Skip to content
An open-source big data platform designed and optimized for the Internet of Things (IoT).
Branch: master
Clone or download
guanshengliang Merge pull request #109 from plum-lihui/master
Fix the issure #102,  describe table bug when the table name use  capital letters
Latest commit 7c744da Jul 18, 2019

README.md

TDengine

What is TDengine?

TDengine is an open-sourced big data platform under GNU AGPL v3.0, designed and optimized for the Internet of Things (IoT), Connected Cars, Industrial IoT, and IT Infrastructure and Application Monitoring. Besides the 10x faster time-series database, it provides caching, stream computing, message queuing and other functionalities to reduce the complexity and cost of development and operation.

  • 10x Faster on Insert/Query Speeds: Through the innovative design on storage, on a single-core machine, over 20K requests can be processed, millions of data points can be ingested, and over 10 million data points can be retrieved in a second. It is 10 times faster than other databases.

  • 1/5 Hardware/Cloud Service Costs: Compared with typical big data solutions, less than 1/5 of computing resources are required. Via column-based storage and tuned compression algorithms for different data types, less than 1/10 of storage space is needed.

  • Full Stack for Time-Series Data: By integrating a database with message queuing, caching, and stream computing features together, it is no longer necessary to integrate Kafka/Redis/HBase/Spark or other software. It makes the system architecture much simpler and more robust..

  • Powerful Data Analysis: Whether it is 10 years or one minute ago, data can be queried just by specifying the time range. Data can be aggregated over time, multiple time streams or both. Ad Hoc queries or analyses can be executed via TDengine shell, Python, R or Matlab.

  • Seamless Integration with Other Tools: Telegraf, Grafana, Matlab, R, and other tools can be integrated with TDengine without a line of code. MQTT, OPC, Hadoop, Spark, and many others will be integrated soon.

  • Zero Management, No Learning Curve: It takes only seconds to download, install, and run it successfully; there are no other dependencies. Automatic partitioning on tables or DBs. Standard SQL is used, with C/C++, Python, JDBC, Go and RESTful connectors.

Documentation

For user manual, system design and architecture, engineering blogs, refer to TDengine Documentation for details.

Building

At the moment, TDengine only supports building and running on Linux systems. You can choose to install from packages or from the source code. This quick guide is for installation from the source only.

To build TDengine, use CMake 2.8 or higher versions in the project directory:

mkdir build && cd build
cmake .. && cmake --build .

Running

To start the TDengine server, run the command below in terminal:

./build/bin/taosd -c test/cfg

In another terminal, use the TDengine shell to connect the server:

./build/bin/taos -c test/cfg

Installing

After building successfully, TDengine can be installed by:

make install

Users can find more information about directories installed on the system in the directory and files section. It should be noted that installing from source code does not configure service management for TDengine. Users can also choose to install from packages for it.

Start the service in the terminal.

taosd

Then users can use the TDengine shell to connect the TDengine server.

taos

If the terminal connects the server successfully, welcome messages and version info are printed. Otherwise, an error message is shown.

Try TDengine

It is easy to run SQL commands in the terminal which is the same as other SQL databases.

create database db;
use db;
create table t (ts timestamp, a int);
insert into t values ('2019-07-15 00:00:00', 1);
insert into t values ('2019-07-15 01:00:00', 2);
select * from t;
drop database db;

Developing with TDengine

TDengine provides abundant developing tools for users to develop on TDengine. Follow the links below to find your desired connectors.

TDengine Roadmap

  • Support event-driven stream computing
  • Support user defined functions
  • Support MQTT connection
  • Support OPC connection
  • Support Hadoop, Spark connections
  • Support Tableau and other BI tools

Contribute to TDengine

Please follow the contribution guidelines to contribute to the project.

You can’t perform that action at this time.