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Abstract

The goal of Anomaly-Detection (AD) is to identify out-
liers, or outlying regions, from some unknown distribu-
tion given only a set of positive (good) examples. Few-
Shot AD (FSAD) aims to solve the same task with a min-
imal amount of normal examples. Recent embedding-based
methods, that compare the embedding vectors of queries to
a set of reference embeddings, have demonstrated impres-
sive results for FSAD, where as little as one good example
is provided. A different approach, image-reconstruction-
based, has been historically used for AD. The idea is to
train a model to recover normal images from corrupted
observations, assuming that the model will fail to recover
regions when encountered with an out-of-distribution im-
age. However, image-reconstruction-based methods were
not yet used in the low-shot regime as they need to be trained
on a diverse set of normal images in order to properly
perform. We suggest using Masked Auto-Encoder (MAE),
a self-supervised transformer model trained for recover-
ing missing image regions based on their surroundings for
FSAD. We show that MAE performs well by pre-training
on an arbitrary set of natural images (ImageNet) and only
fine-tuning on a small set of normal images. We name this
method MAEDAY. We further find that MAEDAY provides
an orthogonal signal to the embedding-based methods and
the ensemble of the two approaches achieves very strong
SOTA results. We also present a novel task of Zero-Shot AD
(ZSAD) where no normal samples are available at training
time. We show that MAEDAY performs surprisingly well at
this task. Finally, we provide a new dataset for detecting
foreign objects on the ground and demonstrate superior re-
sults for this task as well.

1. Introduction

“All happy families are alike, but every unhappy fam-
ily is unhappy in its own way” [24]. The challenge of
Anomaly-Detection (AD) stems from the fact that good
cases are similar and easy to model, while anomalies rarely
happen, and when they do, they can take an unpredictable
form. For this reason, classic supervised training is some-

times not feasible for AD. In AD only good images are
provided during training, the goal is to model the distri-
bution of the good images and thus detect outliers at in-
ference time when they occur. There are two main ap-
proaches to AD, embedding-similarity based [3, 4, 19] and
image-reconstruction based [5,9,12,21,27,29]. Embedding-
similarity based methods utilize a pre-trained model to ex-
tract and aggregate representations of the normal images
or patches. The representation of a query image is com-
pared with those of the normal images to determine if it is
anomalous. Image-reconstruction based methods use only
normal images to train a model to reconstruct the images
from from a corrupted observation, e.g. noisy image or par-
tially masked-out.

Recently, there has been a great interest in Few-shot
AD (FSAD) [11, 19, 20, 23]. The promise of FSAD is
that a single model can be used for different objects and
adapted based on only few good samples. Embedding-
based methods have demonstrated high performance for
FSAD since they mostly rely on pre-trained models and do
not need a lot of training data. On the other hand, previ-
ous image-reconstruction-based methods trained the recon-
struction model from scratch and therefore required larger
training sets.

We suggest, for the first time, image-reconstruction
based method that can be used for FSAD. We do that by pre-
training the model for general natural-image reconstruc-
tion (pre-training on ImageNet). Our suggested method,
MAEDAY, addresses FSAD by using Masked AutoEncoder
(MAE) [8], a model trained for general image completion
based on partial observations. MAE was introduced for
a different purpose, trained on a self-supervised task (im-
age inpainting) with the end goal of learning image rep-
resentation. We re-purpose MAE for FSAD, unlike MAE
where the decoder is discarded at inference time, we use
both the encoder and the encoder to get a recovered image
and not just an intermediate representations. We use the
available few good images to further fine-tune the MAE.
The idea is that normal regions will be easier to recover
based on patterns observed in the few good examples and
based on recurring patterns in the query image itself. As in
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Query Masked input Recovered

MAE
Encoder Diff

Anomaly scores

MAE
Decoder

based on MAE figure, He et. al

Mean

Figure 1. MAEDAY: We repurposed MAE for Zero and Few-Shot Anomaly-Detection. In the zero-shot setup, with no special training and
no good images as a reference, ImageNet pre-trained MAE is used to reconstruct a mostly masked-out query image. Anomalous regions
are detected in areas where the reconstruction fails, as these regions cannot be accurately inferred from neighboring regions. The anomaly
scores are averaged across multiple reconstructions with different random masks. In the few-shot case, the pre-trained model is further
finetuned on the reconstruction of the available normal images.

the many-shot case, image-reconstruction is underperform-
ing compared to embedding-based. But we observed that
an ensemble of embedding-based and MAEDAY performs
extremely well and sets a new state-of-the-art result.

