diff --git a/your-code/main.ipynb b/your-code/main.ipynb index 1970c46..025d139 100644 --- a/your-code/main.ipynb +++ b/your-code/main.ipynb @@ -12,11 +12,15 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "# Libraries" + "# Libraries\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn import datasets as ds" ] }, { @@ -37,11 +41,100 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "# your code here" + "# your code here\n", + "\n", + "diabetes = ds.load_diabetes()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'data': array([[ 0.03807591, 0.05068012, 0.06169621, ..., -0.00259226,\n", + " 0.01990842, -0.01764613],\n", + " [-0.00188202, -0.04464164, -0.05147406, ..., -0.03949338,\n", + " -0.06832974, -0.09220405],\n", + " [ 0.08529891, 0.05068012, 0.04445121, ..., -0.00259226,\n", + " 0.00286377, -0.02593034],\n", + " ...,\n", + " [ 0.04170844, 0.05068012, -0.01590626, ..., -0.01107952,\n", + " -0.04687948, 0.01549073],\n", + " [-0.04547248, -0.04464164, 0.03906215, ..., 0.02655962,\n", + " 0.04452837, -0.02593034],\n", + " [-0.04547248, -0.04464164, -0.0730303 , ..., -0.03949338,\n", + " -0.00421986, 0.00306441]]),\n", + " 'target': array([151., 75., 141., 206., 135., 97., 138., 63., 110., 310., 101.,\n", + " 69., 179., 185., 118., 171., 166., 144., 97., 168., 68., 49.,\n", + " 68., 245., 184., 202., 137., 85., 131., 283., 129., 59., 341.,\n", + " 87., 65., 102., 265., 276., 252., 90., 100., 55., 61., 92.,\n", + " 259., 53., 190., 142., 75., 142., 155., 225., 59., 104., 182.,\n", + " 128., 52., 37., 170., 170., 61., 144., 52., 128., 71., 163.,\n", + " 150., 97., 160., 178., 48., 270., 202., 111., 85., 42., 170.,\n", + " 200., 252., 113., 143., 51., 52., 210., 65., 141., 55., 134.,\n", + " 42., 111., 98., 164., 48., 96., 90., 162., 150., 279., 92.,\n", + " 83., 128., 102., 302., 198., 95., 53., 134., 144., 232., 81.,\n", + " 104., 59., 246., 297., 258., 229., 275., 281., 179., 200., 200.,\n", + " 173., 180., 84., 121., 161., 99., 109., 115., 268., 274., 158.,\n", + " 107., 83., 103., 272., 85., 280., 336., 281., 118., 317., 235.,\n", + " 60., 174., 259., 178., 128., 96., 126., 288., 88., 292., 71.,\n", + " 197., 186., 25., 84., 96., 195., 53., 217., 172., 131., 214.,\n", + " 59., 70., 220., 268., 152., 47., 74., 295., 101., 151., 127.,\n", + " 237., 225., 81., 151., 107., 64., 138., 185., 265., 101., 137.,\n", + " 143., 141., 79., 292., 178., 91., 116., 86., 122., 72., 129.,\n", + " 142., 90., 158., 39., 196., 222., 277., 99., 196., 202., 155.,\n", + " 77., 191., 70., 73., 49., 65., 263., 248., 296., 214., 185.,\n", + " 78., 93., 252., 150., 77., 208., 77., 108., 160., 53., 220.,\n", + " 154., 259., 90., 246., 124., 67., 72., 257., 262., 275., 177.,\n", + " 71., 47., 187., 125., 78., 51., 258., 215., 303., 243., 91.,\n", + " 150., 310., 153., 346., 63., 89., 50., 39., 103., 308., 116.,\n", + " 145., 74., 45., 115., 264., 87., 202., 127., 182., 241., 66.,\n", + " 94., 283., 64., 102., 200., 265., 94., 230., 181., 156., 233.,\n", + " 60., 219., 80., 68., 332., 248., 84., 200., 55., 85., 89.,\n", + " 31., 129., 83., 275., 65., 198., 236., 253., 124., 44., 172.,\n", + " 114., 142., 109., 180., 144., 163., 147., 97., 220., 190., 109.,\n", + " 191., 122., 230., 242., 248., 249., 192., 131., 237., 78., 135.,\n", + " 244., 199., 270., 164., 72., 96., 306., 91., 214., 95., 216.,\n", + " 263., 178., 113., 200., 139., 139., 88., 148., 88., 243., 71.,\n", + " 77., 109., 272., 60., 54., 221., 90., 311., 281., 182., 321.,\n", + " 58., 262., 206., 233., 242., 123., 167., 63., 197., 71., 168.,\n", + " 140., 217., 121., 235., 245., 40., 52., 104., 132., 88., 69.,\n", + " 219., 72., 201., 110., 51., 277., 63., 118., 69., 273., 258.,\n", + " 43., 198., 242., 232., 175., 93., 168., 275., 293., 281., 