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Abstract
Network Address Translation (NAT) causes well-known
difficulties for peer-to-peer (P2P) communication, since
the peers involved may not be reachable at any globally
valid IP address. Several NAT traversal techniques are
known, but their documentation is slim, and data about
their robustness or relative merits is slimmer. This paper
documents and analyzes one of the simplest but most ro-
bust and practical NAT traversal techniques, commonly
known as “hole punching.” Hole punching is moderately
well-understood for UDP communication, but we show
how it can be reliably used to set up peer-to-peer TCP
streams as well. After gathering data on the reliability
of this technique on a wide variety of deployed NATs,
we find that about 82% of the NATs tested support hole
punching for UDP, and about 64% support hole punching
for TCP streams. As NAT vendors become increasingly
conscious of the needs of important P2P applications such
as Voice over IP and online gaming protocols, support for
hole punching is likely to increase in the future.

1 Introduction
The combined pressures of tremendous growth and mas-
sive security challenges have forced the Internet to evolve
in ways that make life difficult for many applications.
The Internet’s original uniform address architecture, in
which every node has a globally unique IP address and
can communicate directly with every other node, has been
replaced with a newde facto Internet address architecture,
consisting of a global address realm and many private ad-
dress realms interconnected by Network Address Transla-
tors (NAT). In this new address architecture, illustrated in
Figure 1, only nodes in the “main,” global address realm

Figure 1: Public and private IP address domains

can be easily contacted from anywhere in the network,
because only they have unique, globally routable IP ad-
dresses. Nodes on private networks can connect to other
nodes on the same private network, and they can usually
open TCP or UDP connections to “well-known” nodes
in the global address realm. NATs on the path allocate
temporary public endpoints for outgoing connections, and
translate the addresses and port numbers in packets com-
prising those sessions, while generally blocking all in-
coming traffic unless otherwise specifically configured.

The Internet’s newde facto address architecture is suit-
able for client/server communication in the typical case
when the client is on a private network and the server is in
the global address realm. The architecture makes it diffi-
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cult for two nodes ondifferent private networks to contact
each other directly, however, which is often important to
the “peer-to-peer” communication protocols used in ap-
plications such as teleconferencing and online gaming.
We clearly need a way to make such protocols function
smoothly in the presence of NAT.

One of the most effective methods of establishing peer-
to-peer communication between hosts on different private
networks is known as “hole punching.” This technique
is widely used already in UDP-based applications, but es-
sentially the same technique also works for TCP. Contrary
to what its name may suggest, hole punching does not
compromise the security of a private network. Instead,
hole punching enables applications to functionwithin the
the default security policy of most NATs, effectively sig-
naling to NATs on the path that peer-to-peer communica-
tion sessions are “solicited” and thus should be accepted.
This paper documents hole punching for both UDP and
TCP, and details the crucial aspects of both application
and NAT behavior that make hole punching work.

Unfortunately, no traversal technique works with all ex-
isting NATs, because NAT behavior is not standardized.
This paper presents some experimental results evaluating
hole punching support in current NATs. Our data is de-
rived from results submitted by users throughout the In-
ternet by running our “NAT Check” tool over a wide va-
riety of NATs by different vendors. While the data points
were gathered from a “self-selecting” user community and
may not be representative of the true distribution of NAT
implementations deployed on the Internet, the results are
nevertheless generally encouraging.

While evaluating basic hole punching, we also point out
variations that can make hole punching work on a wider
variety of existing NATs at the cost of greater complexity.
Our primary focus, however, is on developing thesimplest
hole punching technique that works cleanly and robustly
in the presence of “well-behaved” NATs in any reason-
able network topology. We deliberately avoid excessively
clever tricks that may increase compatibility with some
existing “broken” NATs in the short term, but which only
work some of the time and may cause additional unpre-
dictability and network brittleness in the long term.

Although the larger address space of IPv6 [3] may
eventually reduce the need for NAT, in the short term
IPv6 is increasing the demand for NAT, because NAT it-
self provides the easiest way to achieve interoperability
between IPv4 and IPv6 address domains [24]. Further,
the anonymity and inaccessibility of hosts on private net-
works has widely perceived security and privacy benefits.
Firewalls are unlikely to go away even when there are
enough IP addresses: IPv6 firewalls will still commonly

block unsolicited incoming traffic by default, making hole
punching useful even to IPv6 applications.

The rest of this paper is organized as follows. Section 2
introduces basic terminology and NAT traversal concepts.
Section 3 details hole punching for UDP, and Section 4
introduces hole punching for TCP. Section 5 summarizes
important properties a NAT must have in order to enable
hole punching. Section 6 presents our experimental re-
sults on hole punching support in popular NATs, Section 7
discusses related work, and Section 8 concludes.

2 General Concepts
This section introduces basic NAT terminology used
throughout the paper, and then outlines general NAT
traversal techniques that apply equally to TCP and UDP.

2.1 NAT Terminology

This paper adopts the NAT terminology and taxonomy de-
fined in RFC 2663 [21], as well as additional terms de-
fined more recently in RFC 3489 [19].

Of particular importance is the notion of session. A
session endpoint for TCP or UDP is an (IP address, port
number) pair, and a particularsession is uniquely identi-
fied by its two session endpoints. From the perspective of
one of the hosts involved, a session is effectively identi-
fied by the 4-tuple (local IP, local port, remote IP, remote
port). Thedirection of a session is normally the flow di-
rection of the packet that initiates the session: the initial
SYN packet for TCP, or the first user datagram for UDP.

Of the various flavors of NAT, the most common type
is traditional or outbound NAT, which provides an asym-
metric bridge between a private network and a public
network. Outbound NAT by default allows only out-
bound sessions to traverse the NAT: incoming packets are
dropped unless the NAT identifies them as being part of an
existing session initiated from within the private network.
Outbound NAT conflicts with peer-to-peer protocols be-
cause when both peers desiring to communicate are “be-
hind” (on the private network side of) two different NATs,
whichever peer tries to initiate a session, the other peer’s
NAT rejects it. NAT traversal entails making P2P sessions
look like “outbound” sessions toboth NATs.