Following FSAD, we also suggest a new task, Zero-shot
AD (ZSAD). A class-invariant model that takes as input a
single query image (without any good reference) and de-
tects anomalies or irregularities. Since the model should
detect anomalies with no access to a reference image, it is
relevant for textures, where patterns repeat and the query
image acts as a self-reference. Such a model can be par-
ticularly useful in industrial settings, e.g. manufacturing of
textured materials. We show that MAEDAY, without any
training images, achieves high results for ZSAD and partic-
ularly compares favorably to the FSAD SOTA for the tex-
tures datasets in MVTec.

We also explore a new task of Zero-Shot Foreign Ob-
ject Detection (ZSFOD). Most Foreign Object Detection
works are using annotated images with bounding-boxes or
segmentation masks to train an object-detector [13, 15, 17].
A common use-case is detecting foreign objects or debris
on the pavement in airports’ runways [16]. We focus on
the zero-shot case, having a single model that can gener-
alize to new use-cases, with no prior reference of either a
free-of-objects surface or the objects to be detected. We
treated this problem similarly to ZSAD where the objects
are an anomaly in the surface texture. We release a new
FOD dataset of wooden floor (indoor) and pavement (out-
door) with or without foreign object. We show that MAE-
DAY, without any training images, outperforms the SOTA
one-shot results on this dataset.

To summarise, our contributions are (1) Suggesting

MAEDAY, MAE-based model pre-trained for image recon-
struction on arbitrary set of images and used for Few-Shot
Anomaly-Detection (FSAD); (2) Suggesting the new task
of Zero-Shot AD (ZSAD) and demonstrating strong re-
sults, particularly for textures (3) Suggesting the new task of
Zero-Shot Foreign Object Detection (ZSFOD) and showing
strong results; (4) Releasing a new FOD dataset.

2. Related Work
AD methods divide into two categories: embedding-

similarity-based and image-reconstruction-based.
Embedding-similarity-based methods compare image or

patch embedding with a distribution of normal image or
patch embeddings (modeled by the training set), e.g. [3,
4, 11, 19]. Some methods performs registration of the im-
ages, i.e. spatial mapping of the image to some canonical
form [2, 11]. Other approaches learn the negative distribu-
tion, too. That requires some assumptions on the anomaly
distribution and achieved by artificially producing anoma-
lies [14, 32]. The similarity-based methods are successful
in cases where normal data is abundant, and even demon-
strated success in the low data regime (FSDA) [19, 20, 23].

Image-reconstruction-based methods usually train a gen-
erative model on a set of normal images, e.g. an AutoEn-
coder [9, 12, 21] or GAN [6, 22, 26, 30]. The underline
assumption is that only good images can be generated by
the trained model. Another kind of generative-model is
Normalizing Flows [18], by using an invertible mapping
from a latent space with controlled distribution to images
we also obtain the inverse mapping that allows verifying
the likelihood of a query image [7, 28, 31]. Other meth-
ods apply some form of image degradation and again train
a model to reconstruct the images, assuming only good im-
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ages will be well-reconstructed [5, 25, 27, 29]. The clos-
est to our approach is RIAD [29], it masks parts of the
image and performs image inpainting. However, RIAD
and other image-reconstruction methods rely on training a
model from scratch on the normal images and are not in-
tended for the low-data or no-data regime.

3. Method
We begin by describing our approach (MAEDAY) for

ZSAD which is based on image reconstruction from par-
tial observations. MAE [8] is trained on the self-supervised
task of predicting an image from a partial observation. This
makes MAE a great tool for our purpose. We use an Ima-
geNet pretrained MAE as our backbone.

As commonly done in transformer-based architectures,
the input image I is split into non-overlapping patches, each
patch is flattened into a single token. The tokens go through
a linear projection with the addition of a positional encoding
and are then processed by a sequence of transformer blocks.
For MAE most of the input tokens are masked out and dis-
carded, therefore the encoder operates on a small number
of tokens. The decoder receives the output tokens of the
encoder and in addition ‘empty’ tokens with just the posi-
tional encoding replacing the masked-out tokens. Through
a sequence of transformer blocks, the decoder ‘fills’ these
empty tokens based on information from the encoder output
tokens. The output of the decoder is the recovered image.

