
process is transparent, but if the program is very extensive, and there is some delay when writing in
the editor, the mentioned options can be deactivated. .

text “Mapped to…”

Each bank of RAM is shown in a vertical strip, showing the areas corresponding to the SFR,
GPR and Not implemented registers.

PicPas 0.8.7

The following figure shows the RAM map of a 4-bank microcontroller:

User manual

The area of each section is proportional to the number of bytes in each section.

The RAM explorer displays a map of the RAM memory of the current microcontroller.

following appearance:

The memory areas that are mapped to another bank are displayed, with the

• In some cases of completion, when the autocomplete window is opened manually. • When
writing normally in the editor, when the

autocomplete option is activated. • When the “Automatic syntax verification” option is
activated, forcing

the code to be partially compiled to detect errors.

3.6 RAM Explorer

Machine Translated by Google

PicPas 0.8.7

for the execution of external programs (External Tools).

GPR zones appear as green areas.

The “Add” and “Delete” buttons allow you to create and delete new accesses

“External Tool” configuration:

The RAM areas, which are being used by program variables, in which

User manual

You can configure the execution of external programs, through the configuration screen.

3.7 External Tools

Machine Translated by Google

Each external tool is configured with the controls on the right:

current. It could be something like “PIC16F84”.

User manual

$(hexFile) represents the output *.hex file, including the full path. $(mainFile)
represents the current source file (the one being edited), including the full path.

$(mainPath) represents the
path of the current source file (the one being edited), not including the trailing

directory separator. $(picModel) represents the PIC
model, which is being used in the program

PicPas 0.8.7

are:

The assigned icon is fixed and cannot be changed.

Here it is possible to use some variables as part of the string. These variables

Command line -> These are the parameters that will be passed to you at the time of

first accesses, in the menu and in the toolbar.

run the program. For example: /c dir

Program path -> It is the name of the file to be executed, including the full path.
For example: d:\prorgamas\prog1.exe

Many external tools can be displayed but only the 5 can be shown

It will also appear in the “Tools” menu when it is configured.

Show in Tool Bar. -> Create access to the program, from the “Tools” menu and
from the Toolbar:

Name -> It is the name with which the tool will be identified. this name

Wait to finish -> Indicates that PicPas execution stops until the external program
finishes executing.

3.8 Theme Configuration

Machine Translated by Google

User manual

The PicPas IDE is highly configurable, being able to define the color and
characteristics of the editing windows (Pascal and ASM), the file explorer, the
message window, the menus, etc.

That particular configuration is called “themes,” and it allows you to quickly
change the appearance of the IDE.

Color settings and some additional visual aspects can be saved in a single
file, so that those settings can be used at any other time.

PicPas 0.8.7

The following figure shows two aspects of the same IDE, with different
themes:

Themes are defined from the configuration window

Machine Translated by Google

To set the IDE with a new theme, you must choose one from the “Set Theme”
drop-down list, which is usually set to “None.”

Among the parameters that are saved in a theme are:

When you press “Apply” or “OK”, the settings for the selected theme will be
loaded and the current settings will be lost.

PicPas 0.8.7

- The color of the panels and the dividers of the IDE panels.

- Pascal and ASM syntax element colors.

It is important to ensure that if you are going to make custom settings, you
must have the dropdown list set to “None”, otherwise these changes will be
ignored.

User manual

- Text colors, and highlighting of the Message Panel.

PicPas comes with some predefined themes, but you can create whatever
you want. To create a new theme, configure the IDE as desired, and then press the
“Save Settings” button. current".

- Code explorer text and background colors.

in the /themes folder, reserved to store all PicPas themes.
Providing a name will save the current configuration as a theme,

Machine Translated by Google

PicPas includes a code simulation and debugging tool

- Inspection window for records, configured by your name or your

- Does not include EEPROM simulation, counters, interruptions,

Records
details.

The simulator has the following features:

The code to simulate is obtained from the same PicPas compiler. This implies that

- Allows you to connect electronic components to the input and output pins
of the microcontroller.

- Details inspection window for W and STATUS records.

FLASH
memory map

Before starting debugging, you must have the program ready to be debugged.
The program to debug is the one that is compiled from the main PicPas window.

- Allows execution of programs in real time.

- Includes RAM and FLASH memory maps.

User manual

- Can graphically display the logic value of the microcontroller pins.

- Step-by-step execution, by instructions and subroutines.

The ASM debugger/simulator resides in the same window. Can

assembler, within the same application.

comparators, ADC, and other peripherals.

address.

RAM
memory map.

Only programs compiled by PicPas can be simulated, not from other sources.

- Performs electrical simulation by node analysis, which includes calculation
of voltages and impedances.

- Stack overflow detection.

PicPas 0.8.7

- Shows the elapsed time and the number of cycles executed.

This debugger has the following features

- Assembly code viewer -
Execution control, “Reset” and Pause.

Once compiled, without errors, you can start debugging.

- It only simulates the execution of instructions and RAM and FLASH memory.

- Possibility to go back in the execution of the program.

access it from the main menu Tools>Debugger, or with the shortcut Ctrl+F12.

4 DEBUGER/SIMULATOR

4.1 Starting the debugger/simulator

Machine Translated by Google

Simulation Window

FLASH memory map is similar to RAM memory map, but applicable

User manual

described in section 3.6.

PicPas 0.8.7

RAM Map is a reduced version of RAM Explorer

memory currently targeted by the microcontroller. This is highlighted with
a thicker blue line:

Inspector of

The RAM memory map provides, as additional information, the bank of

RecordsAssembler

real-time simulation.

Code

Both memory maps are updated in step-by-step execution, or in

message
board

to ROM or FLASH memory.

4.2 Memory maps

Machine Translated by Google

Current
memory bank.

User manual

The Records Inspector allows you to see the value of the listed records:

By default they show the addresses of the variables used in the program,

PicPas 0.8.7

It can be done manually or using the context menu:
but the additional records are not shown. To add the additional records,

4.3 Records Inspector

Machine Translated by Google

Additional variables or additional memory locations can be added by moving the cursor after
the last row and directly putting the register name or its address into a new row:

In the assembler panel, each row represents an address of the device's FLASH memory. The
comments that appear can be activated or deactivated from the configuration window, in the
“Assembler” section.

The addresses of the variables must always be written in hexadecimal with three digits and
preceded by the “$” symbol. To add BIT or BOOLEAN type variables by their address, you must indicate
their physical address and the bit number, such as: “$020.1”.

Unused memory
area.

PicPas 0.8.7

The register names used are those generated by the compiler, according to the program.

User manual

With this menu you can also clear the list and add program variables again.

• In the case of single-byte variables (BYTE or CHAR), the same name as the variable is
used. • In the case of single-bit

variables (BIT or BOOLEAN), the name of the variable is also used. • In the case of variables
of more than one byte, the name of the

variable is used, adding the subfixes @0, @1, @2, … for each byte of the variable.

4.4 Assembler Panel

Machine Translated by Google

The unused part of the FLASH memory is drawn in Gray in the control panel.

F5 -> Places a breakpoint at the current position, in the assembly code.

User manual

To control the execution, the following keys can be used:

blue arrow, in the Assembler Panel:

PicPas 0.8.7

(paused) after a restart has been generated (Reset).

Step-by-step execution allows you to execute instruction by instruction, to see the

The instruction that will be executed when you press F7 or F8 is always marked with a

When opening the debug window, the simulator is stopped by default

status of the other registers, but is only an aid for debugging the code.

F9 -> Run the program in real time.

status of the records at each step. It is used for debugging.

Consider that jumping or going back in the execution of a program does not change the

F8 -> Execute step by step per subroutine.

The current instruction to be executed can be changed at any time, breaking the
normal flow of execution. To do this, you must use the context menu and choose the
“Set PC here” option.

F7 -> Execute step by step by instruction.

assembler. The program should never execute these instructions.

F6 -> Restart the device.

4.5 Execution control

Machine Translated by Google

PicPas 0.8.7

On the other hand, when you press F8, in a CALL instruction, the entire subroutine will be
executed in a single step.

To reset the cycle counter, you must use the context menu in the status bar
(right mouse button):

consumed, and the elapsed execution time in the Status Bar.

If the statement to be executed is a subroutine call (CALL statement),
pressing F7 will skip to the statement and execute each statement in the subroutine.

It is possible to count the number of cycles that a subroutine consumes,
using the cycle counter. To do this, it will be enough to reset the cycle counter,
before executing the subroutine, then execute the subroutine and see the elapsed cycles.

As the program runs, you can see the number of cycles

User manual

4.6 Execution information

Machine Translated by Google

PicPas 0.8.7 User manual

Machine Translated by Google

It will execute a million instructions per second.

The diagram in the Simulation Window will also be updated:

Pressing F9, or using the button, starts the program execution process in
real time.

By default, only the microcontroller is shown, showing the details of the
pins. These are colored according to the state of their logic and impedance levels:

PicPas 0.8.7

Real-time simulation implies that the same number of instructions per
second will be executed as those that would be executed on the real device, at the
same clock speed.

User manual

So, for example, if a PIC16F84 at 4MHz is being simulated, the simulator

As the instructions are executed, the panels, registers or RAM and FLASH
memory maps are updated. This refresh is done with a frequency of 5 frames per
second, therefore higher speed changes may not be detected.

4.7 Real-time execution

Machine Translated by Google

COLOR

• It is stopped manually by pressing the “Pause” button.

User manual

The program execution will stop automatically, if:

PicPas 0.8.7

Grey

program.

Red
High impedance.

• An attempt is made to execute an area of memory that has not been written by the

• An attempt is made to execute address $000. As in the case of a Reset.

Black
Low impedance, voltage at Vcc

• A SLEEP instruction is executed.

Low impedance, zero voltage.

• A breakpoint is detected.
• It is stopped manually by pressing the “Reset” button.

STATE

Machine Translated by Google

5.2 Comments

5.3 Numbers

5.1 Reserved Words

with the } sign, no matter how many { characters are in the way.

FALSE FOR IF

In the same way the { symbol will open a comment that will be closed only

User manual

END EXIT ELSE ELSIF

Comments can be a single line, using the characters //:

Nesting of comments is not supported. This means that the comments

PicPas 0.8.7

CONS DIV DO

UNIT UNTIL VAR

of a single line will always begin with // and will always extend to the end of
the line, no matter what characters are found.

BEGIN BIT BOOLEAN BYTE

other than the one assigned to them by the compiler. These words are:

THEN TO TRUE TYPE

WHILE WORD XOR

ABSOLUTE AND ASM

which are reserved by the compiler and cannot be used for any other purpose,

RESULT REPEAT

Optionally, delimiters (* and *) can be used for comments.
several lines.

Within the Pascal language, which PicPas implements, there is a group of words

MOD NOT OR PROGRAM
IMPLEMENTATION INTERFACE INTERRUPT

Or multiple lines, using the { and } delimiters:

//This is a comment

{This is a multi-line comment}

(*This is also a multi-line comment*)

5 LANGUAGE REFERENCE

Machine Translated by Google

The numbers in PicPas are expressed in the usual way:

Numbers can also be expressed in hexadecimal format:

In Pascal, identifiers must have at least one letter and are formed

User manual

constants or other elements of a program.

Special characters, such as space, signs, or accent characters, are not

The following identifiers are valid:

PicPas 0.8.7

Identifiers are words used to name variables.

number or the underscore
character “_”. • Identifiers cannot be reserved words.

They can be part of an identifier.

The following identifiers are not allowed

In the current version of PicPas, decimal or negative numbers are not supported.

• The following characters, if any, can be any letter,

Therefore, the following numbers are considered erroneous:

Or in binary format:

the underscore character “_”.
• The first character must always be a letter, whether uppercase or lowercase or

applying the following rules:

0

to

1e20

1name

2.5

%01

//Start with number

-1

%10010011

a123b_

10000

variable20
long_name

123

$FFFF
$15

x1

5.4 Identifiers

Machine Translated by Google

Declarations of:

User manual

Unit declaration

like this:

PicPas 0.8.7

Program Identification

Main body of the program

Thus, the simplest (and most compileable) program that can be written would be, something

A typical Pascal program has the following structure:

Of these 4 sections, only the last one (the main body of the program)
is mandatory.

- Procedures

Within Pascal, identifiers are not case sensitive, this means that, for Pascal,
the identifiers: “Pascal”, “PASCAL” or “Pascal”, are exactly the same identifier.

- Guys
- Variables

A more didactic example, in which some statements are shown, could be
this:

- Constants

// Const constant declaration

//It is a reserved word

program BlinkLed;

//Main body of the program end;

the_child
my name //Contains space

{$FREQUENCY 20MHZ }

//Type declaration type number

= byte;

begin

//Contains an invalid character

var

{$PROCESSOR PIC16F628A}

VALUE = $86;

//Hardware definition

5.5 Structure of a program

Machine Translated by Google

Subtraction

The main program is a set of instructions. The most common instructions
are assignments:

Addition

User manual

…END, and always ends with a period.