Outbound NAT has two sub-varieties:Basic NAT,
which only translates IP addresses, andNetwork Ad-
dress/Port Translation (NAPT), which translates entire
session endpoints. NAPT, the more general variety, has
also become the most common because it enables the
hosts on a private network to share the use of asingle pub-
lic IP address. Throughout this paper we assume NAPT,
though the principles and techniques we discuss apply
equally well (if sometimes trivially) to Basic NAT.
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Figure 2: NAT Traversal by Relaying

2.2 Relaying

The most reliable—but least efficient—method of P2P
communication across NAT is simply to make the com-
munication look to the network like standard client/server
communication, through relaying. Suppose two client
hostsA andB have each initiated TCP or UDP connec-
tions to a well-known serverS, at S’s global IP address
18.181.0.31 and port number 1234. As shown in Figure 2,
the clients reside on separate private networks, and their
respective NATs prevent either client from directly initiat-
ing a connection to the other. Instead of attempting a di-
rect connection, the two clients can simply use the server
S to relay messages between them. For example, to send
a message to clientB, clientA simply sends the message
to serverS along its already-established client/server con-
nection, and serverS forwards the message on to clientB

using its existing client/server connection withB.
Relaying always works as long as both clients can con-

nect to the server. Its disadvantages are that it consumes
the server’s processing power and network bandwidth,
and communication latency between the peering clients is
likely increased even if the server is well-connected. Nev-
ertheless, since there is no more efficient technique that
works reliably on all existing NATs, relaying is a useful
fall-back strategy if maximum robustness is desired. The
TURN protocol [18] defines a method of implementing
relaying in a relatively secure fashion.

2.3 Connection Reversal

Some P2P applications use a straightforward but limited
technique, known asconnection reversal, to enable com-
munication when both hosts have connections to a well-

Figure 3: NAT Traversal by Connection Reversal

known rendezvous serverS and only one of the peers is
behind a NAT, as shown in Figure 3. IfA wants to ini-
tiate a connection toB, then a direct connection attempt
works automatically, becauseB is not behind a NAT and
A’s NAT interprets the connection as an outgoing session.
If B wants to initiate a connection toA, however, any
direct connection attempt toA is blocked byA’s NAT.
B can instead relay a connection request toA through
a well-known serverS, askingA to attempt a “reverse”
connection back toB. Despite the obvious limitations of
this technique, the central idea of using a well-known ren-
dezvous server as an intermediary to help set up direct
peer-to-peer connections is fundamental to the more gen-
eral hole punching techniques described next.

3 UDP Hole Punching
UDP hole punching enables two clients to set up a direct
peer-to-peer UDP session with the help of a well-known
rendezvous server, even if the clients are both behind
NATs. This technique was mentioned in section 5.1 of
RFC 3027 [10], documented more thoroughly elsewhere
on the Web [13], and used in recent experimental Internet
protocols [17, 11]. Various proprietary protocols, such as
those for on-line gaming, also use UDP hole punching.

3.1 The Rendezvous Server

Hole punching assumes that the two clients,A andB, al-
ready have active UDP sessions with a rendezvous server
S. When a client registers withS, the server recordstwo
endpoints for that client: the (IP address, UDP port) pair
that the clientbelieves itself to be using to talk withS,
and the (IP address, UDP port) pair that the serverob-
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Figure 4: UDP Hole Punching, Peers Behind a Common NAT

serves the client to be using to talk with it. We refer to the
first pair as the client’sprivate endpoint and the second
as the client’spublic endpoint. The server might obtain
the client’s private endpoint from the client itself in a field
in the body of the client’s registration message, and obtain
the client’s public endpoint from the source IP address and
source UDP port fields in the IP and UDP headers of that
registration message. If the client isnot behind a NAT,
then its private and public endpoints should be identical.

A few poorly behaved NATs are known to scan the
body of UDP datagrams for 4-byte fields that look like IP
addresses, and translate them as they would the IP address
fields in the IP header. To be robust against such behav-
ior, applications may wish to obfuscate IP addresses in
messages bodies slightly, for example by transmitting the
one’s complement of the IP address instead of the IP ad-
dress itself. Of course, if the application is encrypting its
messages, then this behavior is not likely to be a problem.

3.2 Establishing Peer-to-Peer Sessions
Suppose clientA wants to establish a UDP session di-
rectly with clientB. Hole punching proceeds as follows:

1. A initially does not know how to reachB, soA asks
S for help establishing a UDP session withB.

2. S replies toA with a message containingB’s public
and private endpoints. At the same time,S uses its
UDP session withB to sendB a connection request
message containingA’s public and private endpoints.
Once these messages are received,A andB know
each other’s public and private endpoints.

3. WhenA receivesB’s public and private endpoints

from S, A starts sending UDP packets toboth
of these endpoints, and subsequently “locks in”
whichever endpoint first elicits a valid response from
B. Similarly, whenB receivesA’s public and pri-
vate endpoints in the forwarded connection request,
B starts sending UDP packets toA at each ofA’s
known endpoints, locking in the first endpoint that
works. The order and timing of these messages are
not critical as long as they are asynchronous.

We now consider how UDP hole punching handles each
of three specific network scenarios. In the first situation,
representing the “easy” case, the two clients actually re-
side behind the same NAT, on one private network. In the
second, most common case, the clients reside behind dif-
ferent NATs. In the third scenario, the clients each reside
behindtwo levels of NAT: a common “first-level” NAT de-
ployed by an ISP for example, and distinct “second-level”
NATs such as consumer NAT routers for home networks.

It is in general difficult or impossible for the applica-
tion itself to determine the exact physical layout of the
network, and thus which of these scenarios (or the many
other possible ones) actually applies at a given time. Pro-
tocols such as STUN [19] can provide some information
about the NATs present on a communication path, but this
information may not always be complete or reliable, espe-
cially when multiple levels of NAT are involved. Never-
theless, hole punching works automatically in all of these
scenarioswithout the application having to know the spe-
cific network organization, as long as the NATs involved
behave in a reasonable fashion. (“Reasonable” behavior
for NATs will be described later in Section 5.)
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Figure 5: UDP Hole Punching, Peers Behind Different NATs

3.3 Peers Behind a Common NAT

First consider the simple scenario in which the two clients
(probably unknowingly) happen to reside behind the same
NAT, and are therefore located in the same private IP ad-
dress realm, as shown in Figure 4. ClientA has estab-
lished a UDP session with serverS, to which the com-
mon NAT has assigned its own public port number 62000.
Client B has similarly established a session withS, to
which the NAT has assigned public port number 62005.

