
I. Introductions
a. Download Python3
b. Text editor
c. How to start an interactive python session (python3)
d. Hello World Program
e. Some Questions:

i. Any programming background? CS10?
ii. Math background?

iii. What do you know about CS61A and what is taught in there?
f. What is CS61A? Python?

i. The Structure and Interpretation of Computer Programs
g. Goal for WAT Camp

i. Understand the basic concepts so that you can write python
programs

h. Final day game ideas
i. Anyone been to a hackathon/know what it is

ii. Any ideas on what you want to create for our last day
1. Game
2. Projects

II. Elements of Programming
a. Python code consists of expressions (typically describe computations) and

statements (typically describe actions).
b. Assignment statement:
c. shakespeare =

urlopen('http://composingprograms.com/shakespeare.txt')
d. this line associates the name Shakespeare with the value of the expression

that follows =.
e. urlopen is a function.
f. Objects, you’ll be working with objects throughout the class.

i. An example of one type of object is a set. It supports set
operations like computing intersections and membership

1. Question: What are some operations that sets would
support? Think about some sets you’ve encountered before,
like the set of Natural numbers and Real numbers.

g. Expressions (in interactive session)
i. Primitive expressions

ii. One kind of primitive expression is a number. More precisely, the
expression that you type consists of the numerals that represent the
number in base 10.

iii. >>> 42
42

Expressions representing numbers may be combined with mathematical
operators to form a compound expression, which the interpreter will
evaluate:
>>> -1 - -1
0
>>> 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128

0.9921875
iv. Call Expressions apply a function to some arguments.

>>> max(7.5, 9.5)
9.5
>>> pow(100, 2)
10000

III. Importing Library Functions
a. Python defines a very large number of functions but does not make all of

their names available by default. For example, the math module provides
a variety of familiar mathematical functions:
>>> from math import sqrt
>>> sqrt(256)
16.0

The operator module provides access to functions corresponding to infix
operators:
>>> from operator import add, sub, mul
>>> add(14, 28)
42
>>> sub(100, mul(7, add(8, 4)))
16

The Python 3 Library Docs list the functions defined by each module, such as the
math module.
IV. Evaluating Nested Expressions

a. In evaluating nested call expressions, the interpreter is itself following a
procedure. To evaluate a call expression, Python will do the following:

i. Evaluate the operator and operand subexpressions, then
ii. Apply the function that is the value of the operator subexpression

to the arguments that are the values of the operand subexpressions.
iii. Exercise:

>>> mul(add(2, mul(4, 6)), add(3, 5))
208

V. Defining New Functions
Now we will learn about function definitions, a much more powerful abstraction
technique by which a name can be bound to compound operation, which can then be
referred to as a unit.
We begin by examining how to express the idea of squaring. We might say, "To
square something, multiply it by itself." This is expressed in Python as
>>> def square(x):

return mul(x, x)
which defines a new function that has been given the name square.

How to define a function:
Function definitions consist of a def statement that indicates a <name> and a
comma-separated list of named <formal parameters>, then a return statement,
called the function body, that specifies the <return expression> of the
function, which is an expression to be evaluated whenever the function is applied:

def <name>(<formal parameters>):
return <return expression>

VI. Calling User-Defined Functions (go to site with environment diagrams)
a. Applying a user-defined function introduces a second local frame, which

is only accessible to that function. To apply a user-defined function to
some arguments:

i. Bind the arguments to the names of the function's formal
parameters in a new local frame.

ii. Execute the body of the function in the environment that starts
with this frame.

b. The environment in which the body is evaluated consists of two frames:
first the local frame that contains formal parameter bindings, then the
global frame that contains everything else.

VII. Designing functions: qualities of good functions all reinforce the idea that
functions are abstractions.
a. Each function should have exactly one job.
b. Don't repeat yourself.
c. Functions should be defined generally. Squaring is not in the Python

Library precisely because it is a special case of the pow function, which
raises numbers to arbitrary powers.

d. Documentation: A function definition will often include documentation
describing the function, called a docstring, which must be indented along
with the function body. Docstrings are conventionally triple quoted. The
first line describes the job of the function in one line. The following lines
can describe arguments and clarify the behavior of the function:
>>> def pressure(v, t, n):

"""Compute the pressure in pascals of an ideal gas.

Applies the ideal gas law:
http://en.wikipedia.org/wiki/Ideal_gas_law

v -- volume of gas, in cubic meters
t -- absolute temperature in degrees kelvin
n -- particles of gas """

k = 1.38e-23 # Boltzmann's constant
return n * k * t / v

When you call help with the name of a function as an argument, you see its
docstring (type q to quit Python help).

VIII. “If statements”, “while statements”, lambda functions
a. If statements
b. While statements
c. Lambda functions