Usually, at inference time only the MAE encoder is used
(for features extraction), while the decoder is discarded. In
our case, we use both the encoder and decoder. Given a
query image, a random small subset of its patches (25%)
are fed to the MAE. The recovered image is then compared
against the query image and mismatched pixels indicate an
anomalous region. We repeat this process multiple times
for each image, each time a different subset of the tokens
is retained. With enough repetitions (we used N = 32)
each token is likely to be masked out at least once, such that
we can measure how well it is reconstructed. We found in
our experiments that the reconstruction for retained tokens
(not masked-out) is also somewhat indicative of them being
normal vs. anomalous. Our intuition for that is that since
the transformer mixes the information from all tokens, even
when a token is visible it will be better reconstructed when
it is in agreement with its surrounding tokens. Given this
observation, we can simply run a query image N times with
different random masks and compare the N reconstructed
images (full images) against the query image. The method
is illustrated in Figure 1.

Formally, given a query image I ∈ RH×W×3 and a set
of N random masks {M1, ...,MN}, we use MAE to get N
reconstructed images {R1, ..., RN}, where Ri = MAE(I ·
Mi). Image resolution and patch size are the same as those
used for pretraining MAE (224 and 16). hen we use Ri to
compute N squared error maps. The squared error maps are

channel-wise filtered with a Gaussian kernel g (kernel size
7, σ = 1.4) to remove noise and summed over the 3 color
channels,

Ei =
∑

c∈{R,G,B}

(Ic −Rc
i )

2 ∗ g. (1)

The N error maps are averaged to get a single error map,
E = 1

N

∑N
i=1 Ei. E is the pixel-level anomaly score.

Finally, the image anomaly score is set by the max error
S = max(E).

For FSAD we first finetune the MAE model with the
available normal images. Unlike MAE, where the loss is
applied only on the recovered masked out patches, we apply
the loss to all patches. We do that because we use all pre-
dicted patches (both masked and unmasked) for detecting
anomalies. We use LoRA [10], a method originally intro-
duced for finetuning large language models (transformers)
without overfitting a small dataset. In LoRA additional low-
rank weight matrix is introduced for each weight matrix in
the original pre-trained model. The low rank is enforced by
having a low-rank decomposition. During fine-tuning, only
the low-rank weights are updated and the output of each
multiplication is the sum of performing the multiplication
with the original weights and the new low-rank weights.
After finetuning is finished, the weights are updated to be
the sum of the original weights and the new ones (to avoid
additional compute and memory consumption at inference
time).

We set the rank of the additional LoRA weights to 32
for all tensors in the model. The model is trained for 50
iterations using an SGD optimizer with a learning rate of
1e − 2 (LoRA requires a relatively high learning rate), a
momentum of 0.9 and weight decay of 0.05. We train with
random crop and random rotation augmentations. The batch
size is set to 32, so the few available shots are used multiple
times to fill the batch (but with different random masks each
time).

4. Results
We evaluated our method on all of the 15 datasets in

MVTec-AD [1], the most popular and the main AD bench-
mark. It is focused on an industrial inspection use case and
consists of 10 unique objects and 5 unique textures. For
each object or texture a training set of defect-free images
and a test set of both normal and anomalous instances are
available. The anomalous images are provided with pixel-
level annotation marking the anomaly location.

For the few-shot test, in each run we selected a few ran-
dom training samples from the relevant dataset training set
and tested on the full associated test set. Since the perfor-
mance can be dependent on the selected samples we aver-
aged all results over 3 different shots selection. When com-
paring to other methods we made sure the same exact shots

3
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0-Shot 1-Shot

Single-Model Single-Model Ensemble
MAEDAY PC MAEDAY 2*PC MAEDAY+PC

Objects
bottle 74.3 96.1 ± 3.5 74.8 ± 0.1 98.3 ± 1.8 93.7 ± 1.8
cable 53.0 82.6 ± 0.8 50.1 ± 5.0 83.6 ± 2.3 69.0 ± 4.6
capsule 64.0 63.0 ± 1.8 59.9 ± 9.5 63.7 ± 1.8 64.9 ± 1.9
hazelnut 97.1 84.9 ± 5.6 97.0 ± 0.2 85.4 ± 5.1 94.1 ± 0.2
metal-nut 43.6 75.4 ± 3.4 53.1 ± 1.5 77.0 ± 2.8 73.4 ± 1.8
pill 63.4 77.5 ± 1.4 63.5 ± 0.5 79.1 ± 1.9 81.7 ± 2.1
screw 69.9 46.0 ± 2.6 78.1 ± 2.5 45.8 ± 2.6 61.4 ± 2.2
toothbrush 77.5 84.4 ± 1.6 81.7 ± 2.9 83.8 ± 1.4 92.5 ± 1.0
transistor 48.3 82.1 ± 3.8 56.3 ± 4.1 80.1 ± 5.0 75.3 ± 2.7
zipper 82.0 96.6 ± 1.4 79.0 ± 0.2 96.9 ± 0.4 94.3 ± 1.1

