diff --git a/your-code/main.ipynb b/your-code/main.ipynb index 0fc1af6..1f6ee2a 100644 --- a/your-code/main.ipynb +++ b/your-code/main.ipynb @@ -18,10 +18,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "import pandas as pd\n", + "import numpy as np" + ] }, { "cell_type": "markdown", @@ -32,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -41,10 +44,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "series = pd.Series(lst)" + ] }, { "cell_type": "markdown", @@ -57,10 +62,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "74.4" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "series[2]" + ] }, { "cell_type": "markdown", @@ -71,7 +89,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -89,10 +107,145 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
053.195.067.535.078.4
161.340.830.837.887.6
220.673.244.214.691.8
357.40.196.14.269.5
483.620.585.422.835.9
549.069.00.131.889.1
623.340.795.083.826.9
727.626.453.888.868.5
896.696.453.472.450.1
973.739.043.281.634.7
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4\n", + "0 53.1 95.0 67.5 35.0 78.4\n", + "1 61.3 40.8 30.8 37.8 87.6\n", + "2 20.6 73.2 44.2 14.6 91.8\n", + "3 57.4 0.1 96.1 4.2 69.5\n", + "4 83.6 20.5 85.4 22.8 35.9\n", + "5 49.0 69.0 0.1 31.8 89.1\n", + "6 23.3 40.7 95.0 83.8 26.9\n", + "7 27.6 26.4 53.8 88.8 68.5\n", + "8 96.6 96.4 53.4 72.4 50.1\n", + "9 73.7 39.0 43.2 81.6 34.7" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.DataFrame(b)\n", + "df" + ] }, { "cell_type": "markdown", @@ -103,7 +256,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -112,10 +265,147 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 50, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Score_1Score_2Score_3Score_4Score_5
053.195.067.535.078.4
161.340.830.837.887.6
220.673.244.214.691.8
357.40.196.14.269.5
483.620.585.422.835.9
549.069.00.131.889.1
623.340.795.083.826.9
727.626.453.888.868.5
896.696.453.472.450.1
973.739.043.281.634.7
\n", + "
" + ], + "text/plain": [ + " Score_1 Score_2 Score_3 Score_4 Score_5\n", + "0 53.1 95.0 67.5 35.0 78.4\n", + "1 61.3 40.8 30.8 37.8 87.6\n", + "2 20.6 73.2 44.2 14.6 91.8\n", + "3 57.4 0.1 96.1 4.2 69.5\n", + "4 83.6 20.5 85.4 22.8 35.9\n", + "5 49.0 69.0 0.1 31.8 89.1\n", + "6 23.3 40.7 95.0 83.8 26.9\n", + "7 27.6 26.4 53.8 88.8 68.5\n", + "8 96.6 96.4 53.4 72.4 50.1\n", + "9 73.7 39.0 43.2 81.6 34.7" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#df = df.rename(columns = {0 : 'Score_1', 1 : 'Score_2', 2: 'Score_3', 3 : 'Score_4', 4 : 'Score_5'})\n", + "for i, name in enumerate(df.columns):\n", + " df.rename(columns = {name : colnames[i]}, inplace = True)\n", + "df" + ] }, { "cell_type": "markdown", @@ -126,10 +416,123 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Score_1Score_2Score_3
053.195.067.5
161.340.830.8
220.673.244.2
357.40.196.1
483.620.585.4
549.069.00.1
623.340.795.0
727.626.453.8
896.696.453.4
973.739.043.2
\n", + "
" + ], + "text/plain": [ + " Score_1 Score_2 Score_3\n", + "0 53.1 95.0 67.5\n", + "1 61.3 40.8 30.8\n", + "2 20.6 73.2 44.2\n", + "3 57.4 0.1 96.1\n", + "4 83.6 20.5 85.4\n", + "5 49.0 69.0 0.1\n", + "6 23.3 40.7 95.0\n", + "7 27.6 26.4 53.8\n", + "8 96.6 96.4 53.4\n", + "9 73.7 39.0 43.2" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subset= df[[\"Score_1\", \"Score_2\", \"Score_3\"]]\n", + "subset" + ] }, { "cell_type": "markdown", @@ -140,10 +543,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "56.95000000000001" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"Score_3\"].mean()" + ] }, { "cell_type": "markdown", @@ -154,10 +570,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "88.8" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"Score_4\"].max()" + ] }, { "cell_type": "markdown", @@ -168,10 +597,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "40.75" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"Score_2\"].median()" + ] }, { "cell_type": "markdown", @@ -182,7 +624,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 63, "metadata": {}, "outputs": [], "source": [ @@ -203,10 +645,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "df = pd.DataFrame(orders)" + ] }, { "cell_type": "markdown", @@ -217,10 +661,145 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 70, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2978\n", + "637.0\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DescriptionQuantityUnitPriceRevenue
0LUNCH BAG APPLE DESIGN11.651.65
1SET OF 60 VINTAGE LEAF CAKE CASES240.5513.20
2RIBBON REEL STRIPES DESIGN11.651.65
3WORLD WAR 2 GLIDERS ASSTD DESIGNS28800.18518.40
4PLAYING CARDS JUBILEE UNION JACK21.252.50
5POPCORN HOLDER70.855.95
6BOX OF VINTAGE ALPHABET BLOCKS111.9511.95
7PARTY BUNTING44.9519.80
8JAZZ HEARTS ADDRESS BOOK100.191.90
9SET OF 4 SANTA PLACE SETTINGS481.2560.00
\n", + "
" + ], + "text/plain": [ + " Description Quantity UnitPrice Revenue\n", + "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n", + "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n", + "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n", + "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n", + "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n", + "5 POPCORN HOLDER 7 0.85 5.95\n", + "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n", + "7 PARTY BUNTING 4 4.95 19.80\n", + "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n", + "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "total_quantity_order = df[\"Quantity\"].sum()\n", + "total_revenue = df[\"Revenue\"].sum()\n", + "print(total_quantity_order)\n", + "print(total_revenue)\n", + "df" + ] }, { "cell_type": "markdown", @@ -231,15 +810,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 74, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11.95\n", + "0.18\n", + "11.77\n" + ] + } + ], + "source": [ + "most_expensive = df[\"UnitPrice\"].max()\n", + "least_expensive = df[\"UnitPrice\"].min()\n", + "price_diference = most_expensive - least_expensive\n", + "print(most_expensive)\n", + "print(least_expensive)\n", + "print(price_diference)" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -253,7 +849,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.13" } }, "nbformat": 4,