OPERATOR NAME

PicPas 0.8.7

The body of the program always goes at the end, between the reserved words BEGIN

Or, the instructions can be conditional or iteration structures:

ARITHMETIC OPERATORS

+

-

function:

PicPas supports a subset of Pascal operators. These are:

Multiplication*

There may also be instructions that are procedure calls or

Sign

All statements must end with the semicolon (;) delimiter.

-

Conditional structures are described in section 5.12.

var

x := 1;

end.

Do something;

var1 : number;

variables := x + y;

ExecuteFunction(x,y);

if i>0 then do_something_with_i; end;

var2 : number;

while i>0 do do_something_with_i; end;

//Declaration of variables

//Main body of the program
begin

var1 := VALUE;

5.6 Operators

Machine Translated by Google

True False

BIT OPERATORS

Residue

True True True

OR

XYX XOR Y

All arithmetic operators work on integer data, because in the current version of PicPas, it
does not support floating point numbers.

Mod

NAME

False True False

True False True

True True True

X NOT X

LOGICAL OPERATORS

Logical OR operation

False True

User manual

NOT

Logical operators work with Boolean variables, according to the following tables:

Div

XOR

True False False

False True True

True True False

The multiplication, division and remainder operators are only implemented for some types in
the current version of the compiler.

Logical NOT operation

False False False

False True True

PicPas 0.8.7

OPERATOR

Logical AND operation

XOR logical operation

XYX OR Y

True False True

False False False

Integer division

AND

XYX AND Y

False False False

And they work the same way with bit variables, with the exception of using 1 instead of True

and 0 instead of False.

Machine Translated by Google

ASSIGNMENT OPERATORS

Which is equivalent to:

Assignment

NOT

OPERATOR

Logical OR operation

Less than or equal to

>>

OR

Logical shift to the right

>=

Different

NAME

:=

Comparison operators always return a Boolean expression.

<<

numerical variables.

OPERATOR

User manual

Logical NOT operation

Greater than or equal

AND

XOR logical operation

>

Equal

Assignment with sum

XOR

Logical shift left

<

=

+=

PicPas 0.8.7

NAME

The same logical operators allow operations to be carried out at the bit level, in

For example, the following code inverts the value of all bits on port B:

<=

Greater than

<>

OPERATOR

Logical AND operation

COMPARISON OPERATORS

Minor

NAME

The assignment operation with addition is used as follows:

variable += value;

variable := variable + value;

PORTB := PORTB xor $FF;

Machine Translated by Google

User manual

The advantage of using the assignment operator with addition is that the statement is
compiles more compactly than in the long version.

PicPas 0.8.7

Machine Translated by Google

Bit

0.. 4294967295

1 byte

1 byte

2 bytes

4 bytes

The operators are evaluated according to the following precedence:

Operation 2 will be evaluated first

2

GUY

Signed variables are not handled, nor is a number floating point, in the version

NOT, sign “-“

PRECEDENCE

=, <>, <, <=, >, >=

3, because the multiplication operator “*”
has higher precedence than the addition operator “+”.

1 bit

(1 + 2) * 3

0..255

0..65535

TRUE or FALSE

DWord variables have limited support in the current version of PicPas.

*, DIV, MOD, AND

in an expression. So, for example, in the following expression:

DWord

Boolean

User manual

4

*

PicPas supports the following data types:

OPERATORS

+, -, OR, XOR

*

RANGE

chr(0) .. chr(255)

current of the compiler.

6

:=, +=

To change the order of evaluation, expressions can be grouped,

1 bit

Byte

Only assignment, comparison (= and <>), addition and

PicPas 0.8.7

5

The operators that have the highest precedence are the ones that are evaluated first

1 + 2

using parentheses:

0 or 1

Char

words

3

3

SIZE

To save memory, the Bit and Boolean types occupy only one bit.

assignment with addition.

5.8 Data types

5.7 Operator precedence

Machine Translated by Google

c := chr(65); //Equivalent to ac := 'A';

c := #49; //Equivalent to ac := '1';

var

var_bit: bit;

c:char;

begin
c := 'a'; end.

var

What is indicated to the chr() function, as a parameter, is the ASCII code of
the character you want to obtain.

They are declared in the usual way:

User manual

similar to the Boolean type, and like it, it occupies only one bit of memory.

PicPas 0.8.7

You can also express literals of type Char, using the Chr() function:

Conversion to byte: n := ord(var_char);

The Bit type is a type that does not belong to the standard Pascal. It behaves

The characters must be enclosed in single quotes; double quotes cannot be
used.

Assignment: var_char :=
'a'; Comparison: if (var_char = 'a') …

The assignment of values is done in the following way:

The operations allowed on the char type are:

number '0'. It is the only data type that handles alphanumeric characters.
The “char” variables store simple characters, such as the letter 'A', or the

You can also use the “#” character and the ASCII code directly:

5.8.2 Bit Type

5.8.1 Char Type

Machine Translated by Google

5.8.3 Word and DWord type

The case of DWord variables is similar:

Supports the same logical operators as boolean types (AND, OR, XOR,

0x20 -> Low Byte
0x21 -> High Byte

User manual

This statement will place two bytes in consecutive positions:

To overcome this problem, a type comparison must be done:

PicPas 0.8.7

An error will be raised, because a boolean expression is expected within the IF
conditional.

Word variables take up two bytes in memory. Usually these two bytes
They are consecutive. Let's consider the following statement:

Variables or bit expressions cannot be used as conditions directly. That is, if a
verification of the form is attempted:

However, the way they are initialized is different:

You also cannot directly assign values between Bit and Boolean, because
semantically, they are considered different data types.

with Bit variables at the same level of efficiency as with boolean variables.

NOT):

Without expecting loss of efficiency, since the compiler optimizes the operations

x := var_bit_1 AND var_bit_2; x :=
var_bool_1 AND var_bool_2 x := NOT var_bit
x := NOT var_bool

if var_bit then ...

if var_bit = 0 then ...

var num: word;

var_bit := 1;
var_boolean := TRUE;

Machine Translated by Google

5.8.4 Type conversion

Bit(<expression>)

User manual

Chr(<byte>)

PicPas 0.8.7

Ord(<char>)

PicPas does not do implicit type conversions. All operations must be defined on
the type of data used. There is strictly no such thing as “compatible types”. If type
compatibility is allowed, it is because such an operation is implemented within the
compiler.

To convert between types, the conversion functions must be used:

All variables and constants within PicPas have an assigned type, at the time of
their declaration or their appearance in the code.

So, if you have the code:

Pascal is strict about types. Assignments and operations should be done only
between allowed types. For example, you cannot assign a “char” to a byte or a boolean.

The behavior is similar in the case of DWord variables, except that they occupy
4 bytes in memory.

For example, to convert a Char to its ASCII code, Ord() is used.

In some critical cases, when you are at the end of a bank of RAM, the compiler
can optimize the use of RAM, making the two bytes of a Word variable occupy positions
in different banks.

Word(<<expression>)

0x20 -> Byte 0
0x21 -> Byte
1 0x22 -> Byte
2 0x23 -> Byte 3

Byte(<expression>)

var num: dword;

...

large_num := 200;

var large_num: word;

Machine Translated by Google

5.8.5 Type properties

This operation would be type incompatible, because a byte (the number 200
is encoded as a byte) is being assigned to a word, so legally we should do:

For example, to access the lowest bit of a Byte type variable, we can do:

User manual

be able to use properties, in the form of fields, to basic types such as byte or word.

Description

Returns bit 1 of the byte

PicPas 0.8.7

A non-standard feature of Pascal, implemented within PicPas, is the

The “bit0” field is already internally defined for all byte variables and
constants.

bit1
Returns bit 0 of the byte

In the case of constants, we proceed in a similar way:

But PicPas allows the first assignment, because internally, the <word> :=
<byte> operation has been implemented.

bit0

As well as this operation, there are other “compatible” operations that are
implemented. But in general, the rigidity between types, which characterizes
Pascal, is maintained.

Field

The following properties have been defined for the Byte type:

Note that, for numbers, they must be enclosed in parentheses, to avoid
confusing the number with a decimal number, due to the effect of the point.

var large_num: word;

var

const

a_byte = $10;

...

a_byte: byte;

…

large_num := word(200);

…

a_byte.bit0 := 1;
a_byte.bit0 := (16).bit1;

a_byte.bit0 := 1;

Machine Translated by Google

Returns byte 1

HighWord

Returns the Word under

bit6

bit7

Description

Returns bit 3 of the byte

Returns bit 7 of the byte

Returns bit 5 of the byte

Returns the high byte

Field

High

do:

LowWord

Returns byte 0

bit2

is to use bit0, bit1, etc.

Returns byte 2

User manual

bit4

Field

Also, the access can be nested, so that, to clear the highest bit

Returns bit 4 of the byte

You can also use the simplified notation:

Returns the low byte

For the DWord type, four properties are defined:

Returns the tall Word

Returns bit 6 of the byte

High

Low

Extra

PicPas 0.8.7

bit3

But this notation is maintained only for compatibility. The recommended way,

For the Word type, two properties are defined:

So, for example, to copy the low byte into the high byte of a word, you can

Description

Returns byte 3

Returns bit 2 of the byte

bit5

Low

weight of a word, you can do:

Ultra

un_word.High.bit7 := 0;

a_byte.0 := 0;

un_word.High := un_word.Low;

a_byte.7 := 1;

Machine Translated by Google

User manual

So, for example, to reverse the words of a Dword, you could do:

From the compiler's point of view, the properties of variables behave as if they
were common variables, therefore, they can be worked on in the same way as working
with a variable.

In the same way, the properties of constants behave like other

PicPas 0.8.7

constants, and do not generate compiled code.

tmp := a_dword.HighWord;
un_dword.HighWord := un_dword.LowWord;
un_dword.LowWord := tmp;

Machine Translated by Google

varAbs1: byte absolute 32; varAbs2:
byte absolute %010001; varAbs3: byte
absolute $20;

var1 : byte; var2 :
bit;

long_name_variable: boolean;

var

PORTB: BYTE absolute $06; pin1 :

boolean absolute PORTB.1; pin0 : bit absolute
$06.0;

var

var

PORTB: BYTE @ $06;

Addresses can be expressed as numbers in decimal, binary or hexadecimal
format:

The compiler allocates space for the variables in free addresses.

User manual

There cannot be two variables with the same name, at the same level of the
program.

PicPas 0.8.7

All variables must be declared indicating their type.

The alias “@” can be used as a replacement for the word ABSOLUTE:

statements:

reserved word ABSOLUTE:

bit number.

Variables are defined with an identifier in the “VAR” section of the

To define a specific memory address for a variable, use the

The bit and boolean variables need to specify, in addition to the address, the

during the course of program execution.
Variables are language elements that allow values to be stored,

memory, defined by the compiler's criteria.

5.9.1 Absolute Variables

5.9 Variables

Machine Translated by Google

5.9.2 REGISTER variables

PicPas 0.8.7

Word type variables occupy two bytes. If specified as Absolute,

It will cause the lowest byte of “b” to be located at the same physical address
as “a”, and the highest byte will be located at the next address. This can generate a
compilation error if the variable “a” has been located right at the end of a bank of
RAM.

However, the variable “var1” is located in the user's RAM, and therefore, that
memory position will be assigned and reserved. Considering it as “used” memory.

The following code shows memory usage cases:

The “stat” variable does not use user RAM, because it is located in a position,
which corresponds to the PIC16F84 system registers.

A particular feature of PicPas is that it has a special type of storage for
variables: REGISTER storage allows you to use variables that use internal registers
of the microcontroller as storage.

Absolute variables also take up memory space when they point to the user's
memory area. The compiler will not place new variables in positions occupied by
absolute variables.

Two variables occupying the same absolute position behave as a single
variable. What is written in one will be reflected in the other.

Type properties (See section) can be used to specify the reference of an
absolute variable:

User manual

They will always be located as consecutive positions. For example, the following code:

{$PROCESSOR PIC16F84}

var

a: byte; b:
word absolute a;

var

program name;

stat: byte absolute $03; var1: byte
absolute $20;

var

un_word: word;
un_bit: bit absolute un_word.Low.bit0;

Machine Translated by Google

5.10 Constants

The disadvantage is that since the PIC has only one register, its contents are
lost after executing some operation that uses that register. Which in the case of the
PIC, are the majority of instructions.