72.,\n", + " 140., 189., 181., 209., 136., 261., 113., 131., 174., 257., 55.,\n", + " 84., 42., 146., 212., 233., 91., 111., 152., 120., 67., 310.,\n", + " 94., 183., 66., 173., 72., 49., 64., 48., 178., 104., 132.,\n", + " 220., 57.]),\n", + " 'frame': None,\n", + " 'DESCR': '.. _diabetes_dataset:\\n\\nDiabetes dataset\\n----------------\\n\\nTen baseline variables, age, sex, body mass index, average blood\\npressure, and six blood serum measurements were obtained for each of n =\\n442 diabetes patients, as well as the response of interest, a\\nquantitative measure of disease progression one year after baseline.\\n\\n**Data Set Characteristics:**\\n\\n :Number of Instances: 442\\n\\n :Number of Attributes: First 10 columns are numeric predictive values\\n\\n :Target: Column 11 is a quantitative measure of disease progression one year after baseline\\n\\n :Attribute Information:\\n - age age in years\\n - sex\\n - bmi body mass index\\n - bp average blood pressure\\n - s1 tc, T-Cells (a type of white blood cells)\\n - s2 ldl, low-density lipoproteins\\n - s3 hdl, high-density lipoproteins\\n - s4 tch, thyroid stimulating hormone\\n - s5 ltg, lamotrigine\\n - s6 glu, blood sugar level\\n\\nNote: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times `n_samples` (i.e. the sum of squares of each column totals 1).\\n\\nSource URL:\\nhttps://www4.stat.ncsu.edu/~boos/var.select/diabetes.html\\n\\nFor more information see:\\nBradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) \"Least Angle Regression,\" Annals of Statistics (with discussion), 407-499.\\n(https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)',\n", + " 'feature_names': ['age',\n", + " 'sex',\n", + " 'bmi',\n", + " 'bp',\n", + " 's1',\n", + " 's2',\n", + " 's3',\n", + " 's4',\n", + " 's5',\n", + " 's6'],\n", + " 'data_filename': '/Users/NH/opt/anaconda3/lib/python3.8/site-packages/sklearn/datasets/data/diabetes_data.csv.gz',\n", + " 'target_filename': '/Users/NH/opt/anaconda3/lib/python3.8/site-packages/sklearn/datasets/data/diabetes_target.csv.gz'}" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diabetes" ] }, { @@ -53,11 +146,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['data', 'target', 'frame', 'DESCR', 'feature_names', 'data_filename', 'target_filename'])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# your code here" + "# your code here\n", + "diabetes.keys()" ] }, { @@ -73,13 +178,59 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "scrolled": false }, - "outputs": [], - "source": [ - "# your code here" + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ".. _diabetes_dataset:\n", + "\n", + "Diabetes dataset\n", + "----------------\n", + "\n", + "Ten baseline variables, age, sex, body mass index, average blood\n", + "pressure, and six blood serum measurements were obtained for each of n =\n", + "442 diabetes patients, as well as the response of interest, a\n", + "quantitative measure of disease progression one year after baseline.\n", + "\n", + "**Data Set Characteristics:**\n", + "\n", + " :Number of Instances: 442\n", + "\n", + " :Number of Attributes: First 10 columns are numeric predictive values\n", + "\n", + " :Target: Column 11 is a quantitative measure of disease progression one year after baseline\n", + "\n", + " :Attribute Information:\n", + " - age age in years\n", + " - sex\n", + " - bmi body mass index\n", + " - bp average blood pressure\n", + " - s1 tc, T-Cells (a type of white blood cells)\n", + " - s2 ldl, low-density lipoproteins\n", + " - s3 hdl, high-density lipoproteins\n", + " - s4 tch, thyroid stimulating hormone\n", + " - s5 ltg, lamotrigine\n", + " - s6 glu, blood sugar level\n", + "\n", + "Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times `n_samples` (i.e. the sum of squares of each column totals 1).