Suppose that clientA uses the hole punching technique
outlined above to establish a UDP session withB, using
serverS as an introducer. ClientA sendsS a message
requesting a connection toB. S responds toA with B’s
public and private endpoints, and also forwardsA’s pub-
lic and private endpoints toB. Both clients then attempt
to send UDP datagrams to each other directly at each of
these endpoints. The messages directed to the public end-
points may or may not reach their destination, depending
on whether or not the NAT supports hairpin translation as
described below in Section 3.5. The messages directed at
the private endpointsdo reach their destinations, however,
and since this direct route through the private network is
likely to be faster than an indirect route through the NAT
anyway, the clients are most likely to select the private
endpoints for subsequent regular communication.

By assuming that NATs support hairpin translation, the
application might dispense with the complexity of trying
private as well as public endpoints, at the cost of making
local communication behind a common NAT unnecessar-
ily pass through the NAT. As our results in Section 6 show,
however, hairpin translation is still much less common
among existing NATs than are other “P2P-friendly” NAT

behaviors. For now, therefore, applications may benefit
substantially by using both public and private endpoints.

3.4 Peers Behind Different NATs

Suppose clientsA andB have private IP addresses be-
hind different NATs, as shown in Figure 5.A andB have
each initiated UDP communication sessions from their lo-
cal port 4321 to port 1234 on serverS. In handling these
outbound sessions, NATA has assigned port 62000 at its
own public IP address, 155.99.25.11, for the use ofA’s
session withS, and NATB has assigned port 31000 at its
IP address, 138.76.29.7, toB’s session withS.

In A’s registration message toS, A reports its private
endpoint toS as 10.0.0.1:4321, where 10.0.0.1 isA’s IP
address on its own private network.S recordsA’s re-
ported private endpoint, along withA’s public endpoint
as observed byS itself. A’s public endpoint in this case
is 155.99.25.11:62000, the temporary endpoint assigned
to the session by the NAT. Similarly, when clientB regis-
ters,S recordsB’s private endpoint as 10.1.1.3:4321 and
B’s public endpoint as 138.76.29.7:31000.

Now clientA follows the hole punching procedure de-
scribed above to establish a UDP communication session
directly withB. First,A sends a request message toS ask-
ing for help connecting withB. In response,S sendsB’s
public and private endpoints toA, and sendsA’s public
and private endpoints toB. A andB each start trying to
send UDP datagrams directly to each of these endpoints.

SinceA andB are on different private networks and
their respective private IP addresses are not globally
routable, the messages sent to these endpoints will reach
either the wrong host or no host at all. Because many
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Figure 6: UDP Hole Punching, Peers Behind Multiple Levels ofNAT

NATs also act as DHCP servers, handing out IP addresses
in a fairly deterministic way from a private address pool
usually determined by the NAT vendor by default, it is
quite likely in practice thatA’s messages directed atB’s
private endpoint will reachsome (incorrect) host onA’s
private network that happens to have the same private IP
address asB does. Applications must therefore authen-
ticate all messages in some way to filter out such stray
traffic robustly. The messages might include application-
specific names or cryptographic tokens, for example, or at
least a random nonce pre-arranged throughS.

Now considerA’s first message sent toB’s public end-
point, as shown in Figure 5. As this outbound message
passes throughA’s NAT, this NAT notices that this is the
first UDP packet in a new outgoing session. The new ses-
sion’s source endpoint (10.0.0.1:4321) is the same as that
of the existing session betweenA andS, but its desti-
nation endpoint is different. If NATA is well-behaved, it
preserves the identity ofA’s private endpoint, consistently
translatingall outbound sessions from private source end-
point 10.0.0.1:4321 to the corresponding public source
endpoint 155.99.25.11:62000.A’s first outgoing mes-
sage toB’s public endpoint thus, in effect, “punches a
hole” inA’s NAT for a new UDP session identified by the
endpoints (10.0.0.1:4321, 138.76.29.7:31000) onA’s pri-
vate network, and by the endpoints (155.99.25.11:62000,
138.76.29.7:31000) on the main Internet.

If A’s message toB’s public endpoint reachesB’s NAT
beforeB’s first message toA has crossedB’s own NAT,
thenB’s NAT may interpretA’s inbound message as un-
solicited incoming traffic and drop it.B’s first message
to A’s public address, however, similarly opens a hole in
B’s NAT, for a new UDP session identified by the end-
points (10.1.1.3:4321, 155.99.25.11:62000) onB’s pri-
vate network, and by the endpoints (138.76.29.7:31000,
155.99.25.11:62000) on the Internet. Once the first mes-
sages fromA andB have crossed their respective NATs,
holes are open in each direction and UDP communica-
tion can proceed normally. Once the clients have verified
that the public endpoints work, they can stop sending mes-
sages to the alternative private endpoints.

3.5 Peers Behind Multiple Levels of NAT

In some topologies involving multiple NAT devices, two
clients cannot establish an “optimal” P2P route between
them without specific knowledge of the topology. Con-
sider a final scenario, depicted in Figure 6. Suppose NAT
C is a large industrial NAT deployed by an internet ser-
vice provider (ISP) to multiplex many customers onto a
few public IP addresses, and NATsA andB are small
consumer NAT routers deployed independently by two of
the ISP’s customers to multiplex their private home net-
works onto their respective ISP-provided IP addresses.
Only serverS and NATC have globally routable IP ad-
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dresses; the “public” IP addresses used by NATA and
NAT B are actually private to the ISP’s address realm,
while clientA’s andB’s addresses in turn are private to
the addressing realms of NATA and NATB, respectively.
Each client initiates an outgoing connection to serverS as
before, causing NATsA andB each to create a single pub-
lic/private translation, and causing NATC to establish a
public/private translation for each session.