REGISTER allow:

This procedure has its “fleeting” parameter, of type REGISTER, which means
that it will receive the value directly in register W. Therefore, and since W is a
volatile register, the first thing to do is use “fleeting”, before it is lost.

• Assign them more quickly. •
Read them more quickly. •
Save code in the procedure call.

In the current version of PicPas, this type of storage is only allowed for
procedural parameters. So it is possible to define a procedure of the form:

If for example this were done:

PicPas 0.8.7

There would be an error, because the “PORTA := $FF” instruction makes use
of the W register, and therefore the value of “fleeting” is lost.

IMPORTANT: Only one REGISTER type parameter can be declared, and it must
always be the last one.

The REGISTER parameters are only implemented with the byte, char and word
types, in the current version. However, when used with Word, the instruction
savings is less, because you only have one work register in the PIC, and an
additional memory location will still be used.

User manual

The advantage of a REGISTER variable is that it does not take up memory
space and its access is faster.

This might seem like a disadvantage, however, using the parameters

procedure SetValueQuickly(fleeting register: byte); begin

$FF)
end;

procedure SetValueQuickly(fleeting register: byte); begin

PORTB = fleeting; //”fleeting” has the value of the last instruction (maybe
PORTA := $FF; //Use the W register

PORTB := fleeting;
end;

//Be careful what you put here

Machine Translated by Google

To force the type assigned to constants, you can use some of the

Constants are like variables that do not change their value throughout the

The compiler will create the constant “HIGH” as a boolean type, and it will have
all the characteristics and restrictions of the boolean type.

less than 256.

In the same way, the conversion functions bit(), or chr() can be used.

User manual

can be assumed to be of bit type, the byte type will always be assumed for numbers

numeric to store at this value.

conversion function, PicPas will assume the byte type.

PicPas 0.8.7

The most basic numeric type is the byte, although the values “0” and “1”

However, it is not usually specified, but is assumed by the compiler.

• The literal 65536 will generate an error because PicPas does not have a type

And in this way, a WORD constant will be created, with the value 1. If the

For example, in the following definition:

Constants, like variables, also have a type. This guy, without

• Literal 256 is read as a Word type constant.

Constants are defined with the “=” operator, and can be defined in decimal,
hexadecimal or binary format.

• Literal 123 is read as a constant of type Byte.

wearing:

in Pascal:

store them. So we have to:

type conversion functions, so you could declare word type constants,

program execution. PisPas implements the use of constants, in the common way

Numerical literals are assigned the smallest possible type, which can

const

//character

LARGE_NUM = word(1);

Macara = %0101;

const

const

AT = '@';

VALUE = 5;

HIGH = true;

//decimal

VarDir = $21;

//binary

//hexadecimal

Machine Translated by Google

5.11Types

Within PicPas, it is possible to declare custom names for basic data types.

The following example declares a byte array of 10 elements:

The following example shows how the type “number” is created, as a

PicPas, in its current version, supports a basic definition of arrays, for the
byte, char and word types.

PicPas 0.8.7

equivalent of the word type, and the character type, as an equivalent of the “char” type:

The supported operations are the same as the variables, according to their
type.

Arrays must be declared using an array type:

User manual

type <array_type> = array[<number of elements>] of <element type>;

The definition of types also allows creating arrays.

They can also be defined as expressions from other constants.

The number of elements is an integer from 1 to 127. The maximum size of an
array will depend on the memory available on the device, and should not exceed
the size of a bank of RAM.

5.11.1 Arrangements

var
//Create variables of those types

a: abytes;

//Define types type

number = word;
character = char;

char: character;

var

LongValue = 10000 + Value; //Formula

num: number;

type
abytes = array[10] of byte;

Const

Machine Translated by Google

x := array.high

The first element of an array is the value a[0], and the last is a[9]. To access

listed in the following table:

length
low

User manual

There are a group of methods that can be applied to an arrangement. These will

EXAMPLE

x := array.low;

PicPas 0.8.7

x := array.length;

Returns the largest index of the array.

conditionals.

For now it is always 0.

limitation is that you cannot use arrays directly as part of expressions

The following code shows how arrays are used on supported types:

Returns the lowest index of the array.

Array handling is still limited in the current version of PicPas. A

with initial index different from zero.

DESCRIPTION

Returns the length of the array.

high

to the size of an array, the “a.length” property would be used. Creating arrangements is not allowed

METHOD

Tabyte = array[3] of byte;

type //Array types

abyte: Tabyte;

achar[0] := 'a';

Taword = array[3] of word;

abyte[1] := 1;

aword: Taword;

aword[2] := word(5000);
end.

var //array variables

begin

Cross out = array[3] of char;

achar: Cross out;

Machine Translated by Google

5.12.1 Conditional IF … THEN

even if it only has one instruction. The following are usage examples:

reserved ELSIF, and then include the condition, as if it were a simple IF.

The IF conditional must end with the reserved word END,

User manual

Note that the syntax of the IF conditional is not similar to Pascal's IF. This
variation corresponds to one of the improvements in the language that PicPas implements.

The IF structure has the following forms:

To make additional comparisons, in the same IF, just use the word

PicPas 0.8.7

first the directive: {$Mode Pascal}
PicPas can work with the Pascal IF syntax. To do this, you must include

PicPas supports the most common structures of the Pascal language:

y := 0;

else

x := y + 1;

else

<instructions>

y := 1;

x := y + 1;

x := 0;

If <boolean expression> then

if x = 0 then

y := 1;

elsif x = 1 then

end;

If <boolean expression> then

if x=1 then x := 0; end;

if x = 0 then

<instructions>

end;

end;

y := 0;

end;

<instructions>

else

5.12Structures

Machine Translated by Google

Repeat
<statement or block> until

<boolean expression>;

a := a + 1; end;

2 In the current version of PicPas, the final value cannot be an expression but only a constant or variable.

while a<5 do

While <boolean expression> do <statement
or block>; end;

repeat
inc(a);

until a>5;

The FOR loop has the following syntax:

The REPEAT loop has the same shape as in Pascal.

includes the END delimiter, and should not include the BEGIN.

The WHILE loop has the following syntax.

FOR <numeric variable> := <start value> TO <end value2> DO

PicPas 0.8.7

END;

An example of a REPEAT loop would be:

PicPas can work with WHILE's Pascal syntax. To do this, you must first include the
directive: {$Mode Pascal}

User manual

Note that the syntax is similar to Pascal's WHILE, but the body of the loop always
includes the END delimiter, and the BEGIN should not be included.

Note that the syntax is similar to Pascal's FOR, but the body of the loop is always

An example of a WHILE loop would be:

5.12.2 REPEAT loop

5.12.3 WHILE loop

5.12.4 FOR loop

Machine Translated by Google

5.13System functions

apply Inc(n), it will be worth 0.

The numeric variable must be of type BYTE.

FUNCTION

If n reaches the upper limit of the value, it will automatically go to
the lower limit of the variable value. Thus, if n is Byte, and is equal to 255,

Dec()

of the language, without the need to use any unit. These are:

User manual

Inc(n); //If n was 0, now it is 1

SetBank() Forces switching to the indicated RAM bank. For example, the instruction:

PicPas 0.8.7

There is a group of predefined procedures and functions that are part of

1MHz, 2MHz, 4MHz, 8MHz, 10MHz, 12MHz, 16MHz, and 20Mhz.

Example:

If n reaches the lower limit of the value, it will automatically go to
the upper limit of the variable value. Thus, if n is Word, and is equal to
0, when Dec(n) is applied, it will become equal to 65535.

Increments the value of a variable, of type Byte, Char, Word or
DWord.

To use this function, the clock frequency of the current microcontroller
must be at certain allowed values, which are:

Dec(n); //If n was 1, now it is 0

SetBank(1);
Generates instructions to switch to bank 1, regardless
of the position of the current bank. If an invalid bank is
provided, only the lowest-weight bits are read.

PicPas can work with the FOR Pascal syntax. To do this, you must first include the
directive: {$Mode Pascal}

Inc()

indicated. It can be indicated from 0 to 65536 milliseconds.

Example:

delay_ms() Allows you to generate a time delay, the number of milliseconds

Decrements the value of a variable, of type Byte, Char, Word or
DWord.

An example of a FOR loop would be:

DESCRIPTION

for i:=1 to 3 do

do something;
end;

Machine Translated by Google

When you apply variables, Dword, returns the base Word.

Word()

SetAsInput() Sets a port of byte or bit size as the input port.

vardword := dword(varbit); //returns 0 or 1

Chr()

varbool := boolean(0); //write 0

If called from within a procedure, exits the procedure.
If called from within a function, it exits the function, with the
possibility of returning a value.

Convert an expression into a Word.

Examples:

Converts a byte to a character, using ASCII code.

Example:

Example:

Converts an expression to a Byte.

varword := word(varbit); //returns 0 or 1

varbyte := byte('A'); //returns 65

vardword := dword('A'); //return 65 as Dword

Byte()

varword := word($01020304); //returns $0304

Example:

Any value other than zero will return the value bit 1.

DWord() Converts an expression to a DWord.

User manual

Exit()

Example:

Converts a character to a byte value, returning its ASCII code.

Converts an expression into bit data.

Any value other than zero will return the value bit 1.

When applied to char values, Byte() returns ASCII code.

Example:

vardword := dword(1); //return 1 as Dword

n := ord('A'); //returns 65

varbit := bit(100); //write 1

Example:

varword := word(1); //returns 1 like Word

vardword := dword($0102); //return $0102 as Dword

PicPas 0.8.7

c := chr(65); //returns the character 'A'

varbit := bit(0); //write 0

Boolean() Converts an expression to data of type boolean.

varbyte := byte(varbit); //returns 0 or 1

varbyte := byte($0102); //return $02

varword := word('A'); //returns 65 like Word

Exits a function or terminates the execution of the main program.

Ord()

varbool := boolean(100); //write 1

When applying variables, Word or Dword, returns the low byte.

Example:

Bit()

Machine Translated by Google

x: byte; //local variable begin x := 1;
end;

procedure proc2(par1, par2: byte); begin x :=
even1

+ even2; end;

procedure proc1(par1: byte); begin x :=
even1;

end;

var
procedure proc;

procedure proc1(par1: byte); begin x :=
even1;

end;

procedure proc2(par1, par2: byte); begin x :=
even1

+ even2; end;

PicPas 0.8.7

In PicPas you can declare procedures, in the usual way in which they are

Procedures can in turn have local variables. These variables will not be accessible from outside
the procedure.

Configures a port of byte or bit size as the output port.

Parameters can also be used within procedures.

Procedures can, in turn, call other procedures:

All procedure parameters are passed by value. In the current version, PicPas does not support
parameters by reference.

SetAsInput(pin1) //”pin1” must have been defined

SetAsOutput()

SetAsOutput(pin1) //”pin1” must have been defined

SetAsInput(PORTA)

User manual

they do in Pascal.

Examples:
SetAsOutput(PORTA)

5.14Procedures

Machine Translated by Google

procedure Next(par1: byte): byte; begin exit(even1+1);
end;

procedure fun5(value1: word): word; begin

exit(value1+2); end;

//Overloaded functions procedure
fun5(value1: byte): byte; begin exit(value1+1);
end;

procedure Next(register par1: byte): byte; begin exit(even1+1);
end;

x := next(1);

PicPas 0.8.7

They handle different types of parameters:

To optimize simple functions, it is recommended to use REGISTER parameters
(Section 5.9.2), to achieve more optimal code. The previous function, then we could write
it like this:

Functions are declared in a similar way to procedures, but indicating the type of
data they return.

PicPas supports procedure overloading, that is, several procedures can be declared
with the same name, as long as they have parameters of different types.

The system function “exit” allows you to indicate the value that is returned as a
result of the function, and ends the execution of the function. You can also use “exit” to
exit a procedure, but in this case the parameter should not be indicated.

For example, in the following code, two functions are declared but they

User manual

Thus the generated code is 2 instructions shorter and two cycles faster.

This function will return the value of the parameter, increased by 1. The call to a
function is made in the common way as it is done in Pascal:

5.15 Functions

Machine Translated by Google

end;

procedure mi_isr; interrupt; begin

3 By optimizing the PicPas code, it does not compile procedures that are not used in the program.
There is a configuration option that allows bank startup routines to be generated at the

beginning of procedures.

...

Although these functions have the same name, for the compiler they are completely
different, and one or the other is chosen, depending on the type of parameter used.

Declaring a procedure as ISR differentiates it from a common procedure in that:

no syntax error will be generated, but only one of them will be recognized.

User manual

There should only be one interruption procedure. If more than one is declared,

PicPas 0.8.7

They control the flags. This must be done manually.

4. No additional bank switching instructions are generated at the beginning of
the procedure4 . It is the responsibility of the programmer to correctly
manage the banks within the routine.

