
Japanese Word Segmentation using Character-level Recurrent Networks
with Dictionary Information

Taishi Ikeda

Abstract

This paper presents a neural word seg-
mentation (NWS) model that uses dictio-
nary information. Recently, many NWS
models have been proposed and achieved
state-of-the-art results. However, it is not
clear how we incorporate the information
of a word dictionary into a character-level
NWS model. In this work, we propose a
method of incorporating features based on
a word dictionary and word embeddings
directly into the model. The experimental
results show that our method is robust to
both Japanese balanced corpus and a mi-
croblog corpus.1

1 Introduction

Word identification is a fundamental step in pro-
cessing of languages that have no word boundaries
such as Japanese and Chinese. Its accuracy has a
significant effect on downstream applications such
as machine translation and dialogue systems.

In recent years, many neural word segmentation
(NWS) models for Chinese have been proposed.
For example, Chen et al. (2015) formulated a Chi-
nese WS task as a character-level sequence label-
ing problem and proposed an NWS model based
on long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997). Such neural network–
based models have achieved high accuracies with-
out feature engineering (Zheng et al., 2013; Pei
et al., 2014; Cai and Zhao, 2016).

In contrast to Chinese WS, conventional meth-
ods for Japanese WS use dictionary-based ap-
proaches to perform joint WS and part-of-speech
(POS) tagging (Kurohashi et al., 1994; Kudo et al.,
2004; Kaji and Kitsuregawa, 2014; Morita et al.,
2015). A dictionary gives a tractable way to build

1Our source code is publicly available at XXX

a lattice from an input sentence. A correct path
in the lattice is selected from all candidate paths
using machine learning techniques to output seg-
mented words with POS tags. Such conventional
methods have improved the accuracy of WS for
words that do not appear frequently in the training
data with the help of dictionary information (Nak-
agawa, 2004).

Since a word dictionary improves the accuracy
of Japanese WS, it is expected that we can im-
prove the performance of NWS models by in-
corporating a word dictionary. However, since
the character-based neural models perform tag-
ging at character units, it is not straightforward
how we can incorporate dictionary information
within such character-based NWS models.

In this work, we propose a method to solve this
issue. In our method, we introduce two kinds of
dictionary features (see Section. 3.2): (i) a binary
feature whether a subsequence of the character se-
quence exists in the dictionary or not, and (ii) word
embeddings matched with subsequences. We con-
ducted an experiment to demonstrate that incorpo-
rating the dictionary features improves the NWS
model, and our method is robust to both Japanese
balanced corpus and a microblog corpus.

2 Neural Word Segmentation

In this section, we provide a description of the
NWS model proposed by Chen et al. (2015). They
formulated a Chinese WS task as a character-level
sequence labeling problem and proposed an NWS
model based on the LSTM. In this work, we also
use their NWS model, and then combine our dic-
tionary features (Section. 3.2).

The aim of WS is to assign a tag sequence
Y = y1, y2, · · · , yn to an input sentence X =
x1, x2, · · · , xn, where xt is the t-th character in
a sentence and yt ∈ T is the tag of xt. Note that

XXX

Figure 1: An example of the process of creating a feature vector from the input sentence at time t = 4.

T = {B,M,E, S} indicates Begin, Middle, and
End of a multi-character segmentation, and a Sin-
gle character segmentation, respectively.

First, we transform X to a sequence of feature
vectors x1,x2, · · · ,xn, where xt ∈ Rd is the fea-
ture vector of the t-th character. The process of
extracting the feature vectors is the main part of
our method and, we describe it in detail in Sec-
tion 3. Next, using the obtained vector sequence
x1,x2, · · · ,xn as input, the LSTM computes each
hidden vector ht ∈ Rℓ.

In the output layer for predicting a tag sequence,
we employ conditional random fields (CRF) to
model tag dependencies. The vector pt ∈ R|T |

corresponding to each tag is computed as follows:

pt = Wtaght + btag,

where Wtag ∈ R|T |×ℓ is a weight matrix and
btag ∈ R|T | a bias vector. The score of the tag
sequence Y for the input sentence X is computed
as follows:

s(X,Y) =

n∑
i=0

Ayi,yi+1 +

n∑
i=1

pyi , (1)

where A ∈ R|T |×|T | is a matrix of transition
scores between tags. During training, we min-
imize the negative log-likelihood of the correct
tag sequence using stochastic gradient-based opti-
mization techniques in order to obtain the optimal
parameters θ as follows:

− ln p(Y |X; θ) = −s(X,Y) + ln
∑
ỹ∈Yx

es(X,ỹ),

where ỹ ∈ Yx is all possible tag sequences for X .
During decoding, we predict the output sequence
to maximize Eq. (1) using dynamic programming.