Now supposeA andB attempt to establish a direct
peer-to-peer UDP connection via hole punching. The
optimal routing strategy would be for clientA to send
messages to clientB’s “semi-public” endpoint at NAT
B, 10.0.1.2:55000 in the ISP’s addressing realm, and
for clientB to send messages toA’s “semi-public” end-
point at NATB, namely 10.0.1.1:45000. Unfortunately,
A andB have no way to learn these addresses, because
serverS only sees the truly global public endpoints of the
clients, 155.99.25.11:62000 and 155.99.25.11:62005 re-
spectively. Even ifA andB had some way to learn these
addresses, there is still no guarantee that they would be
usable, because the address assignments in the ISP’s pri-
vate address realm might conflict with unrelated address
assignments in the clients’ private realms. (NATA’s IP
address in NATC ’s realm might just as easily have been
10.1.1.3, for example, the same as clientB’s private ad-
dress in NATB’s realm.)

The clients therefore have no choice but to use their
global public addresses as seen byS for their P2P com-
munication, and rely on NATC providinghairpin or loop-
back translation. WhenA sends a UDP datagram toB’s
global endpoint, 155.99.25.11:62005, NATA first trans-
lates the datagram’s source endpoint from 10.0.0.1:4321
to 10.0.1.1:45000. The datagram now reaches NATC,
which recognizes that the datagram’s destination address
is one of NATC ’s own translatedpublic endpoints. If
NAT C is well-behaved, it then translatesboth the source
and destination addresses in the datagram and “loops”
the datagram back onto the private network, now with a
source endpoint of 155.99.25.11:62000 and a destination
endpoint of 10.0.1.2:55000. NATB finally translates the
datagram’s destination address as the datagram entersB’s
private network, and the datagram reachesB. The path
back toA works similarly. Many NATs do not yet support
hairpin translation, but it is becoming more common as
NAT vendors become aware of this issue.

3.6 UDP Idle Timeouts
Since the UDP transport protocol provides NATs with
no reliable, application-independent way to determine the
lifetime of a session crossing the NAT, most NATs simply
associate an idle timer with UDP translations, closing the
hole if no traffic has used it for some time period. There

is unfortunately no standard value for this timer: some
NATs have timeouts as short as 20 seconds. If the appli-
cation needs to keep an idle UDP session active after es-
tablishing the session via hole punching, the application
must send periodic keep-alive packets to ensure that the
relevant translation state in the NATs does not disappear.

Unfortunately, many NATs associate UDP idle timers
with individual UDP sessions defined by a particular pair
of endpoints, so sending keep-alives on one session will
not keep other sessions active even if all the sessions orig-
inate from the same private endpoint. Instead of sending
keep-alives on many different P2P sessions, applications
can avoid excessive keep-alive traffic by detecting when a
UDP session no longer works, and re-running the original
hole punching procedure again “on demand.”

4 TCP Hole Punching
Establishing peer-to-peer TCP connections between hosts
behind NATs is slightly more complex than for UDP, but
TCP hole punching is remarkably similar at the protocol
level. Since it is not as well-understood, it is currently
supported by fewer existing NATs. When the NATs in-
volveddo support it, however, TCP hole punching is just
as fast and reliable as UDP hole punching. Peer-to-peer
TCP communication across well-behaved NATs may in
fact bemore robust than UDP communication, because
unlike UDP, the TCP protocol’s state machine gives NATs
on the path a standard way to determine the precise life-
time of a particular TCP session.

4.1 Sockets and TCP Port Reuse

The main practical challenge to applications wishing to
implement TCP hole punching is not a protocol issue but
an application programming interface (API) issue. Be-
cause the standard Berkeley sockets API was designed
around the client/server paradigm, the API allows a TCP
stream socket to be used to initiate an outgoing connection
via connect(), or to listen for incoming connections
via listen() andaccept(), but not both. Further,
TCP sockets usually have a one-to-one correspondence to
TCP port numbers on the local host: after the application
binds one socket to a particular local TCP port, attempts
to bind a second socket to the same TCP port fail.

For TCP hole punching to work, however, we need to
use a single local TCP port to listen for incoming TCP
connections and to initiate multiple outgoing TCP con-
nections concurrently. Fortunately, all major operating
systems support a special TCP socket option, commonly
namedSO_REUSEADDR, which allows the application to
bind multiple sockets to the same local endpoint as long
as this option is set on all of the sockets involved. BSD
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systems have introduced aSO_REUSEPORT option that
controls port reuse separately from address reuse; on such
systemsboth of these options must be set.

4.2 Opening Peer-to-Peer TCP Streams
Suppose that clientA wishes to set up a TCP connection
with client B. We assume as usual that bothA andB

already have active TCP connections with a well-known
rendezvous serverS. The server records each registered
client’s public and private endpoints, just as for UDP. At
the protocol level, TCP hole punching works almost ex-
actly as for UDP:

1. ClientA uses its active TCP session withS to askS
for help connecting toB.

2. S replies toA with B’s public and private TCP end-
points, and at the same time sendsA’s public and
private endpoints toB.

3. Fromthe same local TCP ports thatA andB used to
register withS, A andB each asynchronously make
outgoing connection attempts to the other’s public
and private endpoints as reported byS, while simul-
taneously listening for incoming connections on their
respective local TCP ports.

4. A andB wait for outgoing connection attempts to
succeed, and/or for incoming connections to appear.
If one of the outgoing connection attempts fails due
to a network error such as “connection reset” or “host
unreachable,” the host simply re-tries that connection
attempt after a short delay (e.g., one second), up to
an application-defind maximum timeout period.

5. When a TCP connection is made, the hosts authen-
ticate each other to verify that they connected to the
intended host. If authentication fails, the clients close
that connection and continue waiting for others to
succeed. The clients use the first successfully au-
thenticated TCP stream resulting from this process.

