diff --git a/your-code/main.ipynb b/your-code/main.ipynb
index 0fc1af6..1f6ee2a 100644
--- a/your-code/main.ipynb
+++ b/your-code/main.ipynb
@@ -18,10 +18,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 31,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ]
},
{
"cell_type": "markdown",
@@ -32,7 +35,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
@@ -41,10 +44,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 33,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "series = pd.Series(lst)"
+ ]
},
{
"cell_type": "markdown",
@@ -57,10 +62,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 34,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "series[2]"
+ ]
},
{
"cell_type": "markdown",
@@ -71,7 +89,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
@@ -89,10 +107,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 41,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(b)\n",
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -103,7 +256,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
@@ -112,10 +265,147 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 50,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#df = df.rename(columns = {0 : 'Score_1', 1 : 'Score_2', 2: 'Score_3', 3 : 'Score_4', 4 : 'Score_5'})\n",
+ "for i, name in enumerate(df.columns):\n",
+ " df.rename(columns = {name : colnames[i]}, inplace = True)\n",
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -126,10 +416,123 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 57,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3\n",
+ "0 53.1 95.0 67.5\n",
+ "1 61.3 40.8 30.8\n",
+ "2 20.6 73.2 44.2\n",
+ "3 57.4 0.1 96.1\n",
+ "4 83.6 20.5 85.4\n",
+ "5 49.0 69.0 0.1\n",
+ "6 23.3 40.7 95.0\n",
+ "7 27.6 26.4 53.8\n",
+ "8 96.6 96.4 53.4\n",
+ "9 73.7 39.0 43.2"
+ ]
+ },
+ "execution_count": 57,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "subset= df[[\"Score_1\", \"Score_2\", \"Score_3\"]]\n",
+ "subset"
+ ]
},
{
"cell_type": "markdown",
@@ -140,10 +543,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 58,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 58,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"Score_3\"].mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -154,10 +570,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 60,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 60,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"Score_4\"].max()"
+ ]
},
{
"cell_type": "markdown",
@@ -168,10 +597,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 61,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "40.75"
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"Score_2\"].median()"
+ ]
},
{
"cell_type": "markdown",
@@ -182,7 +624,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
@@ -203,10 +645,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 64,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "df = pd.DataFrame(orders)"
+ ]
},
{
"cell_type": "markdown",
@@ -217,10 +661,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 70,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2978\n",
+ "637.0\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 70,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "total_quantity_order = df[\"Quantity\"].sum()\n",
+ "total_revenue = df[\"Revenue\"].sum()\n",
+ "print(total_quantity_order)\n",
+ "print(total_revenue)\n",
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -231,15 +810,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 74,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "11.95\n",
+ "0.18\n",
+ "11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "most_expensive = df[\"UnitPrice\"].max()\n",
+ "least_expensive = df[\"UnitPrice\"].min()\n",
+ "price_diference = most_expensive - least_expensive\n",
+ "print(most_expensive)\n",
+ "print(least_expensive)\n",
+ "print(price_diference)"
+ ]
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -253,7 +849,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.8"
+ "version": "3.9.13"
}
},
"nbformat": 4,