3 Feature Extraction

In this section, we describe how to create a feature
vector at each time step from an input sentence. As
an example, Figure 1 shows the process of creating
a feature vector for the 4-th character “太”.

3.1 Character-level Information

The uni-gram character embedding ct ∈ Ru is
represented in Euni ∈ R|Uni|×u, where |Uni| is
the number of uni-grams in the training data and u
is the dimension of the uni-gram embedding, and
then we concatenate the embeddings based on the
window-size k. For example, when k = 3, the
concatenated embedding is ct−1⊕ct⊕ct+1, where
⊕ is the operation of vector concatenation.

As the same way, we represent bi-gram, tri-
gram, and character-type embeddings in the cor-
responding lookup tables Ebi ∈ R|Bi|×b, Etri ∈
R|Tri|×tr, and Ect ∈ R|CT |×ct, and concatenate
them based on k.

3.2 Word-level Information

In an example of the sentence “今日は太宰府に
行く！” (meaning “I will go to Dazaifu today!”)
shown in Figure 1, the words starting with the
character “太” in the dictionary are “太” and “太
宰府”. We extract word embeddings correspond-
ing to “太” and “太宰府” from the word embed-

ding matrix Es ∈ R|V |×s, where |V | is the num-
ber of vocabulary in a word dictionary and s is the
dimension of the word embedding. Then we cre-
ate a vector st ∈ Rs by summing the extracted
word embeddings. This embedding st contains
the information of the words starting with “太”.
While this feature is proposed by Neubig et al.
(2011) and they use it as a discrete feature, we
use it as a s-dimensional real-valued word em-
bedding. Moreover, these word embeddings can
be pre-trained from a large-scale unlabeled data
(Mikolov et al., 2013).

In the same way, we create a vector et by look-
ing up words ending with the character “太” from
the word embedding matrix Ee ∈ R|V |×e.

Here, we introduce a new dictionary feature,
which indicates whether there are any words in the
dictionary matching with the character sequence
from time t. Given s(ct), the number of words in
the dictionary starting with the character ct in the
context of the sentence X , we introduce the fol-
lowing features:

dstrue ∈ Rj if s(ct) > 1,

dsfalse ∈ Rj otherwise.

Because most characters constitute themselves
as a word in the dictionary, we set the threshold
occurrence frequency of a character to be greater
than 1.

In addition, we introduce another dictionary
feature indicating the word existence in the dic-
tionary. Given e(ct), the number of words in the
dictionary ending with the character ct in the con-
text of the sentence X , we introduce the following
features:

detrue ∈ Rj if e(ct) > 1,

defalse ∈ Rj otherwise.

Finally, we concatenate the extracted embed-
dings based on both the character- and word-level
information into a single feature vector xt. The
feature vector xt is given to the LSTM as input.
Thus, using the dictionary features and word em-
beddings, we can inject the dictionary knowledge
in the NWS model.

4 Experiments

In order to test the effectiveness of the proposed
method, we use the Balanced Corpus of Con-
temporary Written Japanese (BCCWJ) (Maekawa

et al., 2014) as in-domain data and a microblog
corpus (Kaji and Kitsuregawa, 2014) as out-
domain data. As an evaluation metric, we use the
balanced F-measure to evaluate the performance
of WS.

4.1 Datasets

For evaluating the performance on the BCCWJ,
the manually annotated part of the BCCWJ (core
data) is divided into the training, development and
evaluation data according to the following division
standard: We use 2,983 sentences from ClassA-12

as the evaluation data. The remaining part of the
corpus, a total of 55,948, is used as the training and
500 as the development data. As the dictionary, we
use UniDic 2.1.2, which contains 756,460 entries.