Unlike with UDP, where each client only needs one
socket to communicate with bothS and any number of
peers simultaneously, with TCP each client application
must manage several sockets bound to a single local TCP
port on that client node, as shown in Figure 7. Each client
needs a stream socket representing its connection toS,
a listen socket on which to accept incoming connections
from peers, and at least two additional stream sockets with
which to initiate outgoing connections to the other peer’s
public and private TCP endpoints.

Consider the common-case scenario in which the
clientsA andB are behind different NATs, as shown in

Figure 7: Sockets versus Ports for TCP Hole Punching

Figure 5, and assume that the port numbers shown in the
figure are now for TCP rather than UDP ports. The outgo-
ing connection attemptsA andB make to each other’s pri-
vate endpoints either fail or connect to the wrong host. As
with UDP, it is important that TCP applications authenti-
cate their peer-to-peer sessions, due of the likelihood of
mistakenly connecting to a random host on the local net-
work that happens to have the same private IP address as
the desired host on a remote private network.

The clients’ outgoing connection attempts to each
other’s public endpoints, however, cause the respective
NATs to open up new “holes” enabling direct TCP com-
munication betweenA and B. If the NATs are well-
behaved, then a new peer-to-peer TCP stream automat-
ically forms between them. IfA’s first SYN packet to
B reachesB’s NAT beforeB’s first SYN packet toA
reachesB’s NAT, for example, thenB’s NAT may in-
terpretA’s SYN as an unsolicited incoming connection
attempt and drop it.B’s first SYN packet toA should
subsequently get through, however, becauseA’s NAT sees
this SYN as being part of the outbound session toB that
A’s first SYN had already initiated.

4.3 Behavior Observed by the Application

What the client applications observe to happen with their
sockets during TCP hole punching depends on the tim-
ing and the TCP implementations involved. Suppose that
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A’s first outbound SYN packet toB’s public endpoint is
dropped by NATB, butB’s first subsequent SYN packet
to A’s public endpoint gets through toA beforeA’s TCP
retransmits its SYN. Depending on the operating system
involved, one of two things may happen:

• A’s TCP implementation notices that the session
endpoints for the incoming SYN match those of an
outbound sessionA was attempting to initiate.A’s
TCP stack therefore associates this new session with
the socket that the local application onA was using
toconnect() toB’s public endpoint. The applica-
tion’s asynchronousconnect() call succeeds, and
nothing happens with the application’s listen socket.

Since the received SYN packet did not include an
ACK for A’s previous outbound SYN,A’s TCP
replies toB’s public endpoint with a SYN-ACK
packet, the SYN part being merely a replay ofA’s
original outbound SYN, using the same sequence
number. OnceB’s TCP receivesA’s SYN-ACK, it
responds with its own ACK forA’s SYN, and the
TCP session enters the connected state on both ends.

• Alternatively, A’s TCP implementation might in-
stead notice thatA has an active listen socket on
that port waiting for incoming connection attempts.
SinceB’s SYN looks like an incoming connection
attempt,A’s TCP creates anew stream socket with
which to associate the new TCP session, and hands
this new socket to the application via the applica-
tion’s nextaccept() call on its listen socket.A’s
TCP then responds toB with a SYN-ACK as above,
and TCP connection setup proceeds as usual for
client/server-style connections.

SinceA’s prior outboundconnect() attempt to
B used a combination of source and destination
endpoints that is now in use by another socket,
namely the one just returned to the application
via accept(), A’s asynchronousconnect() at-
tempt must fail at some point, typically with an “ad-
dress in use” error. The application nevertheless has
the working peer-to-peer stream socket it needs to
communicate withB, so it ignores this failure.

The first behavior above appears to be usual for BSD-
based operating systems, whereas the second behavior ap-
pears more common under Linux and Windows.

4.4 Simultaneous TCP Open
Suppose that the timing of the various connection at-
tempts during the hole punching process works out so that

the initial outgoing SYN packets fromboth clients tra-
verse their respective local NATs, opening new outbound
TCP sessions in each NAT, before reaching the remote
NAT. In this “lucky” case, the NATs do not reject either
of the initial SYN packets, and the SYNs cross on the
wire between the two NATs. In this case, the clients ob-
serve an event known as asimultaneous TCP open: each
peer’s TCP receives a “raw” SYN while waiting for a
SYN-ACK. Each peer’s TCP responds with a SYN-ACK,
whose SYN part essentially “replays” the peer’s previous
outgoing SYN, and whose ACK part acknowledges the
SYN received from the other peer.

What the respective applications observe in this case
again depends on the behavior of the TCP implementa-
tions involved, as described in the previous section. If
both clients implement the second behavior above, it may
be thatall of the asynchronousconnect() calls made
by the application ultimately fail, but the application run-
ning on each client nevertheless receives a new, working
peer-to-peer TCP stream socket viaaccept()—as if
this TCP stream had magically “created itself” on the wire
and was merely passively accepted at the endpoints! As
long as the application does not care whether it ultimately
receives its peer-to-peer TCP sockets viaconnect()
or accept(), the process results in a working stream
on any TCP implementation that properly implements the
standard TCP state machine specified in RFC 793 [23].

Each of the alternative network organization scenarios
discussed in Section 3 for UDP works in exactly the same
way for TCP. For example, TCP hole punching works in
multi-level NAT scenarios such as the one in Figure 6 as
long as the NATs involved are well-behaved.

4.5 Sequential Hole Punching
In a variant of the above TCP hole punching procedure
implemented by the NatTrav library [4], the clients at-
tempt connections to each other sequentially rather than
in parallel. For example: (1)A informsB via S of its
desire to communicate,without simultaneously listening
on its local port; (2)B makes aconnect() attempt to
A, which opens a hole inB’s NAT but then fails due to
a timeout or RST fromA’s NAT or a RST fromA itself;
(3) B closes its connection toS and does alisten()
on its local port; (4)S in turn closes its connection with
A, signalingA to attempt aconnect() directly toB.

