
TAURUS BIG & SMALL: FROM PARTICLE ACCELERATORS TO
DESKTOP LABS

C. Pascual-Izarra , G. Cuní, C. Falcón-Torres, D. Fernández-Carreiras, Z. Reszela, M. Rosanes,
ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain

Oscar Prades-Palacios, ETSE-UAB, Cerdanyola del Vallès, Spain

Abstract
Taurus is a popular solution for rapid creation of

Graphical User Interfaces (GUIs) for experiment control
and data acquisition (even by non-programmers) [1].
Taurus is best known for its ability to interact with the
Tango and Epics control systems, and thus it is mainly
used in large facilities. However, Taurus also provides
mechanisms to interact with other sources of data, and it
is well suited for creating GUIs for even the smallest labs
where the overhead of a distributed control system is not
desired. This scalability together with its ease-of-use and
the uncontested popularity of Python among the scientific
users, make Taurus an attractive framework for a wide
range of applications. In this work we discuss some
practical examples of usage of Taurus ranging from a very
small experimental setup controlled by a single Raspberry
Pi, to large facilities synchronising an heterogeneous set
of hundreds of machines running a variety of operating
systems.

INTRODUCTION
Taurus [2] is a framework for creating user interfaces

(both GUIs and command-line based) to interact with
scientific and industrial control systems as well as with
other related data sources. Its main strength is that fully-
functional GUIs can be created with minimum effort even
by non-programmers, while still allowing full control and
the possibility of extending its capabilities by more
advanced developers.

Taurus is a free, open source, multi-platform pure
Python module (it uses PyQt [3] for the GUI). It uses a
Model-View approach to building the GUIs where the
complexities of lower-level access to the data sources or
control libraries is abstracted away by a set of plugins that
provide Taurus model objects. The graphical components
of a GUI just need to be provided with one or more model
names in order to display and/or control the data
represented by the model(s), allowing the creation of fully
functional GUIs in a few minutes without programming
[1].

These characteristics, combined with the popularity of
Python in scientific environments made Taurus the
preferred framework for GUI creation at many facilities.

Taurus was originally developed at the ALBA
synchrotron within the Tango Collaboration [4] and
therefore the first data source to be supported was the

Tango Distributed Control System (DCS), but it is not
limited to it. Other DCSs such as Epics as well as generic
data sources such as “python evaluation” or hdf5 files are
supported via “scheme” plugins. Since Taurus version 4,
the architecture for new user-contributed scheme plugins
was simplified and the Taurus core was made completely
scheme-agnostic (i.e. Tango support is implemented just
as another scheme plugin). The main widgets provided
with Taurus (forms, plots, labels, edit boxes, etc.) are also
scheme-agnostic, allowing the implementation of GUIs
that integrate one or more sources of data, as shown in
Fig. 1.

In the following sections we describe the different
strategies for integrating a given data source into Taurus
and we discuss how this allows Taurus to be used in a
wide range of contexts, from large facilities with
thousands of controllable parameters to single-instrument
laboratories.

Figure 1: TaurusForm widget attached to models from
tango, epics and evaluation schemes.

ACCESSING DATA SOURCES FROM A
TAURUS APPLICATION

As already mentioned, the scheme plugins provide
Taurus model objects which are used by the Taurus
widgets to enable the interaction with the experimental
setup and data sources. A scheme plugin implements
specific Taurus model objects, which can be of one of
three types: Attribute (a model that provides a value and
related metadata), Device (a stateful model that may
execute actions, or may be a natural aggregator of
Attributes) and Authority (a model that provides a context
for Devices and Attributes). A Taurus model has a unique
name in the form of a Unified Resource Identifier (URI)

† cpascual@cells.es

†

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL02

TUBPL02
166

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

and the scheme plugin provides name validators for each
type of model. The scheme also provides a Factory object
that takes model names and returns the corresponding
model objects.

When facing the integration of an instrument or a data
source into a Taurus application one should check if an
existing scheme already supports it. If that is not the case,
there are three possibilities:

a) integrate the new instrument into a supported DCS
and then access it via the corresponding DCS scheme.

b) writing a specific scheme
c) using the generic evaluation scheme
Integrating the new instrument into a supported DCS

(e.g., writing a new Tango Device Server or an Epics
Driver) makes sense when the person in charge is
experienced with the given DCS. This is usually the
preferred choice when the new instrument will be part of
a larger experimental setup already controlled by the
DCS.