Interrupt procedures do not save the value of the registers, nor

Interrupt procedures are used to implement interrupt handling with PIC
microcontrollers.

3. They end with the RETFIE statement, instead of RETURN or RETLW.

To define a procedure as an interrupt service routine (ISR), you must include the
INTERRUPT reserved word:

2. They are always compiled at program memory address 0x0004.

PicPas does not support parameters by reference.

source3 .
1. It always compiles, without the need to be called from the code

All function parameters are passed by value. In the current version,

4

5.16Interruption Procedure

Machine Translated by Google

following code is completely valid:
ASM blocks can be written on one or more lines. For example, him

Several ASM blocks can be included, within the same procedure or in the

Prefixing “%” for binary values: CLRF %1101
Prefixing “$” for hexadecimal values: CLRF $20

User manual

Note that you should not put “;” after the END delimiter, because it is not
treated as a statement, but rather as a comment or directive. Therefore, it is possible
to include ASM blocks, even within an instruction:

The mnemonics used for the instructions are standard, but the numeric and
character formats are those used by Pascal. This means that the numerical values
are expressed as follows:

PicPas 0.8.7

anywhere. To do this, an ASM…END block is used.

Comments are accepted, within the assembly code, and so are tags. For
comments, use the “;” character:

main program.

Using quotes for character codes: MOVLW 'A'

It is possible to directly include assembly code within a program, almost

5.17Assembly code

MOVLW 2
asm

procedure DoesSomething;
begin

x := 10 asm CLRF $OC end; end;

end;

asm

procedure DoesSomething;
begin

x := 10;

procedure DoesSomething;
begin

x := 10;

end

procedure DoesSomething;
begin

x := 10;

asm sleep end end;

ADDWF $20,F

Machine Translated by Google

What this instruction does is encode a jump to the same instruction

ASM blocks:

Changing banks in RAM can cause an error in the compilation,
or in the generated program.

leap.

PicPas 0.8.7

To specify jumps, within ASM code, you can use the pseudo-variable

You can include displacements to the current address, using operators
add and subtract. The following examples show forward and backward jumps:

User manual

“$”, which indicates the current memory address. Thus, the following code represents a

Labels can also be used to indicate the destination address of the jump:

infinite loop:

You can also manage change in RAM banks, from within the

bsf 3, 0 ;change to bank 1

;one line comment

asm

goto $+1 ;jump one position forward goto $-2 ;jump two

positions back
end

begin

asm

program exampleASM;

end;

end.

;infinite loop

end

end

goto $end

asm

ADDWF $20,F

clrf $20 bcf

3, 0 ;return to bank 0

;infinite loop

MOVLW 2 ;comment at end of line

asm

5.17.1 Labels and jumps

Machine Translated by Google

Within an ASM block, it is possible to access variables, considering that:

PicPas 0.8.7

The following code shows how the program's global variables are cleared:

same way as if it were used from the Pascal6 program .

• Variables of type Byte, Char, Boolean, bit and word can be accessed.
• Global and local variables can be accessed. •
Access to variable names follows the same scope rules as Pascal5 code . •

Variables can be
read or written. • A variable used, from
within an ASM block, will behave as follows:

Tags can also be used to create subroutines:

User manual

Tags are always defined as an identifier, followed by a colon “:”. It is allowed
to put instructions after the labels.

CALL sub_nothing
end

label:

DECFSZ $21,f

asm

start:

byte1: byte;
char1: char;
bit1: bit; bol1:
boolean; begin //

start at
low level

6 This implies that the compiler will apply the same optimization criteria.

RETURN

var

5 This means that in name resolution, first a name is searched within the current block, which can be the local
variables, and then it will be searched in the previous blocks, which can be the main program, or in the units.

GOTO start

sub_nothing: ;does nothing

BCF bol1
end

asm

BCF bit1

GOTO end tag

CLRF car1

DECFSZ $21,f

CLRF byte1

5.17.2 Reference to variables

Machine Translated by Google

5.17.3 Reference to constants

PicPas 0.8.7

the same name used since Pascal:

• Constants of type Byte, Char, and word can be accessed.
• Global and local constants can be accessed. •
Access to the names of the constants follows the same rules as

Access to Word variables can be done by specifying '.High' or '.Low'

Access to local variables or parameters of a procedure is done using

REGISTER parameters can be accessed from ASM blocks, considering that
they are stored in the W register. You should not try to access REGISTER parameters
by name.

ASM block. The considerations are:

Note that access to bit variables is done by specifying only the name of the
variable, without the need to specify the bit.

range than Pascal7 code .

same way as if it were used from the Pascal8 program .

It is also possible to access program constants from within a

User manual

• A constant used, from within an ASM block, will behave as follows:

to indicate the byte you want to use:

7

end.

END

MOVWF w.low

MOVWF w.high
MOVLW 1

CLRF car ;resets

MOVLW 0

;sets to zero

ASM

asm

var

procedure Clear(n: byte; char: char) : word; begin

CLRF n

w: word;

begin

8 This implies that the compiler will apply the same optimization criteria.

This means that, in name resolution, first a name is searched within the current block, which can be the local
variables, and then it will be searched in the previous blocks, which can be the main program, or in the units.

end

end.

end;

Machine Translated by Google

User manual

The following code is an example of using program constants within ASM
blocks:

Procedures can be accessed from within blocks in assembler, using the
same name that the procedure has in Pascal:

Only in the case where the procedure uses a single REGISTER parameter of
type byte, the register W can be used to pass the parameter:

PicPas 0.8.7

To access the bytes of Word type constants, you can use the form
<constant>.HIGH and <constant>.LOW, in the same way as you do with variables.

However, you cannot pass parameters when the procedure needs them.

BSF vbyte, CBYTE end

call proc1 end
end.

CALL proc1

asm

asm

end;

MOVLW 5 ;will be passed as parameter

MOVWF vbyte
end

begin

asm

//Procedure in Pascal begin

MOVLW CBYTE

//constant access

procedure proc1;

begin
asm

CBYTE = 3;

procedure proc1(register x: byte); begin end;

const

5.17.4 Reference to Procedures

Machine Translated by Google

RESULT

User manual

PLACE WHERE IT IS RETURNED

The H register is an internal register that the compiler creates when using

A simple example could be returning the result of a Byte function that increments
the value of a parameter:

PicPas 0.8.7

FACT

Depending on the type returned by a function, the following registers or bits
must be used:

Accumulator
W High byte in internal register H and low byte
in accumulator

operations that involve the Word type.

KIND OF

To do this, you must take into account the records that the functions use to return their
results.

Z bit of the STATUS register.

It is possible to set the result of a function, directly from the assembler.

words

When you have several procedures with the same name, the reference from
ASM will always use the last declaration:

Byte or Char
Bit or Boolean

end;

end;

end.

end.

begin

next procedure (even: byte): byte; begin

asm

INCF even, w

asm

procedure proc1(x: byte); begin

procedure proc1; begin

call proc1 ; will call the second statement of proc1 end

end

5.17.5 Returning results for functions

Machine Translated by Google

User manual

The following example shows how to set the result of a Word function:

The following code shows how the compiler is forced to compile the

PicPas 0.8.7

The result of this code will be to overwrite the last two instructions, with the
code generated by “vbit := 1”.

The ORG directive allows you to specify the current address, where the following
instructions will be compiled.

You can also use the “$” character to indicate the current memory address, so
that the next block will move the program counter back 2 positions:

reserved name, in ASM blocks.
Note that to access the H register, the name “_H” is used, which is a

Changing the memory address of the program can
cause an error in compilation, or in the
generated program.

instruction “vbit := 1” at the beginning of the program memory.

org 0x00
end

end

MOVLW $40

asm

MOVWF_H

org $-2
end

MOVLW $80

asm

vbit := 1;

low)

asm

;The result of a word is returned in _H (high part) and W (high part)

//Function for reading test and returning values procedure SetTo8040: word; //
Returns $8040 begin

end;

vbit := 1;

end;

end

5.17.6 The ORG Directive

Machine Translated by Google

User manual

In this case, almost total control is left to the code, and PicPas is used only
as a framework and can be used to leverage SDI for development.

It is possible to create programs developed entirely in assembler, with little
or no Pascal.

PicPas 0.8.7

The following image shows the “Hello World” program to blink an LED, using
only assembler code and a Pascal variable, used as a counter:

5.18.1 Use of units

5.17.7 Programming only in Assembler

5.18Units

Machine Translated by Google

This program includes the PIC10F200 unit, which includes definitions that
allow you to work with this microcontroller. Among the definitions are the hardware
characteristics (RAM and ROM memory size, maximum CPU speed, implemented
memory areas, etc.) and access variables to special registers such as STATUS, or
GPIO.

from another unit. They are used as a library, as in the following example:

It is always necessary to define the microcontroller; so that the compiler
knows the characteristics of the target hardware, such as the size of RAM and
ROM, or the number of banks or pages.

PicPas supports the use of units, to a limited extent.

PicPas 0.8.7

If the microcontroller is not specified, a generic device will be assumed, with

In PicPas units, constants, variables and procedures can be defined.

User manual

the 'DEFAULT' model with characteristics that depend on the selected family:

The units of PicPas are similar to those of Turbo Pascal:

The units to be used are included within the USES section of a program or

• Low range: DEFAULT is equivalent to a PIC10F200. •
Mid-range: DEFAULT is equivalent to a PIC16F84.

unit PIC16F84A;
interface

STATUS :byte absolute $03;

procedure Proc1(x: char); begin x :=
0; end;

end.

:byte absolute $01; :byte
absolute $02;

Implementation

GPIO_GP0 := not GPIO_GP0;
delay_ms(500); end;

TMR0

use PIC10F200; begin

while
true do

procedure Proc1(x: char);

var

PCL

5.18.2 Unit creation

Machine Translated by Google

User manual

A unit can be compiled individually, but a *.hex file will not be generated,
but rather will serve more as a check that the unit does not contain syntax errors.

A unit is compiled in the same way as a program.

The drive name must match the file name for the drive to be considered
valid.

PicPas 0.8.7

end.

Machine Translated by Google

PicPas includes basic support for pointer handling, within the language.

Which behaves like a byte variable.

Pointers in PicPas have the following characteristics:

Pointers can be assigned as byte variables, but they are commonly assigned
with addresses of other variables. It is necessary that a pointer be first assigned
before working with it:

Pointers are defined by first creating a type:

PicPas 0.8.7

The @ operator returns the physical address of a variable. In the current
version, it can only go from $00 to $FF, so it will only be able to cover variables from banks 0 and 1.

• They can store addresses ranging from $00 to $FF, which means that they
cover RAM banks 0 and 1, but they cannot access variables from bank 2
and 3, if they exist in the microcontroller used.

To access the value pointed to by a pointer, the notation is used:

User manual

pointer_variable^

• Only pointers to the byte and word type can be
created. • Every pointer must have a pointed type. Cannot create pointers without

guy.

type
ptrByte: ̂ Byte;
ptrByte: ̂ Word;

begin

pbyte: ptrByte;
pword: ptrWord;

pbyte: ptrByte; : byte;
m

end.

var

var

type
ptrByte: ̂ Byte;

//Now “m” is $ff

//Assign pbyte address := @m; pbyte^ :=
$ff; //Write value

5.19Pointers

5.19.1 Definition of pointers

Machine Translated by Google

PicPas 0.8.7

Inc(p);

EXAMPLE

Additions and subtractions must be between pointers of the same type, or they must be between

“p” is of type “pointer to byte”, so the value of the expression “$10 + p” is

Assignment
Comparison

Dec(p);

Pointers support some basic operations. These are:

p1 := p2;

also of type “pointer to byte”.

of the same type as the pointer. For example, if in the following expression:

OPERATION

if p1 = p2 then ...

pointers and byte values.

User manual

Addition

Subtraction

When pointers with bytes are added or subtracted, the result of the expression is

p1 + p2 + 1

Increase

p1 - 5

Decrement

5.19.2 Pointer Arithmetic

$10 + p

Machine Translated by Google

And they are also used to determine the conditional and selective compilation
of Pascal code:

The main thing is to configure and give the final form to the code, which will finally be compiled.

In general the directives allow:

3. Define conditional compilation blocks.

User manual

Directives are always executed at compile time, and their purpose

comments, but they always begin with the characters “{$”:

They can be included anywhere in the code, but for functionality, some should
always be written at the beginning.

PicPas 0.8.7

The compiler directives, included in PicPas. These are defined as

Directives are typically used to define values that will later be used in the
source code:

2. Define symbols and macros.
1. Set values for certain system variables.

Directives are a set of instructions, which are interpreted by the compiler, at
the time the program is being compiled.