\n", + "\n", + "Source URL:\n", + "https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html\n", + "\n", + "For more information see:\n", + "Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) \"Least Angle Regression,\" Annals of Statistics (with discussion), 407-499.\n", + "(https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)\n" + ] + } + ], + "source": [ + "# your code here\n", + "print(diabetes.DESCR)" ] }, { @@ -97,11 +248,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "# your answer here" + "# your answer here\n", + "# 1.\n", + "# 2.\n", + "# 3." ] }, { @@ -115,11 +269,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "shape data (442, 10)\n", + "shape target (442,)\n" + ] + } + ], "source": [ - "# your code here" + "# your code here\n", + "print('shape data', diabetes['data'].shape)\n", + "print('shape target', diabetes['target'].shape)" ] }, { @@ -156,11 +321,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ - "# your code here" + "# your code here\n", + "from sklearn.linear_model import LinearRegression" ] }, { @@ -172,11 +338,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ - "# your code here" + "# your code here\n", + "diabetes_model = LinearRegression()" ] }, { @@ -190,11 +357,15 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ - "# your code here" + "# your code here\n", + "diabetes_data_train = diabetes['data'][:-20]\n", + "diabetes_data_test = diabetes['data'][:-20]\n", + "diabetes_target_train = diabetes['target'][:-20]\n", + "diabetes_target_test = diabetes['target'][:-20]" ] }, { @@ -206,11 +377,26 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Intercept: 152.76430691633442\n", + "Coefficients: [ 3.03499549e-01 -2.37639315e+02 5.10530605e+02 3.27736980e+02\n", + " -8.14131709e+02 4.92814588e+02 1.02848452e+02 1.84606489e+02\n", + " 7.43519617e+02 7.60951722e+01]\n" + ] + } + ], + "source": [ + "# your code here\n", + "diabetes_model.fit(diabetes_data_train,diabetes_target_train)\n", + "\n", + "print(\"Intercept:\",diabetes_model.intercept_)\n", + "print(\"Coefficients:\",diabetes_model.coef_)" ] }, { @@ -231,11 +417,129 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([206.75928628, 68.44064739, 178.20406005, 166.59039906,\n", + " 129.47338697, 105.48206978, 74.90024045, 120.73067569,\n", + " 159.82011958, 211.92833532, 97.83664191, 97.41005509,\n", + " 115.60592349, 164.92279039, 103.34070745, 177.68217359,\n", + " 210.75217394, 184.40013153, 148.54098532, 123.55941211,\n", + " 120.97403176, 86.41241445, 113.06547293, 252.35802827,\n", + " 165.0256223 , 147.87909701, 97.36674337, 179.12350572,\n", + " 129.58494812, 185.38814558, 158.11930901, 69.5502975 ,\n", + " 263.36897831, 113.46175282, 79.56563326, 87.72481273,\n", + " 207.0421844 , 157.45915639, 240.65662115, 137.1490856 ,\n", + " 155.31655344, 74.42879297, 146.31653437, 78.52705268,\n", + " 222.11926084, 126.59820508, 141.84166437, 109.44753606,\n", + " 75.09372891, 190.42332738, 159.23790309, 171.06440722,\n", + " 134.14185441, 159.31230491, 138.94279895, 73.39607055,\n", + " 207.21538369, 80.45498482, 103.89405947, 135.51866843,\n", + " 113.7604739 , 181.57058967, 61.77249359, 98.88189256,\n", + " 115.70757199, 191.02738602, 150.90888198, 125.92583944,\n", + " 116.54669748, 124.03378216, 75.55191024, 237.48306485,\n", + " 141.50540223, 125.7874299 , 151.92660098, 128.96147947,\n", + " 192.53543155, 77.39022131, 167.09776732, 91.31020128,\n", + " 175.17028723, 124.29323949, 63.18411355, 151.78757246,\n", + " 53.60712124, 165.98566436, 44.4723183 , 152.23324167,\n", + " 81.62386207, 107.2816144 , 80.87409188, 187.27371075,\n", + " 192.57750449, 60.72408869, 106.4031363 , 125.49538842,\n", + " 208.99379988, 214.59988147, 