For evaluating the performance on the mi-
croblog corpus, we use the Kyoto University Text
Corpus (Kawahara et al., 2002) and Kyoto Univer-
sity Web Document Leads Corpus (Hangyo et al.,
2012) as the training data. We randomly choose
500 sentences from the combined corpora as the
development data, and use 47,642 sentences in the
remaining part of the corpora as the training data.
As the dictionary for these corpora, we use JU-
MAN dictionary3, which contains 702,359 entries,
provided with JUMAN (Kurohashi et al., 1994).
As the evaluation data, we use a microblog cor-
pus (Kaji and Kitsuregawa, 2014), which contains
1831 sentences collected from Twitter.

As a large-scale unlabeled data, we use
3,512,522 sentences from the BCCWJ excluding
ClassA-1.

4.2 Hyper-parameters

Referring to Chen et al. (2015)’s experiments, we
set the dimensions of uni-gram embeddings, char-
acter types, bi-gram embeddings, tri-gram em-
beddings, word embeddings and dictionary fea-
ture embeddings to 100, 10, 50, 50, 100, 100, re-
spectively. The uni-gram, bi-gram, tri-gram and
word embeddings are pre-trained from the large-
scale unlabeled data using the Gensim implemen-
tation of word2vec (Řehůřek and Sojka, 2010).
Other weights and embeddings are randomly ini-
tialized from a uniform distribution with range [-
0.08, 0.08]. The dimension of the LSTM hidden

2http:/plata.ar.media.kyoto-u.ac.jp/
mori/research/topics/PST/NextNLP.html

3There are two kinds of word segmentation standards in
Japanese: JUMAN standard and BCCWJ’s short unit words.
We choose different dictionaries according to each dataset.

http:/plata.ar.media.kyoto-u.ac.jp/mori/research/topics/PST/NextNLP.html
http:/plata.ar.media.kyoto-u.ac.jp/mori/research/topics/PST/NextNLP.html

Precision Recall F1
LSTM-CRF (Baseline) 98.93 99.01 98.97
+Trigram 99.11 99.11 99.11
+DictFeat 99.27 99.24 99.25
+Trigram, DictFeat 99.40 99.39 99.39
+AutoSegWords* 98.94 99.07 99.01
+AutoSegWords 99.25 99.25 99.25
+DictFeat, AutoSegWords* 99.34 99.38 99.36
+DictFeat, AutoSegWords 99.49 99.47 99.48
+Trigram, DictFeat, AutoSegWords* 99.37 99.34 99.35
+Trigram, DictFeat, AutoSegWords 99.50 99.50 99.50
KyTea (Neubig et al., 2011) 98.42 98.37 98.39
+Dictionary 99.18 99.10 99.14

Table 1: Results on the BCCWJ ClassA-1. The
embedding with * symbol is initialized at random.

Precision Recall F1
LSTM-CRF (Baseline) 82.02 86.89 84.38

(12,445/15,174) (12,445/14,324)
+Trigram, DictFeat 82.90 88.16 85.45

(12,628/15,233) (12,628/14,324)
+DictFeat, AutoSegWords 83.03 87.78 85.34

(12,572/15,142) (12,572/14,324)
+Trigram, DictFeat, AutoSegWords 82.93 88.34 85.55

(12,654/15,259) (12,654/14,324)
JUMAN (0.7) (Kurohashi et al., 1994) 79.44 88.74 83.83

(12,711/16,001) (12,711/14,324)
JUMAN++ (1.01) (Morita et al., 2015) 77.73 89.51 83.21

(12,822/16,495) (12,822/14,324)

Table 2: Results on the microblog corpus

vectors is set to 150. The character types are used:
Hiragana, Katakana, Kanji, Numerals, Alphabets,
and Others. The window-size is set to 3.

The number of epochs is set to 50, and we re-
port the result on the evaluation set at the epoch
when the best F-measure on the development data
is achieved. Parameter optimization is done by
stochastic gradient descent (SGD) with a learning
rate of 0.005 and a gradient clipping of 5.0. We
decay the learning rate when results on the devel-
opment data do not improve after 5 consecutive
epochs. The dropout method is applied to the in-
put layer of the LSTM with dropout rate of 0.2.

4.3 Results and Discussion

As a baseline, we used the NWS model with
the uni-gram embeddings, character types and bi-
gram embeddings (we refer to this as LSTM-
CRF). We evaluate the effectiveness of our method
by adding the dictionary features and word embed-
dings to the LSTM-CRF.