6.1 Use of directives

6 DIRECTIVES

{$DEFINE output_pin=PORTB.0} uses
PIC16F84A; begin

SetAsOutput({$pin_output}); {$output_pin} :=
1;

SetAsOutput({$pinOutput});
{$pinOut} := 1; {$ELSE}

end.

{$IFDEF output pin}

//Here too

end.

{$PROCESSOR PIC16F84} //Here is a directive program name; begin
x := {$value};

SetAsOutput(PORTB.1);
PORTB.1 := 1;

{$ENDIF}

Machine Translated by Google

microcontroller before compilation.

PicPas 0.8.7

For example, if we have the following program:

Also consider that directives found within procedures, not used or called,
will also be processed, because the compiler always explores all procedures.

Access to system variables allows you to configure system parameters.

Likewise, after the USES statement, in the main program, you can access all
the macros or variables that have been declared within “my_unit”.

This means that directives are processed from the beginning of the main
program file, through the contents of all units, recursively.

4. Generate messages in the build

The compiler will linearly explore the program from the beginning, first
executing the {$DEFINE macro1} directive and then continuing to explore the code
until it finds the USES statement. At that moment it will begin to explore the unit
“my_unit”, inside which “macro1” can be accessed, because it has already been
recognized by the compiler.

Directives are executed in the build phase. Therefore, the order in which
they are processed is the same order in which the source code is compiled.

Because of its ability to define macros and conditional compilation, it would
seem that directives are treated with a pre-processor (as is done in C compilers),
but this is not the case. It is the same PicPas compiler, which processes the
directives in the same pass in which the compilation is done.

The following code illustrates this case:

User manual

6.2 Directive processing

{$DEFINE macro1}

program name; use

my_drive; begin
value :=

0; end.

//This macro will always be created

procedure proc_not_used; begin

{$DEFINE macro=value}

program name;

Machine Translated by Google

PicPas 0.8.7 User manual

end;

begin

end.

Machine Translated by Google

Any numerical expression other than zero, or any non-null string expression,
is considered TRUE.

Directives can be understood as a simple programming language

between them.

EXAMPLE

comparisons, such as:

• It is not sensitive to the text box. Upper or lower case can be used

Pascal and which is interpreted at compile time.

• There are only two types of data: numbers and strings.

$SET x = -2000

The result is the number 0, when the expression is false and 1 when the expression is false.

$SET cad = “hello world”

boolean:

indistinctly.

Any other value will be considered false.

delimited by {$…}

DATA TYPE DESCRIPTION NUMBERS

Numeric values integers or

User manual

(with its assignment and conditional statements), language independent

• It is not necessary to declare variables before using them.

$SET x = 3.14159

CHAINS

X>0
string='hello'

The main characteristics of the directive language are:

It can be said that the language of the directives is quite similar to

$SET x = $FFFF

expression is true.

PicPas 0.8.7

There are only two types of data in directives:

Character set.

interpreted or script languages.

$SET cad = 'hello'

• The instructions always occupy a single line, and are always found

In general, the following rule applies to evaluate an expression, as value

• It is not a typed language. Variables can change type and interact

The boolean type does not exist within directives. For the case of the

floating point.

6.3 The language of directives

6.3.1 Data types

Machine Translated by Google

Windows is CR+LF, and for Linux it is LF)

'I am a chain'

$SET is not a declaration statement, but an assignment one. The first time

+x}

escape sequences:

"Me too, and I have a line break\n"

Tabulation

It is not necessary to declare a variable before using it, but if you try to read one

operators and functions.

The content of a variable can be displayed using instructions like

OPERATION

SEQUENCE

Variables are assigned with the $SET statement:

User manual

{$SET y = 1 + x}

MEANING

"Me too"

LF character ($0D)

When a value is assigned to a variable, it is created.

{$MSGBOX 'x is worth =

Variables can be used within expressions, together, with the

Strings enclosed in double quotes have the peculiarity that they accept

\r

\t

variable, not created, you will get an error:

PicPas 0.8.7

{$SET x = 1}

$MSGBOX or $INFO:

{$SET y = 1 + x} //gives an error, if “x” has not been created

\n

DESCRIPTION

String constants are defined between single or double quotes:

Operating system line break (for

{$SET x = 'now I am a string'}

'

6.3.3 Operators

6.3.2 Variables

Machine Translated by Google

To change precedence, you can group expressions using parentheses.

It will show the number 1.

Example:

that can be used to handle numbers or strings.

5 = 10

'+'

considering the box.

5

{$MSGBOX sgn(-1000)}

Otherwise they are concatenated as a string.

String concatenation: '1' + '2' = '12'

'/'

'\'

>,<,>=,<= Compares numbers or strings. To compare strings, they must have the

8

DESCRIPTION

Example:
{$MSGBOX abs(-1)}

The operators with the highest precedence will be executed first in an expression.

Subtraction of two numbers: 5 - 2 = 3

Power of a number: 2^3 = 8

Returns 1 if the value is positive and -1 if the value is negative. Returns
zero if the value is zero.

User manual

'^'

*

Sum of two numbers: 1 + 2 = 20

'*'

=,<>

PRECEDENCE

6

abs()

FUNCTION

sgn()

Only when the two addends are numbers, an addition is made, so

Integer division of two numbers: 5 \ 2 = 2

same length. The comparison is made character by character, until

=, <>, >, <, >=, <=
'+',
'-' '*', '/', '\', '%'

Returns the absolute value of a number.

PicPas 0.8.7

'%'

OPERATOR

Remainder of a division of two numbers: 5% 2 = 1

find a larger ASCII code.

'-'

'^'

OR

Multiplication of two numbers: 2
Division of two numbers: 5 / 2 = 2.5

Compare numbers or strings. String comparison is

4

Within the directive language, there is a set of functions already defined,

It has the following syntax:
abs(<number>)

6.3.4 Operator precedence

6.3.5 Functions

Machine Translated by Google

It will show the string: “HELLO WORLD”

Example:

cos()

Example:
{$MSGBOX sin(3.1415)}

It will show the number 2.

trunc()

It will show the number 1.

Returns the cosine of an angle in radians.

Returns the natural logarithm of a number.

Example:
{$MSGBOX trunc(2.9)}

{$MSGBOX length('you')}

Example:
{$MSGBOX length('Hello World')}

It will show the string: “hello world”

{$MSGBOX UpCase('Hello World')}

Returns the tangent of an angle in radians.

Returns rounded value of a number.

lowcase() Returns a lowercase string.

User manual

It will show the number 3.

It will show the number 0.

It will show a value close to zero.

so()

Returns the integer part of a number.

log()

length()

{$MSGBOX LowCase('Hello World')}

Example:
{$MSGBOX cos(0)}

{$MSGBOX log(2,718)}

It will show the number 2.

It will show the value 3, because internally PicPas works with UTF-8 encoding,
where the accented Latin characters and the “ñ” occupy two bytes. upcase()

Returns an uppercase string.

PicPas 0.8.7

Example:
{$MSGBOX round(2.6)}

It will show the value 10.

It will show a number close to 1.

Returns the size of a string, in bytes.

Example:
{$MSGBOX tan(0)}

Example:

It will display the

value -1 Returns the sine of an angle in radians.without()

{$MSGBOX round(2.1)}

round()

Example:

6.4 System variables

Machine Translated by Google

PicPas 0.8.7

Example:
{$MSGBOX pic_frequen}

Setting a maximum frequency will not allow you to configure
higher frequencies with the {$FREQUENCY} directive.

PIC_NUMPAGES Returns or sets the number of code pages for the current
microcontroller.

Shows the current PIC frequency. The frequency is expressed
in Hertz. For example, if the frequency is 8MHz, the value
8000000 will be displayed.
Changing the PIC_FREQUEN value is equivalent to changing it
using {$FREQUENCY }, considering that {$FREQUENCY }
recognizes units such as KHz and MHz.

PIC_NUMBANKS Returns or sets the number of RAM memory banks of the current
microcontroller.

For example, to set the maximum frequency to 1Mhz, you
would
do: {$SET PIC_MAXFREQ = 1000000}

system. These are:

PIC_MODEL

PIC_FREQUEN Returns the frequency of the microcontroller, defined with
{$FREQUENCY ...}

The frequency value is specified in Hertz.

For example:
{$SET PIC_NUMPAGES = 2}

User manual

There are certain variables already created, which allow access to parameters of the

It will show the current processor model, which will be the
model that was previously defined with the {$PROCESSOR}
directive, or the default model.

PIC_MAXFREQ Returns or sets the maximum frequency of the current microcontroller.

Sets 2 pages of program memory, for the current microcontroller.
They can be set from one to four pages.

For example:
{$SET PIC_NUMBANKS=4}

Returns or sets the microcontroller model, defined with
{$PROCESSOR ...}

Set 4 banks for the current microcontroller. From one to four
banks of RAM can be set.

Example:
{$MSGBOX pic_model}

Machine Translated by Google

PicPas 0.8.7

For example:
{$MSGBOX PIC_IFLASH}

For example:
{$MSGBOX PIC_MAXFLASH}

Returns the compiler's syntax mode, defined with {$MODE ...}. It
is read-only.

Displays the current value of PIC_IFLASH, at the current position,
from the source code9 .
The following code can be used to calculate the amount of
program memory used to compile an instruction: {$SET n1
=PIC_IFLASH} x := x + 1;
{$SET n2
=PIC_IFLASH}

Shows the number of program memory cells available to the
current microcontroller.

Returns or sets the current address in Flash memory or EEPROM,
where the next instruction to be compiled will be written.

PIC_NPINS

CURRBANK

When starting the compilation, the value of PIC_IFLASH is zero,
and then it increases as instructions are written to the FLASH/
EEPROM memory of the microcontroller.

PIC_MAXFLASH Returns or sets the maximum amount of FLASH or EEPROM memory
to hold the program.

Returns or sets the RAM bank, which the compiler assumes the
PIC should have at that point (where the

User manual

PIC_IFLASH

The number of physical pins that the microcontroller has does
not affect the program or the compiler itself in any way. Rather, it
is used as part of the information used by the integrated PicPas
Simulator, for when it must physically graph the device10 .

PIC_ENHANCED Boolean variable. It is only defined when using the low-end PIC
(Baseline) compiler. Indicates whether the current device is from
the “Baseline Enhanced” family. This means that you have a
broader set of instructions.

SYN_MODE

The value of PIC_MAXFLASH can range from 0 to the maximum
value allowed by the number of memory pages implemented.

{$MSGBOX n2-n1}

Thus, if you have 4 pages of program memory, PIC_MAXFLASH
can be up to 8192, since each page can cover up to 2K of code.

Returns or sets the number of pins that the current microcontroller
physically has.

10 This functionality is not active in the current version of PicPas.

9 The value of PIC_IFLASH, which can be read within the directives, is only referential, because the
real value of the pointer that the compiler uses to generate code is defined in the linking phase,
while the directives are executed in the compilation phase, where PIC_IFLASH is reset when each
procedure is compiled, and in the body of the program.

Machine Translated by Google

Example:
{$MSGBOX CURRBANK}

Returns the current syntax block in which the

if x>1 then

Modifying critical system variables could cause compilation errors.

of RAM banks.

The value of CURRBANK is a variable used by the compiler

Example:
begin

end;

IF block.

The compiler updates CURRBANK, as it goes

CURRBLOCK

User manual

following example:

Although it can be modified, it is not convenient because it can

Shows the value of the current bank.

compiler.

{$MSGBOX CURRBLOCK}

• sbiIF •
sbiFOR •
sbiWHILE •
sbiREPEAT

to determine when to generate change instructions

{$MSGBOX CURRBLOCK}

end;

PicPas 0.8.7

Returns a null string, because there is no block. But in the

The possible values for CURRBLOCK are:

end;

The value 'sbiIF' will be displayed, which indicates that you are within a

accessing records from different banks.

directive)11 .

produce compilation errors.

begin

Most of these variables can be read or modified. Consider

11 The value of CURRBANK, which can be read within the directives, is only referential, because
the real value that the compiler uses to generate code is defined in the linking phase, while
the directives are executed in the compilation.

Machine Translated by Google

PIC16F870 PIC16F871 PIC16F872 PIC16F873 PIC16F873A PIC16F874 PIC16F874A

{$PROCESSOR} Allows you to define the microcontroller that will be used to
compile the code. When used, it should always be included before starting the program.
For example:

PicPas 0.8.7

memory like STATUS or TMR0, but simply the hardware characteristics.

PIC16F876 PIC16F876A PIC16F877 PIC16F877A PIC16F887

PIC12F629 PIC12F675 PIC12F629A PIC12F675A

This directive is a short alternative to define the hardware of a microcontroller.
The long form is the one indicated in section 6.7, but it is not usually used because the
hardware is defined in the units that come with the compiler.