Mean (Objects) 67.3 78.9 69.3 79.3 80.1

Textures
carpet 74.6 99.1 ± 0.1 72.3 ± 1.1 99.2 ± 0.0 97.9 ± 0.2
grid 97.9 43.4 ± 6.1 97.1 ± 0.3 43.2 ± 5.5 83.9 ± 6.5
leather 92.9 100. ± 0.0 93.4 ± 0.1 100. ± 0.0 99.9 ± 0.0
tile 84.3 98.5 ± 0.2 87.2 ± 1.5 98.7 ± 0.2 98.4 ± 0.2
wood 94.8 98.5 ± 0.5 96.7 ± 0.5 98.5 ± 0.5 99.5 ± 0.0

Mean (Textures) 88.9 87.9 89.3 87.9 95.9

Mean (All) 74.5 81.9 76.0 82.2 85.3

Table 1. Image-level ROC-AUC results for 0-shot and 1-shot on the MVTec datasets. MAEDAY performs surprisingly well even on objects
and textures the model was not trained on (ZSAD). In the 1-shot case, the embedding-based method, PC [19], has higher performance
when evaluating a single model. However, MAEDAY adds new kind of information and hence a MAEDAY+PC ensemble outperforms
an ensemble of 2 PC models. All 1-shot results are presented with mean±std over 3 runs with different shot selection (same shots for all
methods).
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Figure 2. ROC-AUC for 0-4 shot on the MVTec dataset.

are used by all methods. When an ensemble of models is
used, the same shots are used for all models, and the mod-
els’ output images and pixel-level scores are summed. For
the zero-shot test, per the task definition, the training set is

0.68

0.7
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0.74

0.76

1 2 4 8 16 32 64
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Num. repeats per image

Image AUC
Pixel AUC

Figure 3. Number of repetitions per image. Scores for each
image are averaged over multiple reconstructions with different
random masks. We observe performance saturation at ∼ 32 repe-
titions.

not used.

Table 1 summarizes the results for image-level zero and
one-shot anomaly detection performance. Even though
for the zero-shot case MAEDAY uses no normal training
data, we observe relatively strong results. For the textures
datasets it even outperforms the SOTA 1-shot results. In the
1-shot case, we observe 1.5% improvement of MAEDAY
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0-Shot 1-Shot

Single-Model Single-Model Ensemble
MAE0 PC MAEDAY 2*PC MAEDAY + PC

Objects
bottle 50.7 97.9 ± 0.1 50.8 ± 0.5 98.1 ± 0.1 95.9 ± 0.3
cable 65.5 90.3 ± 1.2 73.1 ± 3.1 91.3 ± 1.0 84.2 ± 0.7
capsule 48.1 97.1 ± 0.1 48.4 ± 3.6 97.2 ± 0.1 95.3 ± 1.3
hazelnut 94.1 88.5 ± 1.5 94.0 ± 0.2 88.8 ± 1.5 98.3 ± 0.1
metal-nut 39.6 89.6 ± 0.8 47.0 ± 0.7 90.1 ± 0.6 68.4 ± 1.2
pill 61.5 94.7 ± 0.4 62.0 ± 1.1 95.1 ± 0.3 91.3 ± 1.2
screw 96.9 88.6 ± 0.5 96.4 ± 0.4 88.8 ± 0.5 97.4 ± 0.0
toothbrush 72.3 95.0 ± 0.2 77.6 ± 3.0 95.2 ± 0.2 92.2 ± 0.5
transistor 59.7 92.3 ± 1.0 61.9 ± 0.2 92.3 ± 0.8 86.0 ± 1.9
zipper 76.2 96.9 ± 0.4 73.9 ± 0.6 97.1 ± 0.3 96.2 ± 0.4