This sequential procedure may be particularly useful on
Windows hosts prior to XP Service Pack 2, which did
not correctly implement simultaneous TCP open, or on
sockets APIs that do not support theSO_REUSEADDR
functionality. The sequential procedure is more timing-
dependent, however, and may be slower in the common
case and less robust in unusual situations. In step (2), for
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example,B must allow its “doomed-to-fail”connect()
attempt enough time to ensure that at least one SYN
packet traverses all NATs on its side of the network. Too
little delay risks a lost SYN derailing the process, whereas
too much delay increases the total time required for hole
punching. The sequential hole punching procedure also
effectively “consumes” both clients’ connections to the
serverS, requiring the clients to open fresh connections to
S for each new P2P connection to be forged. The parallel
hole punching procedure, in contrast, typically completes
as soon as both clients make their outgoingconnect()

attempts, and allows each client to retain and re-use a sin-
gle connection toS indefinitely.

5 Properties of P2P-Friendly NATs
This section describes the key behavioral properties NATs
must have in order for the hole punching techniques de-
scribed above to work properly. Not all current NAT
implementations satisfy these properties, but many do,
and NATs are gradually becoming more “P2P-friendly”
as NAT vendors recognize the demand for peer-to-peer
protocols such as voice over IP and on-line gaming.

This section is not meant to be a complete or definitive
specification for how NATs “should” behave; we provide
it merely for information about the most commonly ob-
served behaviors that enable or break P2P hole punching.
The IETF has started a new working group, BEHAVE, to
define official “best current practices” for NAT behavior.
The BEHAVE group’s initial drafts include the consider-
ations outlined in this section and others; NAT vendors
should of course follow the IETF working group directly
as official behavioral standards are formulated.

5.1 Consistent Endpoint Translation

The hole punching techniques described here only work
automatically if the NAT consistently maps a given TCP
or UDP source endpoint on the private network to asingle
corresponding public endpoint controlled by the NAT. A
NAT that behaves in this way is referred to as acone NAT
in RFC 3489 [19] and elsewhere, because the NAT “fo-
cuses” all sessions originating from a single private end-
point through the same public endpoint on the NAT.

Consider again the scenario in Figure 5, for example.
When clientA initially contacted the well-known server
S, NAT A chose to use port 62000 at its own public IP
address, 155.99.25.11, as a temporary public endpoint to
representingA’s private endpoint 10.0.0.1:4321. WhenA
later attempts to establish a peer-to-peer session withB by
sending a message from the same local private endpoint to
B’s public endpoint,A depends on NATA preserving the
identity of this private endpoint, and re-using the exist-

ing public endpoint of 155.99.25.11:62000, because that
is the public endpoint forA to whichB will be sending
its corresponding messages.

A NAT that is only designed to support client/server
protocols will not necessarily preserve the identities of
private endpoints in this way. Such a NAT is asymmet-
ric NAT in RFC 3489 terminology. For example, after the
NAT assigns the public endpoint 155.99.25.11:62000 to
client A’s session with serverS, the NAT might assign
a different public endpoint, such as 155.99.25.11:62001,
to the P2P session thatA tries to initiate withB. In this
case, the hole punching process fails to provide connec-
tivity, because the subsequent incoming messages fromB

reach NATA at the wrong port number.
Many symmetric NATs allocate port numbers for suc-

cessive sessions in a fairly predictable way. Exploiting
this fact, variants of hole punching algorithms [9, 1] can
be made to work “much of the time” even over symmetric
NATs by first probing the NAT’s behavior using a protocol
such as STUN [19], and using the resulting information to
“predict” the public port number the NAT will assign to a
new session. Such prediction techniques amount to chas-
ing a moving target, however, and many things can go
wrong along the way. The predicted port number might
already be in use causing the NAT to jump to another port
number, for example, or another client behind the same
NAT might initiate an unrelated session at the wrong time
so as to allocate the predicted port number. While port
number prediction can be a useful trick for achieving max-
imum compatibility with badly-behaved existing NATs,
it does not represent a robust long-term solution. Since
symmetric NAT provides no greater security than a cone
NAT with per-session traffic filtering, symmetric NAT is
becoming less common as NAT vendors adapt their algo-
rithms to support P2P protocols.

5.2 Handling Unsolicited TCP Connections
When a NAT receives a SYN packet on its public side for
what appears to be an unsolicited incoming connection
attempt, it is important that the NAT just silently drop the
SYN packet. Some NATs instead actively reject such in-
coming connections by sending back a TCP RST packet
or even an ICMP error report, which interferes with the
TCP hole punching process. Such behavior is not nec-
essarily fatal, as long as the applications re-try outgoing
connection attempts as specified in step 4 of the process
described in Section 4.2, but the resulting transient errors
can make hole punching take longer.

5.3 Leaving Payloads Alone
A few existing NATs are known to scan “blindly” through
packet payloads for 4-byte values that look like IP ad-
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dresses, and translate them as they would the IP address
in the packet header, without knowing anything about the
application protocol in use. This bad behavior fortunately
appears to be uncommon, and applications can easily pro-
tect themselves against it by obfuscating IP addresses they
send in messages, for example by sending the bitwise
complement of the desired IP address.

5.4 Hairpin Translation

Some multi-level NAT situations require hairpin transla-
tion support in order for either TCP or UDP hole punch-
ing to work, as described in Section 3.5. The scenario
shown in Figure 6, for example, depends on NATC pro-
viding hairpin translation. Support for hairpin translation
is unfortunately rare in current NATs, but fortunately so
are the network scenarios that require it. Multi-level NAT
is becoming more common as IPv4 address space deple-
tion continues, however, so support for hairpin translation
is important in future NAT implementations.

6 Evaluation of Existing NATs
To evaluate the robustness of the TCP and UDP hole
punching techniques described in this paper on a variety
of existing NATs, we implemented and distributed a test
program called NAT Check [16], and solicited data from
Internet users about their NATs.

NAT Check’s primary purpose is to test NATs for the
two behavioral properties most crucial to reliable UDP
and TCP hole punching: namely, consistent identity-
preserving endpoint translation (Section 5.1), and silently
dropping unsolicited incoming TCP SYNs instead of re-
jecting them with RSTs or ICMP errors (Section 5.2). In
addition, NAT Check separately tests whether the NAT
supports hairpin translation (Section 5.4), and whether the
NAT filters unsolicited incoming traffic at all. This last
property does not affect hole punching, but provides a use-
ful indication the NAT’s firewall policy.