PIC16F83 PIC16CR83 PIC16F84 PIC16CR84 PIC16F84A

The {$PROCESSOR} directive, however, is not necessary when using units that
define the microcontroller. For example, the following code does not require using the
{$PROCESSOR PIC16F877} directive, because it is already included in the PIC16F877 unit:

User manual

PIC10F200 PIC10F202 PIC10F204 PIC10F206

GAME MEDIA:

PIC16F627A PIC16F628APIC16F648A

Indicate the microcontroller with {$PROCESSOR}, it does not define

The list of microcontrollers supported, through this directive, includes:

LOW RANGE:

var

a, b, c, d: byte; begin

...

program Test; use
PIC16F877;

end.

{$PROCESSOR PIC16F84}

program name; begin

6.5 List of directives

6.5.1 $PROCESSOR

Machine Translated by Google

PicPas 0.8.7

If none of these items are used, the clock rate can be almost

Defines the frequency of the clock (of the crystal or internal oscillator) at which the
microcontroller. It must always be indicated before starting the program. For example:

any value that can be expressed as integer KHz or MHz values.

In general, this way of working is preferred, because the unit not only defines
the hardware to be used, but also defines variables for the GPR memory, such as
STATUS, PORTA, TRISB,…. Additionally, there are more devices defined by units
than those supported by {$PROCESSOR} (See Appendix).

• Time the delays, using the delay_ms() routine. •
Timing some internal hardware devices, such as serial communication12 .

It can have two values:

• To correctly time the simulation in real time.

User manual

Frequencies can be expressed in KHz or MHz. For example, 1000Khz or 1Mhz.

The clock frequency information is used by the compiler internally to:

The MODE directive allows you to specify the way PicPas will work, with
respect to the syntax used.

But if the program will use delay instructions or handling hardware that
requires timing, then the compiler will only accept some frequency values. These
values are:

1MHz, 2Mhz, 4Mhz, 8MHz, 10MHz, 12MHz, 16MHz or 20MHz.

If the frequency is not specified, 4Mhz is assumed by default.

end.

{$FREQUENCY 8Mhz}

program name; begin

Not implemented yet, in the current version of PicPas.

{$PROCESSOR PIC16F84}

end.

6.5.2 $FREQUENCY

6.5.3 $MODE

12

Machine Translated by Google

END;

END;

<block of code>

UNTIL <condition>;

END;

IF <condition> THEN

IF <condition> THEN

program name; begin

{$PASCALMODE}

ELSE

END;

<block of code>

WHILE <condition> DO

END;

ELSE

IF <condition> THEN

{$MODE PICPAS}

FOR <variable> := <start-value> TO <end-value> DO

<block of code>

<block of code>

<block of code>

<block of code>

<block of code>

ELSIF <condition> THEN

REPEAT

<block of code>

<block of code>

6.5.4 $MSGBOX

To work in Pascal mode, {$MODE PASCAL} must necessarily be specified.

PICPAS mode is the default, and indicates that it will be compiled using the
normal PicPas syntax. This syntax takes elements (just some) from the Modula-2
programming language.

PASCAL mode works with the normal Pascal syntax, with respect to control
structures, but some non-standard Pascal features are maintained, such as bit variables,
or properties of basic types (See section 5.8.4).

PicPas 0.8.7

Displays a message on the screen during the compilation process:

Standard Pascal. These have the following syntax:
In this mode of syntax, the control structures are different from those of

User manual

Machine Translated by Google

{$MSGBOX 'Hello world'}

{$MSGBOX (1+2)*3 }

{$MSGBOX 'clock=' + PIC_FREQUEN }

end.

program name; begin

{$MSGERR 'Something bad happened :('} end.

//Sample 9

//Shows the PIC frequency

6.5.5 $MSGERR

Strings must be enclosed in single quotes.

PicPas 0.8.7

The box will be displayed on the screen:

Displays an error message on the screen during the compilation process:

You can also use expressions:

Error messages are displayed with an error icon.

User manual

The box will be displayed on the screen:

Machine Translated by Google

6.5.7 $INFO

6.5.8 $ERROR

6.5.6 $MSGWAR

end.

program name; begin

{$MSGWAR 'Be careful.'}

User manual

Displays an information message in the Message Panel:

The message will appear when the program is compiled.

Displays a warning message on the screen during the compilation process:

PicPas 0.8.7

Warning messages are displayed with an indicative icon.

The box will be displayed on the screen:

Machine Translated by Google

Displays a warning message in the Message Panel:

PicPas 0.8.7

The basic form of the syntax is:

Defines the configuration bits of the current device.

The message will appear when the program is compiled.

Display an error message in the Message Panel:

The message will appear when the program is compiled.

User manual

6.5.9 $WARNING

6.5.10 $CONFIG

Machine Translated by Google

6.5.11 $INCLUDE

You must first have the tag definitions:

{$CONFIG <numeric value>}

represent binary values. This implies that before using $CONFIG in this way,

Tags must be separated by commas or spaces.

The syntax is:

{$INCLUDE <file to include>}

User manual

The list of tags must be a list of macros defined with {$DEFINE} and that

Includes code from an external file.

PicPas 0.8.7

{$CONFIG <tag list>}

no information is generated at this address.

The other form of the syntax is:

value at address 0x2007. If no {$CONFIG} directive is indicated in the code,

Some examples are:

The configuration bits are included in the output *.hex file, as a

$0000 to $FFFF.

the character “0x”, or the character “$”, interchangeably.

The following are valid examples of using $INCLUDE:

Where <numeric value> can be any numeric value, in the range

Note that hexadecimal notation for the definition of macros, you can use

$3FFE}

$3FFD}=

{$CONFIG _CP_OFF, _XT_OSC, _WDT_OFF }

0x3FFC}

0x3FFF}

=

=

0x3FFB}

0x3FFF}

=

{$CONFIG $3FFD}

{$CONFIG 16578}

=

0x000F}{$define _CP_ON {$define

_CP_OFF {$define _WDT_ON

{$define _WDT_OFF {$define

_LP_OSC {$define _XT_OSC

{$define _HS_OSC

=

=

Machine Translated by Google

6.5.12 $OUTPUTHEX

User manual

The following are valid examples of using $OUTPUTHEX:

PicPas 0.8.7

{$OUTPUTHEX <filename *.hex>}

program, for example, in the middle of expressions:

The $OUTPUTHEX directive allows you to define the name for the *.hex file.

The syntax is:

file, at the point where the call to {$INCLUDE } is made.

By default, the binary file will take the name of the Pascal program that is compiled, but with
the *.hex extension. So if the main program is called “hello. pas”, the output file will take the name
“hello.hex”

The {$INCLUDE} directive can be placed almost anywhere in the

The file to include can be of any type, not necessarily Pascal code.

Including a file with {$INCLUDE } is equivalent to including all the text of that file.

Allows you to specify the name of the output file *.hex.

If the full path is not specified, it is assumed that the file to be included is located in the same
path as the file being compiled.

If the full path is not specified, it is assumed that the *.hex file is located in the same path as
the file being compiled.

And this code will be correct if the content of expression.txt is a valid expression for the
assignment.

{$INCLUDE yyy.pas}

var

{$OUTPUTHEX "d:\output.hex"}

{$INCLUDE d:\long_path_to_my_file\yyyy.txt}

x: byte;

begin
x := {$INCLUDE expression.txt}; end.

{$OUTPUTHEX "output.hex"}

Machine Translated by Google

program test; use
my_drive; {$DEFINE
port=123} begin end.

program test;
{$DEFINE port=123} use
my_drive; begin end.

{$DEFINE level}

{$define cpu_best}
{$define HAS_ADC}

The {$OUTPUTHEX} directive can be placed anywhere in the source code, and even multiple
times. If $OUTPUTHEX is used multiple times, the *.hex file name will be the last one defined.

compilation, and can be verified with the {$IFDEF} directive
A defined symbol is stored in memory throughout the entire creation process.

User manualPicPas 0.8.7

However, in the following code:

In this code, the “port” symbol is accessible throughout the “test” program.

The following are examples of symbol definitions:

{$DEFINE <identifier>}

(because it has been defined at the beginning), and also from within the unit “my_unit”.

Where <identifier> can be any valid identifier starting with an alphabetic character (A-Za-z_)
followed by any alphanumeric character (A-Za-z0- 9_)

To define a symbol, the syntax is used:

Let's consider the following code:

Defines a symbol or macro.

accessible by the compiler from procedures and even from within units.
The scope of the defined symbols is global. Once defined, they are

6.5.13 $DEFINE

Machine Translated by Google

macros.

The “port” symbol is not accessible from within the “my_unit” unit, because it
has been declared later.

{$DEFINE <identifier>=<content>}

The same rules for the scope of symbols apply to the definition of

User manual

To define a macro, use the syntax:

PicPas 0.8.7

A macro is a symbol, to which a value is assigned.

The content of a macro can be displayed with the $MSGBOX instruction, so that
the instruction:

The $DEFINE directive also allows defining macros.

Will show an empty string, if the symbol has been defined, but will show the
string “$symbol”, if not defined.

The following are examples of macro definitions:

Once a macro is defined, its value can be accessed in the source code by writing
the directive {$<macro name>}, as shown in the following example:

instruction:

because this is considered a delimiter.

The definition of a macro can only occupy one line.

The symbols can be used with the $MSGBOX instruction, so that the

Where <content> is any block of text that does not include the character “}”,

{$DEFINE output_pin=PORTB.0} uses
PIC16F84A; begin

SetAsOutput({$pin_output}); {$output_pin} :=

1; end.

{$DEFINE sum=a+b}

{$DEFINE value = $ff}

{$msgbox $symbol}

{$DEFINE block = begin a:=1; b := 0; end}

{$DEFINE sum=a+b}

{$DEFINE port=PORTB}

Machine Translated by Google

6.5.14 $IFDEF

...

User manual

{$IFDEF <identifier>}

The following code shows an application case:

PicPas 0.8.7

The most common syntax of the directive is:

{$ELSE}

{$ENDIF}

The $IFDEF directive evaluates the existence of some macro, or variable, and
compiles or skips compiling blocks of code accordingly.

...

...

Allows you to define conditional compilation blocks.

Note that the “$” symbol is not included in the definition of a macro, but it is used
to reference the macro, from outside the definition.

{$IFDEF <identifier>}

The instruction {$IFDEF pinOut} checks whether the macro $pinOut is defined,
and if so, compiles all the text between {$IFDEF pinOut} and {$ELSE}, omitting the text
between {$ELSE} and {$ ENDIF}. If not defined, the alternate block is compiled.

It will display the string “Hello”.

But the form can also be used:

{$ENDIF}

{$DEFINE macro="Hello"}

SetAsOutput({$pinOutput}); {$pinOut} :=

1; {$ELSE}

SetAsOutput(PORTB.1);
PORTB.1 := 1;

{$ENDIF}
end.

{$MSGBOX $macro}

{$DEFINE output pin=PORTB.0} uses
PIC16F84A; begin

{$IFDEF
outputpin}

Machine Translated by Google

6.5.15 $IFNDEF

6.5.16 $IF

...

You could also write the previous code in the form:

User manual

As an application example, the same code as the previous example is shown, but
using {$IFNDEF}

{$IF <expression>}

{$IF <expression>}

PicPas 0.8.7

It is the negated version of the $IFDEF directive.

The most common syntax of the directive is:

But the form can also be used:

{$ENDIF}

The $IF directive evaluates an expression, and compiles, or skips compiling,
blocks of code accordingly.

It allows defining conditional compilation blocks, according to an expression.

{$ELSE}

{$ENDIF}
{$DEFINE output pin=PORTB.1}

{$DEFINE outputpin=PORTB.0} uses
PIC16F84A; begin

{$IFDEF
outputpin}

{$ENDIF}

{$DEFINE outputpin=PORTB.0} uses
PIC16F84A; begin

{$IFNDEF outputpin}

SetAsOutput({$pinOutput}); {$pinOut} :=

1; end.

{$DEFINE output pin=PORTB.1}

SetAsOutput({$pinOutput}); {$pinOut} :=

1; end.

Machine Translated by Google

6.5.17 $IFNOT

6.5.18 $SET

...

The following code shows an application case:

On the other hand, the {$IF} statement will consider as TRUE, any

It is the inverted version of $IF:

{$ENDIF}

Allows you to define variables within the directives.

User manual

...

Since there are no boolean variables in directives. Comparison operators, such
as = or <>, return the number 1 if the expression is true and 0 when it is false.

The directive variables are independent of the program variables in Pascal.