Mean (Objects) 66.5 93.0 69.9 93.3 90.5

Textures
carpet 76.2 98.9 ± 0.0 78.4 ± 1.7 99.0 ± 0.0 98.2 ± 0.2
grid 95.4 55.7 ± 0.3 96.7 ± 0.3 55.9 ± 0.3 96.6 ± 0.2
leather 94.6 99.1 ± 0.0 96.4 ± 0.5 99.1 ± 0.0 99.4 ± 0.0
tile 30.9 94.8 ± 0.5 37.4 ± 2.1 94.9 ± 0.5 90.1 ± 1.1
wood 78.8 92.0 ± 0.2 80.0 ± 0.4 92.1 ± 0.2 92.9 ± 0.4

Mean (Textures) 75.2 88.1 79.7 88.2 95.4

Mean 69.4 91.4 71.6 91.7 92.2

Table 2. Pixel-level AUC-ROC on MVTec datasets. See Table 1 for details.

thanks to the finetuning on the normal sample. Yet, this is
still 5.9% lower than the SOTA embedding-based method
(PatchCore). Next, we test the performance of an ensemble
of two models. While the ensemble of two PatchCore mod-
els outperforms a single one thanks to the stochastic nature
of the method, the gain is limited by the fact they use the
same embeddings and the same kind of information. The
ensemble of MAEDAY with PatchCore outperform the two
PatchCore ensemble by 3.1%.

Table 2 summarizes the results for pixel-level zero and
one-shot anomaly detection (segmentation) performance.
While the gap between MAEDAY and PatchCore is higher
for pixel-level detection, we observe similar trends to
image-level performance. For a single model PatchCore
outperforms MAEDAY, but an ensemble of MAEDAY and
PatchCore is better than an ensemble of two PatchCore
models. We attribute the lower pixel-level performance to
the fact that, even though MAEDAY is mostly able to de-
tect the anomalies, often the detected anomaly only par-
tially covers the full anomaly region. Examples of segmen-
tation maps produced by MAEDAY are presented in Figure
4. Examples of the recovered images from masked inputs
are presented in Figure 5, while the recovered images tend
to be blurry they usually provide enough signal for detect-
ing anomalies.

We explored finetuning MAEDAY on more shots in Fig-
ure 2. The improvement in performance of MAEDAY sat-
urates at about 4 shots, making it a best fit for the low shot
scenario. For more shots, we observed similar results to 1-
shot, where an ensemble of MAEDAY and PatchCore sets
a new SOTA.

Num. of repetitions per image We tested the effect of
averaging the anomaly score from multiple inferences of
the same image with different random masks. We used a
varying number of repetitions per image, from as little as
a single run to 64 runs. In Figure 3 we summarized the
results. The performance seems to saturate at ∼ 32 repeti-
tions.

LoRA In Table 5 we compare the performance of fine-
tuning the original model parameters vs. training a low-
rank version of them using LoRA. For finetuning without
LoRA we used a learning rate of 1e − 4 with all other hy-
perparameters unchanged. We observe 0.6% improvement
in image-level performance and 0.8% in pixel-level perfor-
mance when using LoRA.
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Normal Anomaly
Query Predicted Query Predicted GT

Figure 4. 1-shot examples from the MVTec dataset. Usually the
anomaly is detected but the predicted anomaly area tends to be
smaller than the ground-truth, hence the pixel-level ROC-AUC is
smaller than the image-level.

Training and inference time We compare training and
inference time in Table 4. We tested the running time for the
0-shot and 1-shot cases. Time was measured on an A100
GPU. For PatchCore training includes extracting features
using a pretrained model and performing CoreSet cluster-
ing and amounts for 4 seconds. The reported training time
for MAEDAY was measured when training for 50 itera-
tions and took around 100 seconds. There is a trade-off
between finetuning MAEDAY which takes time and us-
ing MAEDAY in its 0-shot form which does not require
training but with an accuracy drop of 1.5%. The inference
was performed in batches for PatchCore (batch-size=32).
For MAEDAY, each query image is processed individually
since we use the batch dimension to run multiple instances
of the same image with different random masks. Despite the

Method Shots Indoor Outdoor Mean

PatchCore 1 98.2 73.2 85.7
MAEDAY 0 95.6 85.6 90.6

Table 3. Foreign Object Detection ROC-AUC performance for
zero-shot Foreign Object Detection (ZSFOD). MAEDAY, which
is a 0-shot method, outperforms the 1-shot AD baseline.