On the other hand, writing a custom scheme plugin is a
good solution either for isolated setups where a DCS is
not desired or for performance reasons when direct access
to the data source is more convenient. Writing a custom
scheme is also an option for large facilities with an
existing DCS currently unsupported by Taurus that are
interested in using Taurus to build user interfaces to their
own DCS. Implementing a custom scheme involves
creating a python module to provide subclasses of the
base attribute, device and authority model classes, the
name validator classes and the factory class. The effort
required to implement it depends enormously on the
details of how the data source needs to be accessed (e.g.
whether resources need to be protected from concurrent
access, optimizations, etc.) as well as on the model
features to be supported (e.g. whether the scheme will
allow to write data). As an example, a first working
implementation of the h5file scheme plugin (read-only

access to data in hdf5 files) [5] took about 8h to a
developer who was familiar with the Taurus concepts.

Finally, using the generic evaluation scheme is usually
a quicker option, suitable for prototyping or for accessing
a relatively simple experimental setup. The evaluation
scheme allows to embed arbitrary python code into the
model name URI. It is typically used to dynamically
create attributes that result from performing mathematical
operations on other attributes, but it can also be used to
declare Taurus attribute models whose value is the result
of evaluating code from arbitrary modules (see Table 1
and Fig. 2). It is therefore possible to quickly integrate
some hardware for which a python access module exists
(see, e.g. example #8 of Table 1, where a webcam is
controlled) without having to write any specific code.

Furthermore, thanks to the support for writeable
evaluation attributes, it is possible to act on the hardware
(not just read from it), although this would typically
involve writing a small wrapper code in order to expose
the actions as writeable properties (see example #9 of
Table 1).

Figure 2: TaurusForm widget demostrating access to
arbitray modules (examples 9, 4, 5 and 6 from Table 1).

Table 1: Examples of Usage of the Evaluation Scheme

Model name (URI) Description

1 eval:({tango:a/b/c/d}+{epics:XXX:m1.VAL})*0.5 declares an attribute whose value is the average of the values of a tango attribute and an
epics process variable

2 eval:rand(256) declares an attribute whose value is an array of 256 pseudo-random values

3 eval:Q(rand(256),'V') Same as #2, but assigning units (Volts)

4 eval:@datetime.*/date.today().isoformat() uses the datetime module to get today’s date as a Taurus string attribute

5 eval:@os.*/environ["TANGO_HOST"] accesses a system environmental variable as a string attribute (uses the os module)

6 eval:@os.path.*/getsize("/var/log/boot")<50 declares a boolean attribute indicating if the size of a file is below a threshold (uses os
module)

7 eval:@pandas.*/read_csv('foo.csv')['y'].as_matrix() reads a column of a CSV file as an array attribute (uses pandas module)

8 eval:@c=cv2.VideoCapture(0)/c.read()[1][...,1] declares an array attribute from captured images from a webcam (uses opencv module)

9 eval:@c=mymod.MyClass()/c.foo declares an attribute from a member (foo) of an instance of a custom class
(mymod.MyClass). Note that if foo is a writable python property, the resulting attribute
would also be writable.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL02

User Interfaces and User eXperience (UX)
TUBPL02

167

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

TAURUS FOR LARGE FACILITIES
Due to the already explained historical reasons, the first

facilities adopting Taurus were synchrotrons from the
Tango community (ALBA, DESY, MAX IV, Solaris,
ESRF,...). Nowadays, Taurus is used to some degree also
by LASER facilities (ELI, LULI,...), by linear
accelerators (LAL, CMAM,...), by a wind tunnel (Onera),
by large astronomy infrastructures (SKA), by nuclear
research facilities (CEA, Kurchatov Institute,...) among
other large laboratories. Also, several companies provide
services based on Taurus and/or implement custom
solutions with it.

At the moment of writing, we are not aware of Taurus
being used by any large facility whose main DCS is
different than Tango, but some have expressed interest
and evaluated the possibility of supporting their own
DCSs (ESO, SPRING-8). Also, Taurus is already used at
DESY to integrate Epics-based subsystems within a
general Tango system.