PicPas 0.8.7

{$ELSE}

non-zero numeric expression, or any string expression, not null.

Variables can be of two types: numbers or strings.

//Now "num" exists and is equal to 1

{$ELSE}

var x: byte;

{$ELSE}

var x: word;

{$ENDIF}

//Now "num" is a string {$SET num = 'Pedro'}

{$ENDIF}

{$SET num = new + 1} //Error: "num" does not exist.

{$SET num = 1}

{$SET value = num + 1} //Now "value" exists and is worth 2 {$SET name = 'Pedro'} //

Now "name" exists and is worth 'Pedro'

{$IF value>255} var x:

word;

{$IFNOT value>255} var x:

byte;

Machine Translated by Google

{$SET_STATE_RAM <command list>}

<start address>-<end address>:<state>

{$SET_STATE_RAM '000-00B:SFR'};

Bank 0

If the variable already exists, its value (and its type, if different) is updated.

following:

TRISB.

of the system).

as free memory for the user.

000-07F

What this command indicates is that you want to define the RAM addresses,

BANK

Configures the RAM memory status of the current device.

NIM

Bank 1

User manual

SFR

address range.

Addresses are always expressed in hexadecimal, with three digits. The

All variables are removed at the start of the build (Except variables

General purpose registry. It is a record intended to be used

Commands are separated by commas. A command has the form:

RANGE

Trying to access an uncreated variable will generate an error.

Registry not implemented.

A valid example would be:

080-0FF

PicPas 0.8.7

The state of a byte in RAM can have three values:

GPR

$SET_STATE_RAM, allows you to define the state of the RAM, specifying a

between 0x000 and 0x00B, as special function registers.

100-17F Bank 2

Variables are assigned with the $SET directive. If the variable does not exist, it is created.

Special function registration. As in the case of STATUS or

The syntax of $SET_STATE_RAM is:

Directions are expressed linearly covering up to bank 3, in the form

6.5.19 $SET_STATE_RAM

Machine Translated by Google

6.5.20 $SET_MAPPED_RAM

Bank 3

With each $PROCESSOR instruction, the state of the RAM memory is defined,
according to the chosen PIC model. But this state can then be changed with
$SET_STATE_RAM.

User manual

At the start of compilation, all memory locations start with the status “Not
implemented”.

Such is the case of the memory addresses of the STATUS or INTCON registers,
which are mapped to all RAM memory banks.

PicPas 0.8.7

You can express as many ranges as you want in the same $SET_STATE_RAM
directive.

The RAM of the device may be implemented at an independent address or
may be mapped to another address in some other bank of RAM.

Defines the mapped regions of the RAM memory of the current device.

Changing the state of RAM affects the compiler's
workspace, potentially generating compilation or
execution errors.

Other valid ways would be:

There is no point in assigning state to banks of RAM, which do not exist in
the current device. However, the compiler will not generate errors.

The compiler accesses the RAM state, to calculate the available RAM space
and reserve space for variables.

Any other value, outside the range of valid addresses, will generate a compile-
time error.

existing microcontrollers, which cannot be defined with $PROCESSOR.

180-1FF

The purpose of $SET_STATE_RAM is to define custom models, or not

{$SET_STATE_RAM '000-00B:SFR, 00C-04F:GPR'}
{$SET_STATE_RAM '080-08B:SFR, 08C-0CF:GPR'}

Machine Translated by Google

0A0-0BF Bank 5

BANK

GPR and SFR records. It makes no sense to define RAM-mapped zones.

080-0FF

RANGE

What this command indicates is that you want to define the RAM address,

Commands are separated by commas. A command has the form:

The syntax of $SET_MAPPED_RAM is:

address 0x00.

180-1FF

020-03F

Bank 1

Bank 1

Bank 4080-09F

the following way:

Bank 60C0-0DF

User manual

A valid example would be:

RANGE

Bank 3

implemented.

0x080, as a register mapped to bank 0, and it follows that it must be in the

100-17F

000-01F Bank 0

Addresses are always expressed in hexadecimal, with three digits. The

BANK

040-15F Bank 2

PicPas 0.8.7

The destination bank can be: bnk0, bnk1, bnk2 or bnk3

Addresses are expressed linearly covering all banks of the device, so

MID-RANGE PIC MICROCONTROLLERS:

Bank 0

Bank 2

060-07F

$SET_MAPPED_RAM, allows you to define mapped regions of RAM, in

000-07F

LOW END MICROCONTROLLER

0E0-0FF

Bank 3

Bank 7

{$SET_MAPPED_RAM <command list>}

<start address>-<end address>:<destination bank>

{$SET_MAPPED_RAM ' 080-080:bnk0'};

Machine Translated by Google

PicPas 0.8.7

Mapping a byte or range of bytes to another bank implies that those addresses are not physically
implemented, and all read or write operations will go to another bank of RAM. For example, it is known
that in the PIC16F84, the memory addresses between 0x08C and 0x0CF are mapped to bank 0.

on the current device. However, the compiler will not generate errors.

You can express as many ranges as you want in the same $SET_MAPPED_RAM directive.

There is no point in mapping non-existing RAM banks (or to RAM banks)

At the start of compilation, all memory locations start with the status “Unmapped”.

Any other value, outside the range of valid addresses, will generate a compile-time error.

User manual

This means that accessing position 0x08C is equivalent to accessing address 0x00C. To achieve
this configuration, you can use this directive:

Other valid ways would be:

{$SET_MAPPED_RAM '080-080:bnk0, 082-084:bnk0, 08A-08B:bnk0'}
{$SET_MAPPED_RAM '100-100:bnk0, 102-104:bnk0'}

{$SET_MAPPED_RAM '08C-0CF:bnk0'}

Machine Translated by Google

With each $PROCESSOR instruction, the mapped RAM areas are defined, so

Clean the microcontroller pin configuration:

User manual

Changing the RAM mapped areas affects the
compiler's workspace, potentially generating
compilation or execution errors.

PicPas 0.8.7

of available RAM and reserve space for variables.

Graphically, its effect would be:

using the $SET_STATE_RAM and $SET_MAPPED_RAM directives.

The compiler checks the mapped areas of RAM to calculate the space

$SET_STATE_RAM) custom or non-existing microcontroller models,

previous configuration.

It is used when you are going to start defining the RAM memory of a device,

that cannot be defined with $PROCESSOR.

The purpose of $SET_MAPPED_RAM is to define (along with

addressable, in a state of <<Not Implemented>>, clearing any

$SET_MAPPED_RAM.

$CLEAR_STATE_RAM, has the effect of setting the entire memory range

according to the chosen PIC model. But this state can then be changed with

It is used to start the RAM status.

6.5.22 $RESET_PINS

6.5.21 $CLEAR_STATE_RAM

Machine Translated by Google

A valid example would be:

User manualPicPas 0.8.7

this variable:

of the microcontroller, when it is shown in the diagram in the control window.

The syntax of $SET_PIN_NAME is:

indicated in the PIC_NPINS system variable, therefore it must be defined first

because otherwise some other previous configuration may be fixed.

This configuration allows you to see a descriptive label on the corresponding pin

simulation.

Configuration cleaning is done based on the number of pins that have been configured.

It is important to clean the pin configuration before starting to define them,

Allows you to define a name for a physical pin of the microcontroller.

On the simulator diagram, it would look like this:

The PIN number can be given in decimal or hexadecimal.

of the pins with the $SET_PIN_NAME directive.

This definition would place the label “VDD” on pin 2 of the PIC package and

This instruction is usually done before starting to define the names

{$RESET_PINS}

{$SET PIC_NPINS

{$SET_PIN_NAME <pin number>:<name>}

=8}

{$RESET_PINS}

{$SET_PIN_NAME '2:VDD'}

6.5.23 $SET_PIN_NAME

Machine Translated by Google

PicPas 0.8.7

Associations are separated by commas. An association has the form:

The values of the bit number and pin number are given in decimal.

It is used to map RAM ports to physical microcontroller pins.

What this command indicates is that bits 0, 1, 2, 3 and 4, of address $05, will be
mapped to pins 17, 18, 1, 2 and 3 respectively.

If no name has been declared for the memory address, the generic name “PORT”
will be used. So, for example, the following code:

The name that will be associated with the pin will be of the form PORTA.0,
PORTA.1, ... which consists of joining the name of the memory address with the bit
number. The name of the memory address corresponds to the one defined when a
variable is declared like:

A valid example would be:

The syntax of $MAP_RAM_TO_PIN is:

This configuration is necessary to carry out the simulation graphically, so that the
program knows which RAM positions write or read on the microcontroller pins.

The maximum size for a Pin name is 32 characters.

User manual

An additional effect of using $MAP_RAM_TO_PIN is that the affected pins will be
assigned names, similar to using the $SET_PIN_NAME directive.

It allows mapping the bits of the GPIO, PORTA, PORTB, etc. ports to physical pins of the
device.

6.5.24 $MAP_RAM_TO_PIN

<bit number>-<pin number>

{$MAP_RAM_TO_PIN <address>:<association list>}

PORTA: byte absolute $0005; //Assign the name "PORTA" to address $005

{$MAP_RAM_TO_PIN '005:0-17,1-18,2-1,3-2,4-3'};

{$RESET_PINS}
{$SET PIC_NPINS = 8}
{$MAP_RAM_TO_PIN '005:0-1'}

Machine Translated by Google

The design remains as follows:

While the following configuration:

Will produce:

Changing the name of a PIN with $SET_PIN_NAME does not change at all the
internal name that is assigned to a RAM memory location. It's just a label for the graphical
interface.

PicPas 0.8.7

Because you already have a name for address $05 before executing the
$MAP_RAM_TO_PIN instruction.

User manual

If you now want to change the final name of the pin, you can execute the
$MAP_RAM_TO_PIN instruction:

It will produce, in the simulator, the following configuration:

{$SET PIC_NPINS var
DOOR: byte absolute $05;

{$RESET_PINS}

=8}

{$MAP_RAM_TO_PIN '005:0-1'}

=8}

{$SET PIC_NPINS var
DOOR: byte absolute $05;

{$SET_PIN_NAME '1:PORTA_0'}

{$RESET_PINS}

{$MAP_RAM_TO_PIN '005:0-1'}

Machine Translated by Google

respectively.

The syntax of $SET_UNIMP_BITS1 is:

User manual

The address and mask are expressed in 3- and 2-digit hexadecimal.

This command works similarly to $SET_UNIMP_BITS, except that unimplemented
bits will always be read as 1, instead of 0.

PicPas 0.8.7

Allows unimplemented bits to be defined in specific positions in RAM.

The libraries that define the various PIC models use this directive internally to
define the hardware precisely.

Commands are separated by commas. A command has the form:

The syntax of $SET_UNIMP_BITS is:

A bit set to not implemented, with $SET_UNIMP_BITS, means that it will always be
read as zero.

device, so that the simulation of the program is done in a more real way.

Which indicates that bits 5, 6 and 7 of position $005 (PORTA) are not implemented
in the hardware, because the value 1F, in binary, has these bits set to zero.

This setting is used to more accurately model the RAM of a

A valid example would be:

Allows unimplemented bits to be defined in specific positions in RAM.

A valid example would be:

6.5.26 $SET_UNIMP_BITS1

6.5.25 $SET_UNIMP_BITS

{$SET_UNIMP_BITS '005:1F'};

{$SET_UNIMP_BITS1 <command list>}

{$SET_UNIMP_BITS1 '004:E0'};

<address>:<mask>

{$SET_UNIMP_BITS <command list>}

Machine Translated by Google

Which indicates that bits 5, 6 and 7 of position $004 are not implemented in
the hardware, because the value E0, in binary, has these bits set to one.

User manual

A bit set to not implemented, with $SET_UNIMP_BITS1, means that it will
always be read as one.

PicPas 0.8.7

Machine Translated by Google

{$DEFINE macro = 123}

value = 1+2}

{$SET value = 123}

//It is not a number or string.

{$SET //

Now the variable "value" exists, is numeric and has a value of 3.

//Here the macro "macro" is only defined and it is not known if its definition //corresponds to a string, number or

is code, or if it will generate an error.

//Now the macro "macro" exists, and its definition is "1 + 2".

{$SET result = 1 + macro}

{$DEFINE something = 1+here}

{$DEFINE macro = 1+2}

{$SET result = 1 + value}

{$DEFINE here = 1+2}

//Here the variable "value" already has a value and a predefined type

A macro does not have a predefined type, it is rather a declaration of code,

PicPas 0.8.7

Variables and macros can be used within expressions in directives:

To better clarify the evaluation of a macro, consider the following code:

Variables or macros can be used interchangeably as part of expressions within
directives or within Pascal code. For example, the following definitions do the same
thing in terms of assigning a value to a symbol:

You can think of a macro as a “code” type variable. This code is processed
when the macro is referenced.