PatchCore MAEDAY MAEDAY
1-shot 0-shot 1-shot

Training 4s 0 100s
Infer. [per image] 0.07s 0.15s 0.15s

Table 4. Training and inference time. Tested for 0/1 shot. MAE-
DAY performs inference on a single image at a time to allow 32
repeats of the same image in the batch dimension (with different
random mask). For PatchCore we used batch size of 32. Despite
that, the inference time is not dramatically higher for MAEDAY
compared to PatchCore. Tested on an A100 GPU.

parallelization in PatchCore (and the lack of in MAEDAY)
the inference time is in the same order of magnitude with
0.07 seconds for PatchCore and 0.15 for MAEDAY. This is
partially thanks to the fact the MAE’s encoder inputs are
only 25% of the tokens. The 75% of the tokens that need
to be reconstructed are only introduced later as inputs to the
decoder which is a much smaller network.

4.1. Foreign Object Detection

We also tested a proof-of-concept of using MAEDAY
for Zero-Shot Foreign Object Detection (ZSFOD). FOD is
a very important task in several real-world scenarios, e.g.
in airport runways, where even very small objects on the
ground can be dangerous for the planes. Unlike classic FOD
where models are trained for detecting specific types of ob-
jects, here no training data of either an empty surface or
the objects to be detected are provided. We treat FOD as
detecting anomalies in the background surface texture. We
captured videos of the ground in two environments, indoors
(wooden floor) and outdoors (asphalt pavement). Some of
the frames contain foreign objects. Objects include larger
tools, e.g. a wrench, and smaller objects, e.g. a bolt. We ex-
tracted and labeled 20-50 frames with foreign objects and a
similar number without any object for each of the environ-
ments. This dataset will be released.

Since we are the first to perform the task of ZSFOD,
we chose to compare MAEDAY against the SOTA 1-shot
AD method, PatchCore [19]. This is a very strong baseline
since it is using an object-free reference. Table 3 summa-
rizes the results. We observed strong results by MAEDAY
for ZSFOD, MAEDAY performs close to (Indoors) or better
(Outdoors) compared to 1-shot PatchCore. Examples of im-
ages from the dataset along with their recovered outputs by
MAEDAY and the final segmentation results are presented
in Figure 6.
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Normal Anomaly
Query Masked input Recovered Diff Query Masked input Recovered Diff

Figure 5. Examples of reconstruction for both normal and anomalous images from the MVTech dataset. The model is usually able to
recover (a blurry version of) the normal images. In many cases this is enough for detecting anomalous regions.

5. Conclusions and Future Work

We have suggested MAEDAY, using an ImageNet pre-
trained MAE for the task of few-shot anomaly detection

(FSAD). While image-reconstruction-based methods are
not the strongest methods for AD, we showed they pro-
vide additional valuable information. An ensemble of an
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No Foreign Object Foreign Object
Query Masked Recovered Diff Total Score Query Masked Recovered Diff Total Score

Figure 6. ZSFOD MAEDAY Foreign Object Detection results with neither clean surface reference nor object references. “Total Score”
is the average of “Diff” produced with 32 different random masks applied to the same image.

Full-finetuning LoRA finetuning

Image ROC-AUC 75.4 76.0
Pixel ROC-AUC 70.9 71.6

Table 5. LoRA ablation Using LoRA for finetuning in a low-rank
space improves performance.

embedding-based method and MAEDAY sets a new SOTA
for FSAD.

We have also suggested the new Zero-Shot Anomaly-
Detection task (ZSAD), performing anomaly detection with
no reference images. We have shown MAEDAY can be
used for this task and performs surprisingly well despite
working with novel objects and textures. Specifically for
textures, MAEDAY outperforms the reference-based FSAD
SOTA baseline.

We explored a new task of Foreign Object Detection

(FOD) on the ground, with no prior reference to either a
free-of-objects surface or to the objects to be detected. We
treated this problem as ZSAD where the objects are an
anomaly in the surface texture. We showed better results
for this task compared with SOTA FSAD where an image
of the surface is provided for reference. The dataset is also
made available to the community.

In future work MAEDAY can be extended to better use
the few available shots in the FSAD setup. We can feed
the model tokens (patches) from both the query image and
the reference image(s). The model can be trained to use
the transformer’s attention mechanism to share information
between the reference tokens and the query tokens. This
way the recovered patches are not just guessed according
to their surrounding patches but are more likely to fit the
normal patch distribution.
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