NAT Check makes no attempt to test every relevant
facet of NAT behavior individually: a wide variety of sub-
tle behavioral differences are known, some of which are
difficult to test reliably [12]. Instead, NAT Check merely
attempts to answer the question, “how commonly can the
proposed hole punching techniques be expected to work
on deployed NATs, under typical network conditions?”

6.1 Test Method
NAT Check consists of a client program to be run on a ma-
chine behind the NAT to be tested, and three well-known
servers at different global IP addresses. The client coop-
erates with the three servers to check the NAT behavior
relevant to both TCP and UDP hole punching. The client

Figure 8: NAT Check Test Method for UDP

program is small and relatively portable, currently run-
ning on Windows, Linux, BSD, and Mac OS X. The ma-
chines hosting the well-known servers all run FreeBSD.

6.1.1 UDP Test

To test the NAT’s behavior for UDP, the client opens a
socket and binds it to a local UDP port, then successively
sends “ping”-like requests to servers 1 and 2, as shown
in Figure 8. These servers each respond to the client’s
pings with a reply that includes the client’s public UDP
endpoint: the client’s own IP address and UDP port num-
ber as observed by the server. If the two servers report the
same public endpoint for the client, NAT Check assumes
that the NAT properly preserves the identity of the client’s
private endpoint, satisfying the primary precondition for
reliable UDP hole punching.

When server 2 receives a UDP request from the client,
besides replying directly to the client it also forwards the
request to server 3, which in turn replies to the client from
its own IP address. If the NAT’s firewall properly fil-
ters “unsolicited” incoming traffic on a per-session basis,
then the client never sees these replies from server 3, even
though they are directed at the same public port as the
replies from servers 1 and 2.

To test the NAT for hairpin translation support, the
client simply opens a second UDP socket at a different lo-
cal port and uses it to send messages to thepublic endpoint
representing the client’s first UDP socket, as reported by
server 2. If these messages reach the client’s first private
endpoint, then the NAT supports hairpin translation.
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6.1.2 TCP Test

The TCP test follows a similar pattern as for UDP. The
client uses a single local TCP port to initiate outbound
sessions to servers 1 and 2, and checks whether the public
endpoints reported by servers 1 and 2 are the same, the
first precondition for reliable TCP hole punching.

The NAT’s response to unsolicited incoming connec-
tion attempts also impacts the speed and reliability of TCP
hole punching, however, so NAT Check also tests this be-
havior. When server 2 receives the client’s request, in-
stead of immediately replying to the client, it forwards a
request to server 3 and waits for server 3 to respond with a
“go-ahead” signal. When server 3 receives this forwarded
request, it attempts to initiate an inbound connection to
the client’s public TCP endpoint. Server 3 waits up to
five seconds for this connection to succeed or fail, and if
the connection attempt is still “in progress” after five sec-
onds, server 3 responds to server 2 with the “go-ahead”
signal and continues waiting for up to 20 seconds. Once
the client finally receives server 2’s reply (which server
2 delayed waiting for server 3’s “go-ahead” signal), the
client attempts an outbound connection to server 3, effec-
tively causing a simultaneous TCP open with server 3.

What happens during this test depends on the NAT’s
behavior as follows. If the NAT properly just drops server
3’s “unsolicited” incoming SYN packets, then nothing
happens on the client’s listen socket during the five sec-
ond period before server 2 replies to the client. When the
client finally initiates its own connection to server 3, open-
ing a hole through the NAT, the attempt succeeds imme-
diately. If on the other hand the NAT doesnot drop server
3’s unsolicited incoming SYNs but allows them through
(which is fine for hole punching but not ideal for secu-
rity), then the client receives an incoming TCP connec-
tion on its listen socket before receiving server 2’s reply.
Finally, if the NAT actively rejects server 3’s unsolicited
incoming SYNs by sending back TCP RST packets, then
server 3 gives up and the client’s subsequent attempt to
connect to server 3 fails.

To test hairpin translation for TCP, the client simply
uses a secondary local TCP port to attempt a connection
to the public endpoint corresponding to its primary TCP
port, in the same way as for UDP.

6.2 Test Results

The NAT Check data we gathered consists of 380 reported
data points covering a variety of NAT router hardware
from 68 vendors, as well as the NAT functionality built
into different versions of eight popular operating systems.
Only 335 of the total data points include results for UDP
hairpin translation, and only 286 data points include re-

sults for TCP, because we implemented these features in
later versions of NAT Check after we had already started
gathering results. The data is summarized by NAT ven-
dor in Table 1; the table only individually lists vendors for
which at least five data points were available. The varia-
tions in the test results for a given vendor can be accounted
for by a variety of factors, such as different NAT devices
or product lines sold by the same vendor, different soft-
ware or firmware versions of the same NAT implemen-
tation, different configurations, and probably occasional
NAT Check testing or reporting errors.

Out of the 380 reported data points for UDP, in 310
cases (82%) the NAT consistently translated the client’s
private endpoint, indicating basic compatibility with UDP
hole punching. Support for hairpin translation is much
less common, however: of the 335 data points that include
UDP hairpin translation results, only 80 (24%) show hair-
pin translation support.

Out of the 286 data points for TCP, 184 (64%) show
compatibility with TCP hole punching: the NAT consis-
tently translates the client’s private TCP endpoint, and
does not send back RST packets in response to unsolicited
incoming connection attempts. Hairpin translation sup-
port is again much less common: only 37 (13%) of the
reports showed hairpin support for TCP.

Since these reports were generated by a “self-selecting”
community of volunteers, they do not constitute a random
sample and thus do not necessarily represent the true dis-
tribution of the NATs in common use. The results are
nevertheless encouraging: it appears that the majority of
commonly-deployedNATs already support UDP and TCP
hole punching at least in single-level NAT scenarios.

6.3 Testing Limitations
There are a few limitations in NAT Check’s current test-
ing protocol that may cause misleading results in some
cases. First, we only learned recently that a few NAT im-
plementations blindly translate IP addresses they find in
unknown application payloads, and the NAT Check pro-
tocol currently does not protect itself from this behavior
by obfuscating the IP addresses it transmits.