Let's consider the following statement:

The difference between variables and macros is that variables are evaluated
each time they are assigned with $SET, while macros are evaluated when they are
referenced.

whose validity is not evaluated in its declaration.

User manual

Let us now consider the following statement:

6.6.1 Variables and macros within directives

6.6 Variables and Macros

Machine Translated by Google

13

PicPas 0.8.7

The result of this expression is 20.

Only when, the $MSGBOX directive is executed, it will go to the definition of
“something”, to evaluate it, but in this evaluation, it will find that there is another macro,
then it will go to the evaluation of “here”, to evaluate it, and thus obtain the value of
“something”.

When a macro is evaluated, within the Pascal code, it can be thought of as a
literal replacement of the content of the macro. For example, the following code:

For when macros and variables are accessed from Pascal code. The case is
similar:

It will assign the value, 11 to the variable “x”. Because by replacing the content
of the macro, you will have: x := 1+2*5.

If value is defined as a variable, its value is read immediately. But if value is a
macro, you must go to the definition of the macro (and probably other definitions), to
determine its final content.

A similar case, using variables, would not require going back in the definitions:

User manual

6.6.2 Variables and macros within Pascal code

var

{$SET something = 1+here}

{$DEFINE value=1+2}

x: byte;
begin

x := {$value};

13 Note that “something” is evaluated independently before being used in the expression. That is, the content of
the macro is not literally replaced. If so, we would have: 1+1+2*5, with the result 12, but what we really have is: (1
+ (1+2))*5.

{$MSGBOX something*5} //When calling “something”, its value is already defined

var

end.

x: byte;
begin

x := {$value}*5; end.

{$MSGBOX something*5}

{$SET here = 1+2}

Machine Translated by Google

6.6.3 Use of Variables or Macros

Note that this behavior is different from what you have when accessing

PicPas contains predefined support for a limited number of microcontrollers.
However, it is possible to define, through directives, the hardware of a new
microcontroller, or an existing one.

User manualPicPas 0.8.7

It is recommended to use naming standards to differentiate macros from
variables. So, for example, the character “_” could be used, prefixing it to the name
of all macros.

not known, at the time of the macro definition.

The code should look like this:

Macros and variables can be defined with the same name, but it is not
recommended. In case of ambiguity in names, priority will be given to macros over
variables.

It is recommended to use macros when their value depends on previous definitions.

store values, because they have less burden on the compiler.

When using strings to replace code, it must be taken into account that the
variables must be of type string. So if, in the following example, you want to use a
variable instead of a macro:

In general, it is recommended to use variables, when you only want

Suppose we want to define a model with 4 banks of RAM, and two FLASH
pages. The code that defines these characteristics would be:

a macro, from within the directives.

To do this, system variables must be configured and RAM memory defined.

6.7 Defining custom microcontrollers

my_var : {$type};

{$SET PIC_NUMPAGES = 2}
{$CLEAR_STATE_RAM} //Clear RAM

{$SET type = 'byte'}

{$SET PIC_MODEL='NEW_PIC'}

{$DEFINE type = byte}

var

{$SET PIC_NUMBANKS = 4}

var

my_var : {$type};

Machine Translated by Google

The RAM memory map of this new PIC would be like the one shown in the
figure:

The following code shows how a microprocessor similar to the PIC16F84
would be defined, by directives:

From here, you can define the RAM memory map.

PicPas 0.8.7

The RAM memory map can be configured to measure, but it must always be
in line with the internal architecture of the mid-range PIC microcontrollers. This
architecture defines some common characteristics such as:

User manual

With these simple directives, you already have the basic, but not complete,
characteristics of a PIC. Note that the RAM state is cleared, with
{$CLEAR_STATE_RAM} (See section 6.5.21), because by default, PicPas always
defines an initial state for the RAM.

• The RAM banks have a size of 128 bytes. • Between
2 and 4 RAM banks can be defined. • FLASH
pages have a size of 2048 14-bit words. • Between 1 and 4 pages of
FLASH memory can be defined. • The special function
registers (SFR) occupy the first positions in the RAM banks. • There are

always some registers, such as
PCL, STATUS or SFR that must be

be mapped to all banks on the device.

{$SET PIC_MAXFREQ = 1000000}

{$SET PIC_NUMPAGES = 1}

//Start the memory, to start configuring it.

{$SET PIC_NUMBANKS = 2}
{$SET PIC_NPINS = 18}

//Defines hardware characteristics {$SET
PIC_MODEL='MIPIC'}

{$SET PIC_MAXFLASH = 1024}

Machine Translated by Google

PicPas 0.8.7

INDF, PCL, STATUS, FSR, PCLATH and INTCON, mapped to both RAM banks.

Mapping the GPR registers is necessary so that the compiler manages the
RAM well, when assigning it to internal variables or registers of the compiler itself.

The first line, which defines memory mapped areas, defines the registers:

Although the details of the mapped SFR records are not shown, they actually
exist and are functional.

This definition would generate a RAM map, as shown in the following figure:

The instruction {$SET PIC_MAXFLASH = 1024} defines that there will only
be 1024 free memory cells for the program, which are supposed to occupy the
lower addresses of page 0, the only one that has been defined for this microcontroller.

All of this code would be equivalent to what is achieved with the
{$PROCESSOR PIC16F84} directive, except for the model name.

The hardware definition of the PIC does not refer to the name or function of
the SFR registers, but simply to their status as an independent or mapped register.

User manual

Mapping the SFR registers does not help compilation because the code
generator uses its own memory map, but it is necessary for the tool

//Defines RAM memory status

{$SET_MAPPED_RAM '08C-0CF:bnk0'}

{$SET_STATE_RAM '000-00B:SFR, 00C-04F:GPR'}

//Defines bits not implemented in RAM

{$SET_STATE_RAM '080-08B:SFR, 08C-0CF:GPR'}

{$SET_UNIMP_BITS '003:3F,083:3F,005:1F,085:1F,00A:1F,08A:1F'}

{$CLEAR_STATE_RAM}

//Defines memory mapped areas

{$SET_MAPPED_RAM '080-080:bnk0, 082-084:bnk0, 08A-08B:bnk0'}

Machine Translated by Google

User manual

simulation (experimentally in the current version of PicPas) works correctly.

Defining the unimplemented bits, although not critical, also helps in device
simulation.

PicPas 0.8.7

Machine Translated by Google

PIC16F631 PIC16F636 PIC16F639 PIC16F648A PIC16F676 PIC16F677 PIC16F684

User manual

PIC16F610 PIC16F616 PIC16F627 PIC16F627A PIC16F628 PIC16F628A PIC16F630

PIC16F913 PIC16F914 PIC16F916 PIC16F917 PIC16F946

PicPas 0.8.7

PIC16F73 PIC16F74 PIC16F76 PIC16F77 PIC16F83 PIC16F84 PIC16F87 PIC16F88

PIC16F818 PIC16F819 PIC16F870 PIC16F871 PIC16F872 PIC16F873 PIC16F874

PIC16F887

PIC12F752

PIC16F767 PIC16F777 PIC16F785

PIC10F320 PIC10F322

PIC16F874A PIC16F876 PIC16F877 PIC16F882 PIC16F883 PIC16F884 PIC16F886

PIC12F609 PIC12F615 PIC12F617 PIC12F629 PIC12F635 PIC12F675 PIC12F683

MID-RANGE FAMILY DEVICES;

PIC16F723A PIC16F724 PIC16F726 PIC16F727 PIC16F737 PIC16F747 PIC16F753

PicPas supports, at the moment, only PIC devices from the Mid-Range family.

PIC16F707 PIC16F716 PIC16F720 PIC16F721 PIC16F722 PIC16F722A PIC16F723

PIC16F685 PIC16F687 PIC16F688 PIC16F689 PIC16F690

7 APPENDIX

7.1 Supported Devices

Machine Translated by Google

PicPas 0.8.7 User manual

1 Notes on PicPas..2 2
INTRODUCTION..3 2.1

Compiler Features.. ..3 2.2
Characteristics of the lDE......3 2.3
Compiler limitations....................4 2.4
Installation...................................5 3

THE INTERFACE...................7
3.1 Code Explorer....................8 3.2
Compiler Selection....................9 3.3
Message panel..............................11 3.4
Editing Window...................................13 3.4.1

Code folding................................... .. 14 3.4.2
Multiple Cursors.. ..15 3.4.3
Text Markers.16 3.4.4
Synchronized Editing..............17 3.4.5
Search for declaration.............................. .. 18 3.4.6
Automatic syntax checking...19 3.5

Compilation..................................21
3.5.1 Partial Compilation....................22
3.5.2 Automatic Compilation............................... ..22

3.6 RAM Explorer... ..23 3.7
External Tools..24 3.8 Theme
Configuration....................26 4

DEBUGER/SIMULATOR........................29 4.1
Starting the debugger/simulator...................................29 4.2
Memory maps.........30 4.3
Records Inspector...................31 4.4
Assembler Panel......................33 4.5
Execution control...............................34 4.6
Implementation information.................................... ..35
4.7 Real-time execution......36

5 LANGUAGE REFERENCE...................38 5.1
Reserved Words.. .. 38
5.2 Comments..38 5.3
Numbers..39 5.4
Identifiers................................39 5.5
Structure of a program................................40 5.6
Operators..42 5.7
Operator precedence.. ..45
5.8 Types of data....45

5.8.1 Char Type 46
5.8.2 Bit Type..47
5.8.3 Word and DWord type................................... ..
.48 5.8.4 Type conversion.. ...48
5.8.5 Type properties.50 5.9

Variables................53
5.9.1 Absolute Variables...53

table of Contents

Machine Translated by Google

5.9.2 REGISTER variables...55
5.10 Constants...........56
5.11 Types........57

5.11.1 Arrangements..58
5.12 Structures...................................60 5.12.1

Conditional IF … THEN......................... ...60 5.12. 2
REPEAT loop... ..61 5.12.3
WHILE loop..61 5.12.4 FOR
Loop....61 5.13

System functions...62 5.14
Procedures.................65 5.15
Functions....................65 5.16
Interruption Procedure...................67 5.17
Assembly code.. ..69 5.17 .1

Labels and jumps..70 5.17.2
Reference to variables....71 5.17.3
Reference to constants......................73 5.17.4
Reference to Procedures..74 5.17.5
Returning results for functions...................75 5.17.6 The ORG
directive..........76 5.17.7 Programming
only in Assembler...................76 5.18

Units....................77 5.18.1 Use of
units..........77 5.18.2 Creation of
units....................78 5.19

Pointers...................................80 5.19.1
Definition of pointers................................... ...80 5.19.2
Pointer Arithmetic..81 6

DIRECTIVES...............82 6.1
Use of directives...82 6.2
Directive processing......83 6.3 The language
of the directives.............................. ..85 6.3. 1 Types of

data.. ..85 6.3.2
Variables... .. .86 6.3.3
Operators..87 6.3.4
Operator precedence..87 6.3.5
Functions...............88 6.4

System variables.................89 6.5 List
of directives....................94 6.5.1

$PROCESSOR...................94 6.5.2
$FREQUENCY......................95 6.5.3
$MODE..........................96 6.5.4
$MSGBOX.................97 6.5.5
$MSGERR......98 6.5.6
$MSGWAR......98 6.5.7
$INFO......99 6.5.8
$ERROR..99 6.5.9
$WARNING...................................100 6.5.10
$CONFIG...100
6.5.11 $INCLUDE......................................101 6.5.12
$OUTPUTHEX.. ..102

PicPas 0.8.7 User manual

Machine Translated by Google

PicPas 0.8.7 User manual

6.5.13 $DEFINE.. .. 103
6.5.14 $IFDEF..105
6.5.15 $IFNDEF..106
6.5.16 $IF...................................107
6.5.17 $IFNOT..............................108
6.5.18 $SET..............................108
6.5.19 $SET_STATE_RAM...................109
6.5.20 $SET_MAPPED_RAM................................... ..110
6.5.21 $CLEAR_STATE_RAM....114
6.5.22 $RESET_PINS..............................114
6.5.23 $SET_PIN_NAME................................... ..115
6.5 .24 $MAP_RAM_TO_PIN..116
6.5.25 $SET_UNIMP_BITS...............118
6.5.26 $SET_UNIMP_BITS1.............................. ..119 6.6

Variables and Macros120
6.6.1 Variables and macros within directives. ..
120 6.6.2 Variables and macros within Pascal
code...121 6.6.3 Use of Variables or

Macros..122 6.7 Defining custom
microcontrollers....................123 7

APPENDIX...................126
7.1 Supported Devices.126 Table of contents................127

Machine Translated by Google