123.54770557, 139.99635036,\n", + " 167.79824717, 108.58475774, 149.32986674, 159.19431647,\n", + " 152.351259 , 117.92793459, 73.04375498, 157.21237354,\n", + " 231.29179423, 146.69328359, 40.80100306, 121.73643613,\n", + " 152.55087233, 209.59441904, 289.90775253, 189.05011996,\n", + " 215.28486372, 237.32410411, 166.37285996, 151.907107 ,\n", + " 157.19405036, 201.84503346, 220.58435724, 176.89381347,\n", + " 169.39959973, 187.68448576, 57.68850542, 107.99405973,\n", + " 92.59936412, 212.23870609, 245.41651206, 69.4816247 ,\n", + " 114.41367356, 69.79914347, 140.31442169, 239.90556041,\n", + " 58.60883226, 235.72019943, 255.73947027, 253.12249817,\n", + " 157.6279999 , 231.98033091, 170.76553345, 117.61035691,\n", + " 179.93772788, 238.81068308, 190.57795278, 228.0108628 ,\n", + " 114.36333784, 178.23235423, 209.81775597, 144.9795296 ,\n", + " 202.60129801, 123.80860815, 151.63805944, 198.97398769,\n", + " 146.59152212, 125.27392182, 86.03270707, 234.82457586,\n", + " 82.84016948, 231.27600488, 144.36323971, 198.48406939,\n", + " 147.06334862, 77.98456984, 60.16531688, 263.50063179,\n", + " 226.2378663 , 219.1627738 , 48.11897346, 88.90700468,\n", + " 222.1094987 , 97.92075863, 165.3163388 , 121.62630945,\n", + " 159.11162765, 223.77647264, 100.21365939, 166.44520444,\n", + " 180.27822407, 90.61060421, 173.45311624, 160.50438597,\n", + " 201.91417101, 186.05703896, 196.96259576, 66.47814072,\n", + " 154.88396506, 117.37775276, 197.02504012, 128.99212268,\n", + " 92.25472599, 141.37351287, 155.92188295, 171.07777829,\n", + " 99.62668276, 192.35843191, 142.33601676, 176.87579872,\n", + " 97.12218811, 70.42117942, 163.92951642, 199.22311971,\n", + " 181.48660328, 227.29930221, 161.41002772, 211.79446617,\n", + " 224.66341593, 175.32963083, 124.96333003, 175.91591988,\n", + " 153.1156677 , 99.72373002, 100.00195178, 263.53536082,\n", + " 225.48647667, 222.38262709, 134.55939169, 145.07798763,\n", + " 54.84517001, 142.09205052, 154.79870054, 124.46470533,\n", + " 78.0745732 , 231.034711 , 78.67174011, 106.97791537,\n", + " 117.81672 , 99.53040319, 165.91262249, 160.30651046,\n", + " 159.59183372, 143.39983051, 231.71849 , 179.59535891,\n", + " 187.56243947, 67.05964986, 192.84191843, 179.08027657,\n", + " 235.94996771, 121.08637751, 85.93905304, 102.65017083,\n", + " 140.31649517, 101.66657695, 119.96430852, 82.16098489,\n", + " 234.31452819, 244.33866794, 263.53283451, 274.30429222,\n", + " 180.91762932, 204.45453023, 254.03323937, 119.28896357,\n", + " 267.19515892, 105.08321149, 119.46191516, 142.50982281,\n", + " 58.807832 , 130.39077413, 263.39520208, 46.17469178,\n", + " 125.0187723 , 131.70093752, 35.64540901, 139.17365621,\n", + " 246.10401878, 89.1724053 , 192.71804663, 166.23315911,\n", + " 147.79589786, 192.59895656, 177.56167389, 159.86178668,\n", + " 188.01701815, 117.08311908, 113.82928222, 118.61959402,\n", + " 166.10750875, 98.10269213, 141.14817148, 85.3149742 ,\n", + " 161.52470754, 203.30162645, 79.99128073, 146.91709814,\n", + " 81.14161392, 190.03643798, 221.95408679, 203.46909044,\n", + " 93.3565789 , 178.7878351 , 83.91466859, 152.06713318,\n", + " 78.34168866, 98.41490946, 108.56162588, 125.62703969,\n", + " 217.90029179, 127.53783653, 207.05767561, 230.19888487,\n", + " 124.47980723, 136.71526057, 127.63090393, 150.98569723,\n", + " 88.5925505 , 139.48869288, 204.52461607, 173.83508424,\n", + " 122.9253427 , 214.36441981, 174.70438665, 110.22556227,\n", + " 198.73936678, 174.83541512, 163.61697039, 193.79942594,\n", + " 191.47045414, 285.50533597, 279.46979662, 216.51365647,\n", + " 210.84831584, 215.64107793, 158.55625638, 224.23468435,\n", + " 188.77485924, 105.07471765, 180.78872664, 114.49716858,\n", + " 291.21345392, 184.36382653, 80.18176355, 86.91136289,\n", + " 