In the case of ALBA, Taurus and Taurus-based
frameworks such as Sardana [6, 7], Vacca [8], PyAlarm
[9] are used across all areas, from controlling the
accelerators to acquiring experimental data at all the
beamlines. The roughly 100 control GUIs developed in-
house are almost exclusively based on Taurus, and they
interact with a Tango DCS consisting of tenths to
hundreds of thousands attributes distributed amongst
more than 300 machines. Both Taurus and Tango are run
at ALBA on a heterogeneous set of machine architectures
and Operating Systems [10].

The evaluation scheme is also heavily used at ALBA,
mostly by end-users wishing to customize their own
views over the system. The Epics scheme plugin has also
been used to integrate a small subsystem, but not in
production yet.

From all the accumulated experience, we can conclude
that Taurus has demonstrated to work well for large
facilities where it scales just as well as the underlying
DCS.

TAURUS FOR SMALL LABORATORIES
Since the scalability towards complex systems has

already been established, we will now discuss the
performance of Taurus in small laboratories (down to
“desktop labs” consisting of a single computer connected
to a single instrument).

There is one first approach which consists in simply
scaling down the solution used in large facilities, i.e.,
using Taurus on top of a DCS. This is possible because
both currently supported DCSs (Tango and Epics) can be
easily run even on a single computer. This is certainly a
good solution in those situations where: a) the person-in-
charge is already familiar with the DCS and b) the
instrument hardware is already supported by the DCS
(e.g., a Tango Device Server already exists for your
equipment). The advantages of this approach are that it

simplifies future expansions and that it benefits from the
robustness and community support from the DCS.

As an example of this approach, we can mention that
installing and configuring Tango+Taurus (including
setting-up a Tango Database) on a single PC can be done
in a few minutes (e.g. with just one “apt-get” command in
Debian). Using a DCS certainly introduces some
resources overhead, but this is generally acceptable: e.g.,
a single RaspBerryPI 3 mini-computer [11] has been
shown to be able to simultaneously run a Tango Database,
the Sardana Device Server, and a Taurus GUI accessing a
microscope.

However, this approach may not be the most
convenient if the above-mentioned conditions are not met.
Especially if the person responsible for the setup is not
already familiar with the DCS: learning all the involved
concepts required for configuring and maintaining the
software infrastructure required by a DCS may become
too much overhead for a small setup whose responsible
may not even be familiar with network protocols, system
services, etc.

In this case, Taurus benefits from the possibility of
being used without an underlying DCS. Taurus Model
Objects may be provided also by non-DCS scheme
plugins such as the evaluation scheme, or the h5file
scheme, or any other custom-created scheme plugin.

As an example of a minimal setup based on non-DCS
schemes, consider the case of the system depicted in
Fig.3, where a microscope is plugged onto a RaspberryPI
and controlled from a Taurus GUI that only uses a model
provided by the evaluation scheme (actually it can be
done by just passing the URI #8 from Table 1 as an
argument of the “taurusform” launcher).

Figure 3: A “desktop lab” consisting on a microscope
plugged onto a RaspberryPI. On the Screen, a Taurus GUI
for controlling the connected equipment is shown.

CONCLUSIONS
We have shown that Taurus can be used to quickly

deploy user interfaces in very different contexts. Its
flexible design allows it to scale up and down to adapt to
the requirements of both very large facilities and small
laboratories.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL02

TUBPL02
168

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

ACKNOWLEDGEMENT
We would like to thank the Taurus, Sardana and Tango

community members and contributors. We would also
like to thank Frederic Picca (Soleil) for packaging Taurus
and Sardana for Debian.

REFERENCES
[1] C. Pascual-Izarra et al., in Proc. ICALEPCS’15, pp. 1138-

1142.

[2] Taurus, http://www.taurus-scada.org

[3] PyQt,
http://www.riverbankcomputing.com/software/pyqt

[4] Tango, http://www.tango-controls.org

[5] h5file scheme,
https://github.com/taurus-org/h5file-scheme

[6] Sardana, http://www.sardana-controls.org

[7] T. Coutinho et al., in Proc. ICALEPCS’11, pp. 607-609.

[8] S. Rubio-Manrique et al., in Proc. ICALEPCS’15, pp. 1052-
1055.

[9] S. Rubio-Manrique et al., in Proc. ICALEPCS’11, pp. 63-
65.

[10] D. Fernandez-Carreiras et al., in Proc. ICALEPCS’09,
pp. 709-711

[11] RaspBerry Pi website, https://www.raspberrypi.org

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL02

User Interfaces and User eXperience (UX)
TUBPL02

169

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