Table 1 lists the results of our method and the
baselines in the experiments on the BCCWJ. We
used KyTea, an open source implementation of the
pointwise method for Japanese WS (Neubig et al.,
2011) as a baseline, and the last row “+Dictionary”
in Table 1 means KyTea with dictionary features.

Firstly, our proposed method augmented with

the dictionary features (+DictFeat) outperforms
the baselines. This result suggests that the perfor-
mance for Japanese WS is improved by incorpo-
rating the dictionary features.

Secondly, we evaluated the effectiveness of
word embeddings. Here, we employ a follow-
ing strategy with regard to how to obtain pre-
trained word embeddings. After we segmented
sentences from the large-scale unlabeled data by
using the LSTM-CRF (+Trigram, DictFeat), word
embeddings are pre-trained from these automati-
cally segmented sentences. Then, our proposed
method (+AutoSegWords) augmented with word
embeddings outperforms the baselines. As the re-
sults shown in Table 1, our methods using pre-
trained word embeddings obtain a significant im-
provement as opposed to the ones using random
embeddings. Finally, we got the best result when
we used all feature vectors on the experiments.

Table 2 lists the results of our methods and the
baselines in the experiments on the microblog cor-
pus. We used open source implementations, JU-
MAN (Kurohashi et al., 1994) and JUMAN++
(Morita et al., 2015) as the baselines.

Some papers have reported low accuracy on
the microblog data including lexical variants and
emoticons (Kaji and Kitsuregawa, 2014; Taka-
hasi and Mori, 2015). The lattice-based approach
JUMAN++ outputs 16,495 words as opposed to
14,324 correct words in the evaluation data. This
over-segmentation problem is caused by OOV
words such as lexical variants and emoticons be-
ing divided into known words. This lowers the
precision of WS, and deteriorates the overall ac-
curacy on the microblog data in Japanese. In
contrast, our system (LSTM-CRF +Trigram, Dict-
Feat, AutoSegWords) outputs 15,259 words, much
less than the lattice-based approaches. As a result,
the precision rises, and our methods significantly
outperform the baselines on the microblog data.

5 Conclusion

In this paper, we proposed a method that incorpo-
rates dictionary information into the NWS model.
We conducted an experiment to demonstrate that
incorporating the information of a word dictio-
nary improves the performance of the NWS model
on both Japanese balanced and microblog corpora.
For future work, we plan to expand our model as
joint WS and POS tagging in a multi-task learning
manner (Collobert et al., 2011).

References
Deng Cai and Hai Zhao. 2016. Neural word segmenta-

tion learning for Chinese. In Proc. ACL.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu,
and Xuanjing Huang. 2015. Long short-term mem-
ory neural networks for Chinese word segmentation.
In Proc. EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8).

Nobuhiro Kaji and Masaru Kitsuregawa. 2014. Accu-
rate word segmentation and pos tagging for Japanese
microblogs: Corpus annotation and joint modeling
with lexical normalization. In Proc. EMNLP.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to
Japanese morphological analysis. In Proc. EMNLP.

Sadao Kurohashi, Toshihisa Nakamura, Yuji Mat-
sumoto, and Makoto Nagao. 1994. Improvements
of Japanese morphological analyzer juman. In Pro-
ceedings of The International Workshop on Sharable
Natural Language.

Kikuo Maekawa, Makoto Yamazaki, Toshinobu
Ogiso, Takehiko Maruyama, Hideki Ogura, Wakako
Kashino, Hanae Koiso, Masaya Yamaguchi, Makiro
Tanaka, and Yasuharu Den. 2014. Balanced corpus
of contemporary written Japanese. Language Re-
sources and Evaluation 48(2).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Hajime Morita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2015. Morphological analysis for unseg-
mented languages using recurrent neural network
language model. In Proc. EMNLP.

Tetsuji Nakagawa. 2004. Chinese and Japanese word
segmentation using word-level and character-level
information. In Proc. COLING.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
Japanese morphological analysis. In Proc. ACL.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2014. Max-
margin tensor neural network for Chinese word seg-
mentation. In Proc. ACL.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks.

Fumihiko Takahasi and Shinsuke Mori. 2015. Key-
board logs as natural annotations for word segmen-
tation. In Proc. EMNLP.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013.
Deep learning for Chinese word segmentation and
POS tagging. In Proc. EMNLP.