248.78148064, 176.34545208, 122.15126229, 146.07273095,\n", + " 171.50388525, 184.66501163, 165.42948001, 157.82604851,\n", + " 143.70436507, 127.03589361, 177.62938237, 105.52013381,\n", + " 132.73458358, 97.5268931 , 250.1859579 , 86.81475817,\n", + " 62.41613529, 154.45925987, 191.6875602 , 134.74421673,\n", + " 94.28531437, 201.15935714, 53.73729167, 176.76832337,\n", + " 197.79656254, 119.63803358, 236.11561006, 166.17655703,\n", + " 162.37080447, 164.02067674, 252.92926842, 256.45853973,\n", + " 197.70698794, 184.82159384, 59.2095776 , 193.66927062,\n", + " 111.23508373, 142.60785153, 127.65299855, 181.28398173,\n", + " 210.83575857, 170.72039696, 165.17584707, 137.74480707,\n", + " 175.68382577, 75.3511821 , 245.44316502, 115.3294497 ,\n", + " 111.81300072, 141.55921954, 111.02445384, 91.9564145 ,\n", + " 164.19818587, 74.89356839, 253.68019464, 54.68468661,\n", + " 100.04367036, 100.83016925, 257.81296474, 169.57401414,\n", + " 62.70775773, 183.11027608, 170.34970265, 190.15105413,\n", + " 187.19845707, 88.17178554, 151.59620981, 250.30795981,\n", + " 199.91994535, 284.01273725, 50.53096422, 173.03012803,\n", + " 205.73902656, 174.78336203, 157.74242737, 150.48016954,\n", + " 234.26382757, 121.60133488, 165.79514728, 173.46162171,\n", + " 227.5018786 , 149.09669413, 99.5856398 , 81.87865626,\n", + " 142.75810005, 193.01616829])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# your code here\n", + "y_pred = diabetes_model.predict(diabetes_data_test)\n", + "y_pred" ] }, { @@ -247,11 +551,35 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.03807591, 0.05068012, 0.06169621, ..., -0.00259226,\n", + " 0.01990842, -0.01764613],\n", + " [-0.00188202, -0.04464164, -0.05147406, ..., -0.03949338,\n", + " -0.06832974, -0.09220405],\n", + " [ 0.08529891, 0.05068012, 0.04445121, ..., -0.00259226,\n", + " 0.00286377, -0.02593034],\n", + " ...,\n", + " [-0.02004471, -0.04464164, -0.0547075 , ..., -0.03949338,\n", + " -0.07408887, -0.0052198 ],\n", + " [ 0.02354575, -0.04464164, -0.03638469, ..., 0.03430886,\n", + " -0.03324879, 0.06105391],\n", + " [ 0.03807591, 0.05068012, 0.0164281 , ..., 0.07120998,\n", + " 0.04976866, 0.01549073]])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# your code here\n", + "diabetes_data_test" ] }, { @@ -263,11 +591,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "# your answer here" + "# your answer here\n", + "# no, they are not" ] }, { @@ -302,7 +631,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -326,7 +655,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -351,11 +680,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ - "# your code here" + "# your code here\n", + "auto = pd.read_csv('../data/auto-mpg.csv')" ] }, { @@ -367,11 +697,124 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
| \n", + " | mpg | \n", + "cylinders | \n", + "displacement | \n", + "horse_power | \n", + "weight | \n", + "acceleration | \n", + "model_year | \n", + "car_name | \n", + "
|---|---|---|---|---|---|---|---|---|
| 0 | \n", + "18.0 | \n", + "8 | \n", + "307.0 | \n", + "130.0 | \n", + "3504 | \n", + "12.0 | \n", + "70 | \n", + "\\t\"chevrolet chevelle malibu\" | \n", + "
| 1 | \n", + "15.0 | \n", + "8 | \n", + "350.0 | \n", + "165.0 | \n", + "3693 | \n", + "11.5 | \n", + "70 | \n", + "\\t\"buick skylark 320\" | \n", + "
| 2 | \n", + "18.0 | \n", + "8 | \n", + "318.0 | \n", + "150.0 | \n", + "3436 | \n", + "11.0 | \n", + "70 | \n", + "\\t\"plymouth satellite\" | \n", + "
| 3 | \n", + "16.0 | \n", + "8 | \n", + "304.0 | \n", + "150.0 | \n", + "3433 | \n", + "12.0 | \n", + "70 | \n", + "\\t\"amc rebel sst\" | \n", + "
| 4 | \n", + "17.0 | \n", + "8 | \n", + "302.0 | \n", + "140.0 | \n", + "3449 | \n", + "10.5 | \n", + "70 | \n", + "\\t\"ford torino\" | \n", + "