Second, NAT Check’s current hairpin translation
checking may yield unnecessarily pessimistic results be-
cause it does not use the full, two-way hole punching pro-
cedure for this test. NAT Check currently assumes that a
NAT supporting hairpin translation does not filter “incom-
ing” hairpin connections arriving from the private network
in the way it would filter incoming connections arriving at
the public side of the NAT, because such filtering is unnec-
essary for security. We later realized, however, that a NAT
might simplistically treatany traffic directed at the NAT’s
public ports as “untrusted” regardless of its origin. We do
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UDP TCP
Hole Hole

Punching Hairpin Punching Hairpin
NAT Hardware

Linksys 45/46 (98%) 5/42 (12%) 33/38 (87%) 3/38 (8%)
Netgear 31/37 (84%) 3/35 (9%) 19/30 (63%) 0/30 (0%)
D-Link 16/21 (76%) 11/21 (52%) 9/19 (47%) 2/19 (11%)
Draytek 2/17 (12%) 3/12 (25%) 2/7 (29%) 0/7 (0%)
Belkin 14/14 (100%) 1/14 (7%) 11/11 (100%) 0/11 (0%)
Cisco 12/12 (100%) 3/9 (33%) 6/7 (86%) 2/7 (29%)
SMC 12/12 (100%) 3/10 (30%) 8/9 (89%) 2/9 (22%)
ZyXEL 7/9 (78%) 1/8 (13%) 0/7 (0%) 0/7 (0%)
3Com 7/7 (100%) 1/7 (14%) 5/6 (83%) 0/6 (0%)

OS-based NAT
Windows 31/33 (94%) 11/32 (34%) 16/31 (52%) 28/31 (90%)
Linux 26/32 (81%) 3/25 (12%) 16/24 (67%) 2/24 (8%)
FreeBSD 7/9 (78%) 3/6 (50%) 2/3 (67%) 1/1 (100%)

All Vendors 310/380 (82%) 80/335 (24%) 184/286 (64%) 37/286 (13%)

Table 1: User Reports of NAT Support for UDP and TCP Hole Punching

not yet know which behavior is more common.
Finally, NAT implementations exist that consistently

translate the client’s private endpoint as long asonly one
client behind the NAT is using a particular private port
number, but switch to symmetric NAT or even worse be-
haviors if two or more clients with different IP addresses
on the private network try to communicate through the
NAT from the same private port number. NAT Check
could only detect this behavior by requiring the user to
run it on two or more client hosts behind the NAT at the
same time. Doing so would make NAT Check much more
difficult to use, however, and impossible for users who
only have one usable machine behind the NAT. Neverthe-
less, we plan to implement this testing functionality as an
option in a future version of NAT Check.

6.4 Corroboration of Results

Despite testing difficulties such as those above, our results
are generally corroborated by those of a large ISP, who
recently found that of the top three consumer NAT router
vendors, representing 86% of the NATs observed on their
network, all three vendors currently produce NATs com-
patible with UDP hole punching [25]. Additional inde-
pendent results recently obtained using the UDP-oriented
STUN protocol [12], and STUNT, a TCP-enabled exten-
sion [8, 9], also appear consistent with our results. These
latter studies provide more information on each NAT by
testing a wider variety of behaviors individually, instead
of just testing for basic hole punching compatibility as

NAT Check does. Since these more extensive tests re-
quire multiple cooperating clients behind the NAT and
thus are more difficult to run, however, these results are
so far available on a more limited variety of NATs.

7 Related Work
UDP hole punching was first explored and publicly docu-
mented by Dan Kegel [13], and is by now well-known in
peer-to-peer application communities. Important aspects
of UDP hole punching have also been indirectly docu-
mented in the specifications of several experimental pro-
tocols, such as STUN [19], ICE [17], and Teredo [11]. We
know of no existing published work that thoroughly ana-
lyzes hole punching, however, or that points out the hair-
pin translation issue for multi-level NAT (Section 3.5).

We also know of no prior work that develops TCP
hole punching in the symmetric fashion described here.
Even the existence of the crucialSO_REUSEADDR/
SO_REUSEPORT options in the Berkeley sockets API
appears to be little-known among P2P application devel-
opers. NatTrav [4] implements a similar but asymmet-
ric TCP hole punching procedure outlined earlier in Sec-
tion 4.5. NUTSS [9] and NATBLASTER [1] implement
more complex TCP hole punching tricks that can work
around some of the bad NAT behaviors mentioned in Sec-
tion 5, but they require the rendezvous server to spoof
source IP addresses, and they also require the client appli-
cations to have access to “raw” sockets, usually available
only at root or administrator privilege levels.
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Protocols such as SOCKS [14], UPnP [26], and MID-
COM [22] allow applications to traverse a NAT through
explicit cooperation with the NAT. These protocols are not
widely or consistently supported by NAT vendors or ap-
plications, however, and do not appear to address the in-
creasingly important multi-level NAT scenarios. Explicit
control of a NAT further requires the application to locate
the NAT and perhaps authenticate itself, which typically
involves explicit user configuration. When hole punching
works, in contrast, it works with no user intervention.

Recent proposals such as HIP [15] and FARA [2] ex-
tend the Internet’s basic architecture by decoupling a
host’s identity from its location [20]. IPNL [7], UIP [5, 6],
and DOA [27] propose schemes for routing across NATs
in such an architecture. While such extensions are prob-
ably needed in the long term, hole punching enables ap-
plications to work over the existing network infrastructure
immediately with no protocol stack upgrades, and leaves
the notion of “host identity” for applications to define.

8 Conclusion
Hole punching is a general-purpose technique for estab-
lishing peer-to-peer connections in the presence of NAT.
As long as the NATs involved meet certain behavioral
requirements, hole punching works consistently and ro-
bustly for both TCP and UDP communication, and can
be implemented by ordinary applications with no special
privileges or specific network topology information. Hole
punching fully preserves the transparency that is one of
the most important hallmarks and attractions of NAT, and
works even with multiple levels of NAT—though certain
corner case situations require hairpin translation, a NAT
feature not yet widely implemented.
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