Skip to content


Folders and files

Last commit message
Last commit date

Latest commit


Repository files navigation


This project is an implementaton of a dataframe akin to Python's Pandas or R's tibble/dplyr/tidyverse. R's influence is significantly stronger for this project, although I do borrow ideas from Pandas as well.

Main advantages are decent data organization; full support of NA-values; good extensibility.

Dataframes and vectors (series in Pandas) are immutable.

Supported types are: Integer, Float, Complex, String, Boolean, Time, Any and Vector (each element of which is a vector).

Loading from CSV

iris, err := dataframe.FromCSVFile("iris.csv")

To skip the first line use CSVOptionSkipFirstLine(true).

iris, err := dataframe.FromCSVFile("iris.csv", dataframe.CSVOptionSkipFirstLine(true))

If you need to pass options for the new dataframe, use CSVOptionDataframeOptions(options...).

Loading from SQL

db, err := sql.Open("sqlite3", "./test_data/items.sqlite")
if err != nil {

tx, err := db.Begin()
if err != nil {

df, err := FromSQL(tx, "SELECT * FROM sku", []any{})

If you need to pass options for the new dataframe, use SQLOptionDataframeOptions(options...).

Filtering rows

Filtering is done with df.Filter(whicher). Two fundamental whichers are []int with elements indices and []bool. Filter() filters out elements corresponding to false. In most cases you do not need to pass []int or []bool directly as they are returned by many column functions.

Important: in Logarithmothechnia first index is 1! (This betrays R's roots of Logarithmotechnia).

Let's select elements with "setosa" in "species" vector (column).

filteredDf := iris.Filter(iris.C("species").Eq("setosa"))

Or those with sepal length greater than 5.

filteredDf := iris.Filter(iris.C("sepal_length").Gt(5))

Other comparing functions are: Neq(), Lt(), Gte(), Lte().

It is possible to filter by using vector Which() function.

Filtering by several conditions

What if you need to filter by two conditions at the same time? Here is two ways to do this:

filteredIris := iris.Filter(iris.C("species").Eq("setosa")).Filter(iris.C("sepal_length").Gte(5))


filteredIris := iris.Filter(vector.And(

The second approach is more general. What if you need to select all elements which are either of "setosa" species or have sepal length more than 5? It is easy to do by changing vector.And to vector.Or.

filteredIris := iris.Filter(vector.Or(

Filtering by function

It is also possible to filter by passing a function to column's Which().

filteredIris = iris.Filter(iris.C("sepal_length").Which(
	func(val float64) bool {
		return val >= 5 && val < 7

Function has to have a signature supported by the vector (column) type.

Selecting dataframe subset

Select rows from 10th to 20th (including).

subsetIris := iris.FromTo(10, 20)


To sort a dataframe use Arrange() function. For example,

sortedBySepalLength := iris.Arrange("sepal_length")

In reverse:

sortedBySepalLengthReverse := iris.Arrange("sepal_length", dataframe.OptionArrangeReverse(true))

By two columns:

sortedBySepalLength := iris.Arrange("series", "sepal_length")

Adding new columns

Mutate() allows creates a new data frame with new columns, but preserving all columns of the old one. For example, let's add a column which indicate a one of two buckets based on the sepal length.

bucketed := iris.Mutate(dataframe.Column{
		func(val float64) int {
			if val < 5 {
				return 1
			return 2

Here you can also an example of vector's Apply() function which allows to generate a new vector from the other one.

Selecting and dropping columns

Select() function allows selecting and dropping dataframe's columns.

Let's select species and sepal length from iris dataset.

compactIris := iris.Select("species", "sepal_length")

Or just drop petal length and petal_width.

compactIris := iris.Select("-petal_length", "-petal_width")

It is also possible to use column indices instead of names.

compactIris := iris.Select(5, 1)

Changing order of columns

Make "species" column appear before "sepal_length":

relocated := iris.Relocate("species", dataframe.OptionBeforeColumn("sepal_length"))

Or "petal_length" and "petal_width" after "species":

relocated := iris.Relocate("petal_length", "petal_width", dataframe.OptionAfterColumn("species"))

Joining dataframes

There are several types of joins available: InnerJoin(), LeftJoin(), RightJoin(), FullJoin(), SemiJoin() and AntiJoin(). Last two are from dplyr. Here is an example of left join:

joined := employee.LeftJoin(department, OptionJoinBy("DepType"))

More examples of the joins can be found in tests.

Converting vectors to slices

Columns (and stand-alone vectors) can be converted to slices. For example:

data, na := iris.Cn("species").Strings()

If an element of na is true, it means a corresponding element of the column is NA-value.

Available converting functions are

  • Booleans() ([]bool, []bool)
  • Integers() ([]int, []bool)
  • Floats() ([]float64, []bool)
  • Complexes() ([]complex128, []bool)
  • Strings() ([]string, []bool)
  • Times() ([]time.Time, []bool)
  • Anies() ([]any, []bool)

Converting vectors to other types

There are also similar functions for converting a vector to other type:

  • AsInteger(options ...Option) Vector
  • AsFloat(options ...Option) Vector
  • AsComplex(options ...Option) Vector
  • AsBoolean(options ...Option) Vector
  • AsString(options ...Option) Vector
  • AsTime(options ...Option) Vector
  • AsAny(options ...Option) Vector

Another way is to use Apply() function as shown before.

Renaming columns

To rename a column, use a Rename() function. There are several ways to pass which column to which value you would like to rename (check function comment). For example:

renamedIris := iris.Rename([]string{"sepal_width", "s_width"})

Summarization and analytical functions

Let's suggest you have a bucketed by "sepal_length" dataframe from the example above, and you want to find out max and min values for "petal_length" for every bucket. It is somewhat cumbersome for now as this is two-step operation. First, we group our bucketed dataframe by necessary columns:

	grouped := bucketed.GroupBy("bucket")

Then we summarize it:

	stats := grouped.Summarize(

And we get the result:

# of columns: 3, # of rows: 2

petal_length_min: [(float)]1.200, 1.000]
petal_length_max: [(float)]6.900, 4.500]
bucket: [(integer)]2, 1]


Dataframe library for Go.







No releases published


No packages published